首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The poly(rC) binding protein (PCBP) is a cellular protein required for poliovirus replication. PCBP specifically interacts with two domains of the poliovirus 5' untranslated region (5'UTR), the 5' cloverleaf structure, and the stem-loop IV of the internal ribosome entry site (IRES). Using footprinting analysis and site-directed mutagenesis, we have mapped the RNA binding site for this cellular protein within the stem-loop IV domain. A C-rich sequence in a loop at the top of this large domain is required for PCBP binding and is crucial for viral translation. PCBP binds to stem-loop IV RNA with six-times-higher affinity than to the 5' cloverleaf structure. However, the binding of the viral protein 3CD (precursor of the viral protease 3C and the viral polymerase 3D) to the cloverleaf RNA dramatically increases the affinity of PCBP for this RNA element. The viral protein 3CD binds to the cloverleaf RNA but does not interact directly with stem-loop IV nor with other RNA elements of the viral IRES. Our results indicate that the interactions of PCBP with the poliovirus 5'UTR are modulated by the viral protein 3CD.  相似文献   

2.
The limited coding capacity of picornavirus genomic RNAs necessitates utilization of host cell factors in the completion of an infectious cycle. One host protein that plays a role in both translation initiation and viral RNA synthesis is poly(rC) binding protein 2 (PCBP2). For picornavirus RNAs containing type I internal ribosome entry site (IRES) elements, PCBP2 binds the major stem-loop structure (stem-loop IV) in the IRES and is essential for translation initiation. Additionally, the binding of PCBP2 to the 5'-terminal stem-loop structure (stem-loop I or cloverleaf) in concert with viral protein 3CD is required for initiation of RNA synthesis directed by poliovirus replication complexes. PCBP1, a highly homologous isoform of PCBP2, binds to poliovirus stem-loop I with an affinity similar to that of PCBP2; however, PCBP1 has reduced affinity for stem-loop IV. Using a dicistronic poliovirus RNA, we were able to functionally uncouple translation and RNA replication in PCBP-depleted extracts. Our results demonstrate that PCBP1 rescues RNA replication but is not able to rescue translation initiation. We have also generated mutated versions of PCBP2 containing site-directed lesions in each of the three RNA-binding domains. Specific defects in RNA binding to either stem-loop I and/or stem-loop IV suggest that these domains may have differential functions in translation and RNA replication. These predictions were confirmed in functional assays that allow separation of RNA replication activities from translation. Our data have implications for differential picornavirus template utilization during viral translation and RNA replication and suggest that specific PCBP2 domains may have distinct roles in these activities.  相似文献   

3.
To clarify the binding properties of hepatitis C virus (HCV) core protein and its viral RNA for the encapsidation, morphogenesis, and replication of HCV, the specific interaction of HCV core protein with its genomic RNA synthesized in vitro was examined in an in vivo system. The positive-sense RNA from the 5' end to nucleotide (nt) 2327, which covers the 5' untranslated region (5'UTR) and a part of the coding region of HCV structural proteins, interacted with HCV core protein, while no interaction was observed in the same region of negative-sense RNA and in other regions of viral and antiviral sense RNAs. The internal ribosome entry site (IRES) exists around the 5'UTR of HCV; therefore, the interaction of the core protein with this region of HCV RNA suggests that there is some effect on its cap-independent translation. Cells expressing HCV core protein were transfected with reporter RNAs consisting of nt 1 to 709 of HCV RNA (the 5'UTR of HCV and about two-thirds of the core protein coding regions) followed by a firefly luciferase gene (HCV07Luc RNA). The translation of HCV07Luc RNA was suppressed in cells expressing the core protein, whereas no significant suppression was observed in the case of a reporter RNA possessing the IRES of encephalomyocarditis virus followed by a firefly luciferase. This suppression by the core protein occurred in a dose-dependent manner. The expression of the E1 envelope protein of HCV or beta-galactosidase did not suppress the translation of both HCV and EMCV reporter RNAs. We then examined the regions that are important for suppression of translation by the core protein and found that the region from nt 1 to 344 was enough to exert this suppression. These results suggest that the HCV core protein interacts with viral genomic RNA at a specific region to form nucleocapsids and regulates the expression of HCV by interacting with the 5'UTR.  相似文献   

4.
The 3' untranslated region (UTR) of the hepatitis C virus (HCV) is believed to function in the initiation and regulation of viral RNA replication and protein translation by interacting with the viral and host components. To examine host proteins interacting with the HCV 3'UTR, biotinylated 3'(+)UTR, and its reverse complementary 5'(-)UTR were used in RNA pull-down assay. Cellular proteins from Huh7 cells pulled down by biotinylated RNAs were identified by 2DE/MALDI-TOF MS and 1DE/LC/MS methods. Totally, 10 proteins could be identified from both methods, among which six bound specifically to the 3'(+)UTR, three proteins to the 5'(-)UTR only, and one protein bound to both. Three identified proteins (PCBP2, G3BP1, and DDX1) were selected for further investigation into their possible roles on the HCV replication. Differently regulating effects on HCV replication by siRNA-mediated silencing of these proteins were observed, indicating a complex role of 3'UTR binding proteins on HCV replication.  相似文献   

5.
At the 5' and 3' end of genomic HCV RNA there are two highly conserved, untranslated regions, 5'UTR and 3'UTR. These regions are organized into spatially ordered structures and they play key functions in regulation of processes of the viral life cycle. Most nucleotides of the region located at the 5' side of the coding sequence serve as an internal ribosomal entry site, IRES, which directs cap-independent translation. The RNA fragment present at the 3' end of the genome is required for virus replication and probably contributes to translation of viral proteins. During virus replication its genomic strand is transcribed into a strand of minus polarity, the replicative strand. Its 3' terminus is responsible for initiation of synthesis of descendant genomic strands. This article summarizes our current knowledge on the structure and function of the non-coding regions of hepatitis C genomic RNA, 5'UTR and 3'UTR, and the complementary sequences of the replicative viral strand.  相似文献   

6.
Utilization of internal ribosome entry segment (IRES) structures in the 5′ noncoding region (5′NCR) of picornavirus RNAs for initiation of translation requires a number of host cell factors whose distribution may vary in different cells and whose requirement may vary for different picornaviruses. We have examined the requirement of the cellular protein poly(rC) binding protein 2 (PCBP2) for hepatitis A virus (HAV) RNA translation. PCBP2 has recently been identified as a factor required for translation and replication of poliovirus (PV) RNA. PCBP2 was shown to be present in FRhK-4 cells, which are permissive for growth of HAV, as it is in HeLa cells, which support translation of HAV RNA but which have not been reported to host replication of the virus. Competition RNA mobility shift assays showed that the 5′NCR of HAV RNA competed for binding of PCBP2 with a probe representing stem-loop IV of the PV 5′NCR. The binding site on HAV RNA was mapped to nucleotides 1 to 157, which includes a pyrimidine-rich sequence. HeLa cell extracts that had been depleted of PCBP2 by passage over a PV stem-loop IV RNA affinity column supported only low levels of HAV RNA translation. Translation activity was restored upon addition of recombinant PCBP2 to the depleted extract. Removal of the 5′-terminal 138 nucleotides of the HAV RNA, or removal of the entire IRES, eliminated the dependence of HAV RNA translation on PCBP2.  相似文献   

7.
Initiation of translation driven by internal ribosome entry site (IRES) elements depends upon the structural organization of this mRNA region. Besides translation initiation factors (eIFs), auxiliary proteins can also affect IRES activity. With the aim to identify proteins interacting with two unrelated IRESs present in the genome of foot-and-mouth disease virus (FMDV) and hepatitis C virus (HCV) we have used a proteomic approach. This procedure allowed the identification of 21 RNA-binding proteins interacting with discrete regions of the FMDV IRES, domains 3 and 5, and 16 interacting with domain III of the HCV IRES. In support of the binding specificity, the factors interacting with domain 3 differed from those interacting with domain 5, and included three poly(rC)-binding protein (PCBP) members, besides proliferation-associated 2G4 (PA2G4) and deleted-azoospermia 1 (DAZ1) protein. Around 71% of the identified factors associated with the FMDV IRES differ from those interacting with the HCV IRES. The group of proteins interacting with the FMDV or the HCV IRES includes eIF4B and 5 subunits of eIF3, respectively, known to interact with each of these RNAs, validating the results of this approach. According to the function of the identified proteins, 55% are involved in translation control, whereas 35% play a role in different aspects of RNA lifespan. Compilation of factors preferentially associated with FMDV or HCV IRES provides a basis for examining the strategies used by IRESs to recruit the translation machinery.  相似文献   

8.
Translation initiation of hepatitis C virus (HCV) occurs through an internal ribosome entry site (IRES) located at its 5'-end. As a positive-stranded RNA virus, HCV uses its genome as a common template for translation and replication, but the coordination between these two processes remains poorly characterized. Moreover, although genetic evidence of RNA-protein interactions for viral replication is accumulating because of subgenomic replicons and a recent culture system for HCV, such interactions are still contentious in the regulation of translation. To gain insight into such mechanisms, we addressed the involvement of cis and trans viral factors in HCV IRES activity by using a cell-based RNA reporter system. We found that the HCV 3' noncoding region (NCR) strongly stimulates IRES efficiency in cis, depending on the genotype and the cell line. Moreover, we confirmed the role of the core protein in viral gene expression as previously reported in vitro. Surprisingly, we observed a similar effect, i.e. a twofold increase under low amounts of NS5B RNA polymerase, followed by a decrease at higher concentrations. However, no contribution of NS5A to HCV IRES-mediated translation was noted and no cooperative effect could be detected between 3' NCR and viral proteins or between proteins. Collectively, these results suggest that HCV RNA translation is regulated, and that the switch from translation to replication might involve a sequential requirement for both cis and trans viral factors, because of their apparent lack of synergy, probably with the aid of host factors.  相似文献   

9.
The secondary structures of hepatitis C virus (HCV) RNA and the cellular proteins that bind to them are important for modulating both translation and RNA replication. However, the sets of RNA-binding proteins involved in the regulation of HCV translation, replication and encapsidation remain unknown. Here, we identified RNA binding motif protein 24 (RBM24) as a host factor participated in HCV translation and replication. Knockdown of RBM24 reduced HCV propagation in Huh7.5.1 cells. An enhanced translation and delayed RNA synthesis during the early phase of infection was observed in RBM24 silencing cells. However, both overexpression of RBM24 and recombinant human RBM24 protein suppressed HCV IRES-mediated translation. Further analysis revealed that the assembly of the 80S ribosome on the HCV IRES was interrupted by RBM24 protein through binding to the 5′-UTR. RBM24 could also interact with HCV Core and enhance the interaction of Core and 5′-UTR, which suppresses the expression of HCV. Moreover, RBM24 enhanced the interaction between the 5′- and 3′-UTRs in the HCV genome, which probably explained its requirement in HCV genome replication. Therefore, RBM24 is a novel host factor involved in HCV replication and may function at the switch from translation to replication.  相似文献   

10.
We previously reported that nucleolin, a representative nucleolar marker, interacts with nonstructural protein 5B (NS5B) of hepatitis C virus (HCV) through two independent regions of NS5B, amino acids 208 to 214 and 500 to 506. We also showed that truncated nucleolin that harbors the NS5B-binding region inhibited the RNA-dependent RNA polymerase activity of NS5B in vitro, suggesting that nucleolin may be involved in HCV replication. To address this question, we focused on NS5B amino acids 208 to 214. We constructed one alanine-substituted clustered mutant (CM) replicon, in which all the amino acids in this region were changed to alanine, as well as seven different point mutant (PM) replicons, each of which harbored an alanine substitution at one of the amino acids in the region. After transfection into Huh7 cells, the CM replicon and the PM replicon containing NS5B W208A could not replicate, whereas the remaining PM replicons were able to replicate. In vivo immunoprecipitation also showed that the W208 residue of NS5B was essential for its interaction with nucleolin, strongly suggesting that this interaction is essential for HCV replication. To gain further insight into the role of nucleolin in HCV replication, we utilized the small interfering RNA (siRNA) technique to investigate the knockdown effect of nucleolin on HCV replication. Cotransfection of replicon RNA and nucleolin siRNA into Huh7 cells moderately inhibited HCV replication, although suppression of nucleolin did not affect cell proliferation. Taken together, our findings strongly suggest that nucleolin is a host component that interacts with HCV NS5B and is indispensable for HCV replication.  相似文献   

11.
The positive-strand RNA genome of the hepatitis C virus (HCV) is flanked by 5'- and 3'-untranslated regions (UTRs). Translation of the viral RNA is directed by the internal ribosome entry site (IRES) in the 5'-UTR, and subsequent viral RNA replication requires sequences in the 3'-UTR and in the 5'-UTR. Addressing previous conflicting reports on a possible function of the 3'-UTR for RNA translation in this study, we found that reporter construct design is an important parameter in experiments testing 3'-UTR function. A translation enhancer function of the HCV 3'-UTR was detected only after transfection of monocistronic reporter RNAs or complete RNA genomes having a 3'-UTR with a precise 3' terminus. The 3'-UTR strongly stimulates HCV IRES-dependent translation in human hepatoma cell lines but only weakly in nonliver cell lines. The variable region, the poly(U . C) tract, and the most 3' terminal stem-loop 1 of the highly conserved 3' X region contribute significantly to translation enhancement, whereas stem-loops 2 and 3 of the 3' X region are involved only to a minor extent. Thus, the signals for translation enhancement and for the initiation of RNA minus-strand synthesis in the HCV 3'-UTR partially overlap, supporting the idea that these sequences along with viral and possibly also cellular factors may be involved in an RNA 3'-5' end interaction and a switch between translation and RNA replication.  相似文献   

12.
Luo G  Xin S  Cai Z 《Journal of virology》2003,77(5):3312-3318
Sequences of the untranslated regions at the 5' and 3' ends (5'UTR and 3'UTR) of the hepatitis C virus (HCV) RNA genome are highly conserved and contain cis-acting RNA elements for HCV RNA replication. The HCV 5'UTR consists of two distinct RNA elements, a short 5'-proximal stem-loop RNA element (nucleotides 1 to 43) and a longer element of internal ribosome entry site. To determine the sequence and structural requirements of the 5'-proximal stem-loop RNA element in HCV RNA replication and translation, a mutagenesis analysis was preformed by nucleotide deletions and substitutions. Effects of mutations in the 5'-proximal stem-loop RNA element on HCV RNA replication were determined by using a cell-based HCV replicon replication system. Deletion of the first 20 nucleotides from the 5' end resulted in elimination of cell colony formation. Likewise, disruption of the 5'-proximal stem-loop by nucleotide substitutions abolished the ability of HCV RNA to induce cell colony formation. However, restoration of the 5'-proximal stem-loop by compensatory mutations with different nucleotides rescued the ability of the subgenomic HCV RNA to replicate in Huh7 cells. In addition, deletion and nucleotide substitutions of the 5'-proximal stem-loop structure, including the restored stem-loop by compensatory mutations, all resulted in reduction of translation by two- to fivefold, suggesting that the 5'-proximal stem-loop RNA element also modulates HCV RNA translation. These findings demonstrate that the 5'-proximal stem-loop of the HCV RNA is a cis-acting RNA element that regulates HCV RNA replication and translation.  相似文献   

13.
Hepatitis C virus (HCV) infection is treated with interferon (IFN)-based therapy. The mechanisms by which IFN suppresses HCV replication are not known, and only limited efficacy is achieved with therapy because the virus directs mechanisms to resist the host IFN response. In the present study we characterized the effects of IFN action upon the replication of two distinct quasispecies of an HCV replicon whose encoded NS5A protein exhibited differential abilities to bind and inhibit protein kinase R (PKR). Metabolic labeling experiments revealed that IFN had little overall effect upon HCV protein stability or polyprotein processing but specifically blocked translation of the HCV RNA, such that the replication of both viral quasispecies was suppressed by IFN treatment of the Huh7 host cells. However, within cells expressing an NS5A variant that inhibited PKR, we observed a reduced level of eukaryotic initiation factor 2 alpha subunit (eIF2alpha) phosphorylation and a concomitant increase in HCV protein synthetic rates, enhancement of viral RNA replication, and a partial rescue of viral internal ribosome entry site (IRES) function from IFN suppression. Assessment of the ribosome distribution of the HCV replicon RNA demonstrated that the NS5A-mediated block in eIF2alpha phosphorylation resulted in enhanced recruitment of the HCV RNA into polyribosome complexes in vivo but only partially rescued the RNA from polyribosome dissociation induced by IFN treatment. Examination of cellular proteins associated with HCV-translation complexes in IFN-treated cells identified the P56 protein as an eIF3-associated factor that fractionated with the initiator ribosome-HCV RNA complex. Importantly, we found that P56 could independently suppress HCV IRES function both in vitro and in vivo, but a mutant P56 that was unable to bind eIF3 had no suppressive action. We conclude that IFN blocks HCV replication through translational control programs involving PKR and P56 to, respectively, target eIF2- and eIF3-dependent steps in the viral RNA translation initiation process.  相似文献   

14.
Pestiviruses, such as bovine viral diarrhea virus (BVDV), share many similarities with hepatitis C virus (HCV) yet are more amenable to virologic and genetic analysis. For both BVDV and HCV, translation is initiated via an internal ribosome entry site (IRES). Besides IRES function, the viral 5' nontranslated regions (NTRs) may also contain cis-acting RNA elements important for viral replication. A series of chimeric RNAs were used to examine the function of the BVDV 5' NTR. Our results show that: (1) the HCV and the encephalomyocarditis virus (EMCV) IRES element can functionally replace that of BVDV; (2) two 5' terminal hairpins in BVDV genomic RNA are important for efficient replication; (3) replacement of the entire BVDV 5' NTR with those of HCV or EMCV leads to severely impaired replication; (4) such replacement chimeras are unstable and efficiently replicating pseudorevertants arise; (5) pseudorevertant mutations involve deletion of 5' sequences and/or acquisition of novel 5' sequences such that the 5' terminal 3-4 bases of BVDV genome RNA are restored. Besides providing new insight into functional elements in the BVDV 5' NTR, these chimeras may prove useful as pestivirus vaccines and for screening and evaluation of anti-HCV IRES antivirals.  相似文献   

15.
Hepatitis C virus (HCV), a hepacivirus member of the Flaviviridae family, has a positive-stranded RNA genome, which consists of a single open reading frame (ORF) and nontranslated regions (NTRs) at the 5' and 3' ends. The 5'NTR was found to contain an internal ribosomal entry site (IRES), which is required for the translation of HCV mRNA. Moreover, the 5'NTR is likely to play a key role in the replication of viral RNA. To identify the cis-acting element required for viral RNA replication, chimeric subgenomic replicons of HCV were generated. Dissection of the replication element from the translation element was accomplished by inserting the polioviral IRES between the serially deleted 5'NTR of HCV and ORF encoding neomycin phosphotransferase. The deletions of the 5'NTR of HCV were performed according to the secondary structure of HCV. Replicons containing domains I and II supported RNA replication and further deletion toward the 5' end abolished replication. The addition of domain III and the pseudoknot structure of the 5'NTR to domains I and II augmented the colony-forming efficiency of replicons by 100-fold. This indicates that domains I and II are necessary and sufficient for replication of RNA and that almost all of the 5'NTR is required for efficient RNA replication.  相似文献   

16.
The 5' nontranslated region of poliovirus RNA contains two highly structured regions, the cloverleaf (CL) and the internal ribosomal entry site (IRES). A cellular protein, the poly(rC) binding protein (PCBP), has been reported to interact with the CL either alone or in combination with viral protein 3CD(pro). The formation of the ternary complex is essential for RNA replication and, hence, viral proliferation. PCBP also interacts with stem-loop IV of the IRES, an event critical for the initiation of cap-independent translation. Until recently, no special function was assigned to a spacer region (nucleotides [nt] 89 to 123) located between the CL and the IRES. However, on the basis of our discovery that this region strongly affects the neurovirulent phenotype of poliovirus, we have embarked upon genetic and biochemical analyses of the spacer region, focusing on two clusters of C residues (C(93-95) and C(98-100)) that are highly conserved among entero- and rhinoviruses. Replacement of all six C residues with A residues had no effect on translation in vitro but abolished RNA replication, leading to a lethal growth phenotype of the virus in HeLa cells. Mutation of the first group of C residues (C(93-95)) resulted in slower viral growth, whereas the C(98-100)A change had no significant effect on viability. Genetic analyses of the C-rich region by extensive mutagenesis and analyses of revertants revealed that two consecutive C residues (C(94-95)) were sufficient to promote normal growth of the virus. However, there was a distinct position effect of the preferred C residues. A 142-nt-long 5'-terminal RNA fragment including the CL and spacer sequences efficiently bound PCBP, whereas no PCBP binding was observed with the CL (nt 1 to 88) alone. Binding of PCBP to the 142-nt fragment was completely ablated after the two C clusters in the spacer were mutated to A clusters. In contrast, the same mutations had no effect on the binding of 3CD(pro) to the 142-nt RNA fragment. Stepwise replacement of the C residues with A residues resulted in impaired replication that covaried with weaker binding of PCBP in vitro. We conclude that PCBP has little, if any, binding affinity for the CL itself (nt 1 to 88) but requires additional nucleotides downstream of the CL for its function as an essential cofactor in poliovirus RNA replication. These data reveal a new essential function of the spacer between the CL and the IRES in poliovirus proliferation.  相似文献   

17.
Nulf CJ  Corey D 《Nucleic acids research》2004,32(13):3792-3798
Hepatitis C virus (HCV) is the major etiological agent of non-A, non-B hepatitis. Current therapies are not effective in all patients and can result in the generation of resistant mutants, leading to a need for new therapeutic options. HCV has an RNA genome that contains a well-defined and highly conserved secondary structure within the 5′-untranslated region. This structure is known as the internal ribosomal entry site (IRES) and is necessary for translation and viral replication. Here, we test the hypothesis that antisense peptide nucleic acid (PNA) and locked nucleic acid (LNA) oligomers can bind key IRES sequences and block translation. We used lipid-mediated transfections to introduce PNAs and LNAs into cells. Our data suggest that PNAs and LNAs can invade critical sequences within the HCV IRES and inhibit translation. Seventeen base PNA or LNA oligomers targeting different regions of the HCV IRES demonstrated a sequence-specific dose–response inhibition of translation with EC50 values of 50–150 nM. Inhibition was also achieved by PNAs ranging in length from 15 to 21 bases. IRES-directed inhibition of gene expression widens the range of mechanisms for antisense inhibition by PNAs and LNAs and may provide further therapeutic lead compounds for the treatment of HCV.  相似文献   

18.
Internal ribosomal entry sites (IRESs) can function in foreign viral genomes or in artificial dicistronic mRNAs. We describe an interaction between the wild-type hepatitis C virus (HCV)-specific sequence and the poliovirus (PV) 5'-terminal cloverleaf in a PV/HCV chimeric virus (containing the HCV IRES), resulting in a replication phenotype. Either a point mutation at nucleotide (nt) 29 or a deletion up to nt 40 in the HCV 5' nontranslated region relieved the replication block, yielding PV/HCV variants replicating to high titers. Fortuitous yet crippling interactions between an IRES and surrounding heterologous RNA must be considered when IRES-based dicistronic expression vectors are being constructed.  相似文献   

19.
Sequences and structures within the terminal genomic regions of plus-strand RNA viruses are targets for the binding of host proteins that modulate functions such as translation, RNA replication, and encapsidation. Using murine norovirus 1 (MNV-1), we describe the presence of long-range RNA-RNA interactions that were stabilized by cellular proteins. The proteins potentially responsible for the stabilization were selected based on their ability to bind the MNV-1 genome and/or having been reported to be involved in the stabilization of RNA-RNA interactions. Cell extracts were preincubated with antibodies against the selected proteins and used for coprecipitation reactions. Extracts treated with antibodies to poly(C) binding protein 2 (PCBP2) and heterogeneous nuclear ribonucleoprotein (hnRNP) A1 significantly reduced the 5′-3′ interaction. Both PCBP2 and hnRNP A1 recombinant proteins stabilized the 5′-3′ interactions and formed ribonucleoprotein complexes with the 5′ and 3′ ends of the MNV-1 genomic RNA. Mutations within the 3′ complementary sequences (CS) that disrupt the 5′-3′-end interactions resulted in a significant reduction of the viral titer, suggesting that the integrity of the 3′-end sequence and/or the lack of complementarity with the 5′ end is important for efficient virus replication. Small interfering RNA-mediated knockdown of PCBP2 or hnRNP A1 resulted in a reduction in virus yield, confirming a role for the observed interactions in efficient viral replication. PCBP2 and hnRNP A1 induced the circularization of MNV-1 RNA, as revealed by electron microscopy. This study provides evidence that PCBP2 and hnRNP A1 bind to the 5′ and 3′ ends of the MNV-1 viral RNA and contribute to RNA circularization, playing a role in the virus life cycle.  相似文献   

20.
The translation of picornavirus genomic RNAs occurs by a cap-independent mechanism that requires the formation of specific ribonucleoprotein complexes involving host cell factors and highly structured regions of picornavirus 5' noncoding regions known as internal ribosome entry sites (IRES). Although a number of cellular proteins have been shown to be involved in picornavirus RNA translation, the precise role of these factors in picornavirus internal ribosome entry is not understood. In this report, we provide evidence for the existence of distinct mechanisms for the internal initiation of translation between type I and type II picornavirus IRES elements. In vitro translation reactions were conducted in HeLa cell cytoplasmic translation extracts that were depleted of the cellular protein, poly(rC) binding protein 2 (PCBP2). Upon depletion of PCBP2, these extracts possessed a significantly diminished capacity to translate reporter RNAs containing the type I IRES elements of poliovirus, coxsackievirus, or human rhinovirus linked to luciferase; however, the addition of recombinant PCBP2 could reconstitute translation. Furthermore, RNA electrophoretic mobility-shift analysis demonstrated specific interactions between PCBP2 and both type I and type II picornavirus IRES elements; however, the translation of reporter RNAs containing the type II IRES elements of encephalomyocarditis virus and foot-and-mouth disease virus was not PCBP2 dependent. These data demonstrate that PCBP2 is essential for the internal initiation of translation on picornavirus type I IRES elements but is dispensable for translation directed by the structurally distinct type II elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号