首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 394 毫秒
1.
lacZ translation initiation mutations   总被引:32,自引:0,他引:32  
  相似文献   

2.
Use of lacZ expression to monitor transcription   总被引:4,自引:0,他引:4  
C S Tomich  P S Kaytes  M K Olsen  H Patel 《Plasmid》1988,20(2):167-170
  相似文献   

3.
S Loechel  J M Inamine    P C Hu 《Nucleic acids research》1991,19(24):6905-6911
The tuf gene of Mycoplasma genitalium uses a signal other than a Shine-Dalgarno sequence to promote translation initiation. We have inserted the translation initiation region of this gene in front of the Escherichia coli lacZ gene and shown that it is recognized by the translational machinery of E. coli; the signal operates in vivo at roughly the same efficiency as a synthetic Shine-Dalgarno sequence. The M. genitalium sequence was also used to replace the native translation initiation region of the cat gene. When assayed in E. coli, the M. genitalium sequence is equivalent to a Shine-Dalgarno sequence in stimulating translation of this mRNA also. Site-directed mutagenesis enabled us to identify some of the bases that comprise the functional sequence. We propose that the sequence UUAACAACAU functions as a ribosome binding site by annealing to nucleotides 1082-1093 of the E. coli 16S rRNA. The activity of this sequence is enhanced when it is present in the loop of a stem-and-loop structure. Additional sequences both upstream and downstream of the initiation codon are also involved, but their role has not been elucidated.  相似文献   

4.
A vector (pKL203) was constructed which contains the promoter-operator region of the lacZ gene and the major part of the coding sequence of the lac operon. The lacZ translation initiation signals [Shine-Dalgarno (SD) sequence and AUG codon] were deleted, and in their place a synthetic linker sequence was inserted, providing single restriction sites for SmaI and BamHI. With this vector constructions were made in which initiation signals of other prokaryotic genes (phage MS2 maturation protein, phage Q beta A2 gene and tufB gene) were fused to the lacZ gene, giving rise to various fusion proteins. The introduction of N-terminal amino acids (aa) in beta-galactosidase (beta-gal) which differ from the wild-type aa invariably leads to an enzyme with a strongly reduced thermostability as compared to the wild-type enzyme. Therefore an immunoprecipitation method was used to measure the amount of fusion protein. It was found that these amounts varied strongly from one construction to another. Concomitant determinations of the amounts of lac-operon-specific mRNA showed an unexpectedly large variation among the clones. No strict correlation could be found between the level of lac mRNA and beta-gal production. Per molecule of lac mRNA, translation appears to be most efficient when the homologous lacZ initiation signal is present.  相似文献   

5.
The initiation of translation is a fundamental and highly regulated process in gene expression. Translation initiation in prokaryotic systems usually requires interaction between the ribosome and an mRNA sequence upstream of the initiation codon, the so-called ribosome-binding site (Shine-Dalgarno sequence). However, a large number of genes do not possess Shine-Dalgarno sequences, and it is unknown how start codon recognition occurs in these mRNAs. We have performed genome-wide searches in various groups of prokaryotes in order to identify sequence elements and/or RNA secondary structural motifs that could mediate translation initiation in mRNAs lacking Shine-Dalgarno sequences. We find that mRNAs without a Shine-Dalgarno sequence are generally less structured in their translation initiation region and show a minimum of mRNA folding at the start codon. Using reporter gene constructs in bacteria, we also provide experimental support for local RNA unfoldedness determining start codon recognition in Shine-Dalgarno--independent translation. Consistent with this, we show that AUG start codons reside in single-stranded regions, whereas internal AUG codons are usually in structured regions of the mRNA. Taken together, our bioinformatics analyses and experimental data suggest that local absence of RNA secondary structure is necessary and sufficient to initiate Shine-Dalgarno--independent translation. Thus, our results provide a plausible mechanism for how the correct translation initiation site is recognized in the absence of a ribosome-binding site.  相似文献   

6.
The translational roles of the Shine-Dalgarno sequence, the initiation codon, the space between them, and the second codon have been studied. The Shine-Dalgarno sequence UAAGGAGG initiated translation roughly four times more efficiently than did the shorter AAGGA sequence. Each Shine-Dalgarno sequence required a minimum distance to the initiation codon in order to drive translation; spacing, however, could be rather long. Initiation at AUG was more efficient than at GUG or UUG at each spacing examined; initiation at GUG was only slightly better than UUG. Translation was also affected by residues 3' to the initiation codon. The second codon can influence the rate of initiation, with the magnitude depending on the initiation codon. The data are consistent with a simple kinetic model in which a variety of rate constants contribute to the process of translation initiation.  相似文献   

7.
In the plasmid pUC8ksgA7, the coding region of the ksgA gene is preceded by the lac promoter (Plac) and a small open reading frame (ORF). This ORF of 15 codons is composed of nucleotides derived from the lacZ gene, a multiple cloning site and the ksgA gene itself. The reading frame begins with the ATG initiation codon of lacZ and ends a few nucleotides beyond the ATG start codon of ksgA. The ksgA gene is not preceded by a Shine-Dalgarno (SD) signal. Cells transformed with pUC8ksgA7 produce active methylase, the product of the ksgA gene. Introduction of an in-phase TAA stop codon in the small ORF abolishes methylase production in transformed cells. On the plasmid pUC8ksgA5, which contains the entire ksgA region, the promoter of the ksgA gene was found to reside in a 380 base pair Bgl1-Pvu2 restriction fragment, partly overlapping the ksgA gene, by two independent methods. Cloning of this fragment in front of the galK gene in plasmid pKO1 stimulates galactokinase activity in transformants and its insertion into the expression vector pKL203 makes beta-galactosidase synthesis independent of the presence of Plac. The sequence of the Bgl1-Pvu2 fragment was determined and a putative promoter sequence identified. An SD signal could not be distinguished at a proper distance upstream from the ksgA start codon. Instead, an ORF of 13 codons starting with ATG in tandem with an SD signal and ending 4 codons ahead of the ksgA gene was identified. This suggests that translation of the ORF is required for expression of the ksgA gene.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Y Kuriki 《Journal of bacteriology》1989,171(10):5452-5457
pBR322 contains the amp gene encoding beta-lactamase. When Escherichia coli carrying this plasmid is exposed to heat shock, beta-lactamase synthesis is repressed transiently at the translational level. To identify the DNA element responsible for this translational repression, DNA segments containing the translation start region of the amp gene were excised from pAT153 and fused in frame with the lacZ reading frame in the open reading frame vector pORF1. These constructs were introduced into E. coli, and the effect of heat shock of the cells on the synthesis of beta-galactosidase starting from the amp start codon was examined. As is the case for pBR322-encoded synthesis of beta-lactamase, the synthesis of beta-galactosidase encoded by the fused genes also ceased transiently upon heat shock. It is concluded that the heat shock-induced repression of the amp gene occurs at the initiation step of translation. As far as the present study is concerned, the minimum DNA segment responsible for the repression is AT TGA AAA AGG AAG AGT ATG AG, which includes the Shine-Dalgarno sequence (AAGGA) and the initiation codon (ATG).  相似文献   

9.
10.
B Schauder  J E McCarthy 《Gene》1989,78(1):59-72
A range of translational initiation regions (TIR) was created by combining synthetic DNA fragments derived from the atpB-atpE intercistronic sequence of Escherichia coli with the cDNA sequence encoding mature human interleukin 2 (IL-2), the E. coli fnr gene, or an fnr::lacZ gene fusion. Both the overall rates of gene expression and the relative concentrations and stabilities of the corresponding mRNA species were estimated in strains bearing the constructs on plasmids. These measurements served as the basis for analyses of the relationship between the structure of the TIR and the true rates of translation that it promotes. The constructs involving the IL-2 cDNA were predicted to allow much less stable secondary structure within the TIR than those involving the N-terminal region of the fnr gene. Thus by combining one set of upstream sequences with two different types of N-terminal coding sequence, it was possible to distinguish between the respective influences of primary and secondary structure upon initiation. The data indicate that in the presence of a given Shine-Dalgarno (SD)/start codon combination, the decisive factor for translational initiation efficiency is the stability of base pairing involving, or in the vicinity of, this region. The sequences contributing to this secondary structure can be many bases upstream of the SD region and/or downstream of the start codon. There was no indication that the specific base sequence upstream of the SD region could, other than to the extent that it contributed to the local secondary structure, significantly influence the efficiency of translational initiation.  相似文献   

11.
12.
13.
Translation of the carA gene is efficiently initiated at the intrinsically weak UUG codon. A single nucleotide substitution changing the Shine-Dalgarno box of carA (GGAGG) into the sequence TGAGG reduces translation of carA sevenfold. This result supports the view that extensive complementarity between the Shine-Dalgarno sequence and 16S RNA contributes significantly to the efficiency of translation when the latter starts at a weak initiation triplet.  相似文献   

14.
In a reverse of many studies of translational initiation sites, we have explored the basis for the inactivity of an apparently defective initiation site. Gene VII of the filamentous phage f1 has a translational start site with highly unusual functional properties and a sequence dissimilar to a prokaryotic ribosome binding site. The VII site shows no activity in assays of independent initiation, even in a deletion series designed to remove potentially interfering RNA secondary structure. Activity from the VII site is only observed if the site is coupled to a source of translation immediately upstream, but its efficiency is low at a one-nucleotide spacing from the stop codon of the upstream cistron and extremely sensitive to the distance between the stop codon and the gene VII AUG. These and other atypical characteristics of coupling distinguish the VII site from most coupled initiation sites. To identify the pattern of nucleotide substitutions that give the VII site the capacity for independent initiation, a series of designed and random point mutations were introduced in the sequence. Improving the Shine-Dalgarno complementarity from GG to GGAG or GGAGG made activity detectable, but at only low levels. Random substitutions, each increasing activity above background by a small increment, were found at 16 positions throughout the region of ribosome contact. These substitutions lengthened the Shine-Dalgarno complementarity or changed the G and C residues present in the wild-type site to A or T. Significant activity was not observed unless a strong Shine-Dalgarno sequence and a number of the up-mutations were present together. The nature and distribution of the substitutions and their agreement with the known preferences for nucleotides in initiation sites provide evidence that the VII site's major defect is its primary sequence overall. It appears to lack the specialized sequence required to bind free 30 S ribosomes, and thus depends on the translational coupling process to give it limited activity.  相似文献   

15.
Cloning and DNA sequence of the 5'-exonuclease gene of bacteriophage T5   总被引:4,自引:0,他引:4  
The nucleotide sequence of the BalI-PstI fragment of T5 DNA, 1347 bp in length, coding for 5'-exonuclease (D15 gene), has been determined. A coding region of the gene contains 873 bp and is preceded by a typical Shine-Dalgarno sequence. The D15 gene belongs to a cluster, consisting of at least 3 genes, in which a termination codon of a preceding gene overlaps an initiation codon of the following one. The sequence contains an open reading frame for 291 amino acid residues. The molecular mass of the 5'-exonuclease calculated from the predicted amino acid sequence is 33 400 Da.  相似文献   

16.
17.
Mapping the lacZ ribosome binding site by RNA footprinting   总被引:6,自引:0,他引:6  
G J Murakawa  D P Nierlich 《Biochemistry》1989,28(20):8067-8072
  相似文献   

18.
RNA phage GA coat and lysis protein expression are translationally coupled through an overlapping termination and initiation codon UAAUG. Essential for this coupling are the proximity of the termination codon of the upstream coat gene to the initiation codon of the lysis gene (either a <3 nucleotide separation or physical closeness through a possible hairpin structure) but not the Shine-Dalgarno sequence. This suggests that the ribosomes completing the coat gene translation are exclusively responsible for translation of the lysis gene. Inactivation of ribosome recycling factor (RRF), which normally releases ribosomes at the termination codon, did not influence the expression of the reporter gene fused to the lysis gene. This suggests the possibility that RRF may not release ribosomes from the junction UAAUG. However, RRF is essential for correct ribosomal recognition of the AUG codon as the initiation site for the lysis gene.  相似文献   

19.
The nucleotide sequence of an endo-beta-1,4-glucanase gene of Clostridium acetobutylicum contained two putative extended promoter consensus sequences, a Shine-Dalgarno sequence and a TTG initiation codon. The nucleotide sequence of the gene coding for the C-terminal region of this enzyme was not required for activity. Extensive homology in the nucleotide and amino acid sequences of the endoglucanase genes from C. acetobutylicum and Bacillus spp. was demonstrated.  相似文献   

20.
The gene for initiation factor IF2, infB, represents one of the few examples in Escherichia coli of genes encoding two protein products in vivo. In a previous work, our group showed that both forms of IF2 (alpha and beta) are closely related and may arise from two independent translational events on infB mRNA. Unambiguous mapping and rigorous determination of the nature of the initiation triplet for IF2 beta, the smaller form of IF2, is critical for future mutagenesis of this codon, required for investigating the biological importance of both IF2 alpha and IF2 beta. Three types of experiments were carried out. First, a 77-bp deletion was created at the beginning of the structural gene leading to premature termination of IF2 alpha synthesis. Under these conditions, IF2 beta is still formed. Second, various Bal31 digests of infB containing the 77-bp deletion were fused to lacZ. Any synthesis of a fused protein with beta-galactosidase activity should reflect the occurrence of an initiation event on the messenger corresponding to this DNA segment. It was consequently possible to locate the IF2 beta initiation site within an 18-base region containing an in-phase GUG codon. Third, to avoid any artefactual reinitiation event possibly occurring under our experimental conditions, we fused to lacZ an infB fragment devoid of IF2 alpha start sequences but containing genetic information for this 18-base region. A hybrid protein with beta-galactosidase activity was synthesized. Moreover, its NH2-terminal amino acid sequence coincided with that of IF2 beta, demonstrating that GUG, located 471 bases downstream from the IF2 alpha external start codon, is the internal start codon for the shorter form of IF2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号