首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
Rho GTPases are small GTP binding proteins belonging to the Ras superfamily which act as molecular switches that regulate many cellular function including cell morphology, cell to cell interaction, cell migration and adhesion. In neuronal cells, Rho GTPases have been proposed to regulate neuronal development and synaptic plasticity. However, the role of Rho GTPases in neurosecretion is poorly documented. In this review, we discuss data that highlight the importance of Rho GTPases and their regulators into the control of neurotransmitter and hormone release in neurons and neuroendocrine cells, respectively.  相似文献   

2.
The role of Rho family GTPases in controlling the actin cytoskeleton and thereby regulating cell migration has been well studied for cells migrating on 2D surfaces. In vivo, cell migration occurs within three-dimensional matrices and along aligned collagen fibers with rather different spatial requirements. Recently, a handful of studies coupled with new approaches have demonstrated that Rho GTPases have unique regulation and roles during cell migration within 3D matrices, along collagen fibers, and in vivo. Here we propose that migration on aligned matrices facilitates spatial organization of Rho family GTPases to restrict and stabilize protrusions in the principle direction of alignment, thereby maintaining persistent migration. The result is coordinated cell movement that ultimately leads to higher rates of metastasis in vivo.  相似文献   

3.
4.
Rho小G蛋白作为一个信号分子家族具有多样化的功能, 可以调节细胞骨架重排 、细胞迁移、细胞极性、基因表达、细胞周期调控等. Rho小G蛋白家族对细胞周期 调控的研究主要集中在其对于有丝分裂期细胞的调节作用,包括调节有丝分裂期前 期细胞趋圆化、后期染色体排列及收缩环的收缩作用.近期的研究显示,Rho小G蛋白及其效应分子对于细胞周期G1、S、G2期的调控主要是通过影响细胞周期的正调控因子细胞周期蛋白D1 (cyclin D1) 和负调控因子细胞周期蛋白依赖型激酶相互作用蛋白1及细胞周期蛋白依赖型激酶抑制蛋白27 (p21cip1/p27kip1) 进行的.本文总结了Rho小G蛋白及其效应分子在细胞周期调控,尤其是对G1/S期调控的研究进展,并简要阐述了Rho小G蛋白介导的细胞周期调控异常与癌症发生的关系.  相似文献   

5.
Malignant tumor cells display uncontrolled proliferation, loss of epithelial cell polarity, altered interactions with neighboring cells and the surrounding extracellular matrix, and enhanced migratory properties. Proteins of the Rho GTPase family regulate all these processes in cell culture and, for that reason, Rho GTPases, their regulators, and their effectors have been suggested to control tumor formation and progression in humans. However, while the tumor-relevant functions of Rho GTPases are very well documented in vitro, we are only now beginning to assess their contribution to cancer in human patients and in animal models. This review will give a very brief overview of Rho GTPase function in general and then focus on in vivo evidence for a role of Rho GTPases in malignant tumors, both in human patients and in genetically modified mice.  相似文献   

6.
Rho GTPases, such as Rho, Rac and Cdc42, are known to regulate many cellular processes including cell movement and cell adhesion. While the cellular events of germ cell movement are crucial to spermatogenesis since developing germ cells must migrate progressively from the basal to the adluminal compartment but remain attached to the seminiferous epithelium, the physiological significance of Rho GTPases in spermatogenesis remains largely unexplored. This paper reviews some recent findings on Rho GTPases in the field with emphasis on the studies in the testis, upon which future studies can be designed to delineate the role of Rho GTPases in spermatogenesis.  相似文献   

7.
8.
9.
Neurones are highly specialised cells that can extend over great distances, enabling the complex networking of the nervous system. We are beginning to understand in detail the molecular mechanisms that control the shape of neurones during development. One family of proteins that are clearly essential are the Rho GTPases which have a pivotal role in regulating the actin cytoskeleton in all cell types. The Rho GTPases are responsible for the activation and downregulation of many downstream kinases. This review discusses individual kinases that are regulated by three members of the Rho GTPases, Rac, Rho and Cdc42 and their function during neurite outgrowth and remodelling.  相似文献   

10.
Rho GTPases参与调控细胞的多种关键生物学行为,特别是细胞的生长、细胞骨架的形成、转录调节等生物学过程.在肿瘤的发生发展中Rho GTPases也扮演了重要的角色.本文将回顾Rho GTPases的调控(包括经典及非经典调控方式)及其关键成员(Rho A、Cdc42及Rac1)与临床肿瘤的研究进展,特别是它们参与调控肿瘤的增殖、迁移、侵袭、凋亡等恶性生物学行为,从而为研发靶向Rho GTPases的小分子/基因药物了奠定基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号