首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Localization of the rhodopsin gene to the distal half of mouse chromosome 6   总被引:2,自引:0,他引:2  
We have assigned the mouse rhodopsin gene, Rho, to chromosome 6 using DNA from a set of mouse-hamster somatic hybrid cell lines and a partial cDNA clone for mouse opsin. This assignment rules out the direct involvement of the rhodopsin gene in the known mouse mutations that produce retinal degeneration, including retinal degeneration slow (rds, chromosome 17), retinal degeneration (rd, chromosome 5), Purkinje cell degeneration (pcd, chromosome 13), and nervous (nr, chromosome 8). Segregation of Rho-specific DNA fragment differences among 50 animals from an interspecific backcross (C57BL/6J X Mus spretus) X C57BL/6J indicates that the Rho locus is 4.0 +/- 2.8 map units distal to the locus for the proto-oncogene Raf-1 and 18.0 +/- 5.4 map units proximal to the locus for the proto-oncogene Kras-2. Linkage to Raf-1 was confirmed using four sets of recombinant inbred strains. The two loci RAF1 and RHO are also syntenic on human chromosome 3, but on opposite arms.  相似文献   

2.
Guanine deaminase catalyses the conversion of guanine to xanthine and ammonia, thereby irreversibly removing the guanine base from the pool of guanine-containing metabolites. We have identified five alleles at the mouse guanine deaminase locus by cDNA sequencing. These alleles were defined by single-nucleotide polymorphisms at a total of 19 positions. For each allele the representative strains are as follows: Gda(a), C57BL/6J and DBA/2J; Gda(b), A/J; Gda(c), MOLF/Ei; Gda(d), CAST/Ei; and Gda(e), SPRET-1. The only codon change resulting in an amino acid substitution was found at nucleotide 523, where GAT was replaced by AAT in Mus spretus resulting in the deduced substitution of Asp-174 by Asn. The single-nucleotide difference between the a and b alleles was also typed by allele-specific oligonucleotide amplification for 17 common strains of Mus musculus susbp. musculus. By typing the AxB and BxA recombinant inbred (RI) strain sets, Gda was mapped to mouse chromosome 19, a region syntenic with human chromosome 9q11-q22.  相似文献   

3.
Linkage of the mouse LDL receptor gene on chromosome 9   总被引:1,自引:0,他引:1  
S L Frank  B A Taylor  A J Lusis 《Genomics》1989,5(3):646-648
We identified restriction fragment length variants of the mouse low-density lipoprotein receptor gene and used these to map the gene, designated Ldlr, to the proximal region of chromosome 9. An interspecific backcross between strains MEV and CAST/Ei yielded the following gene order and distances in centimorgans: Ldlr-18.8 +/- 5.6-Apoa-4-7.3 +/- 3.5-Mpi-1-10.2 +/- 3.9-Emv-3 or dilute. Analysis of recombinant inbred strains also indicated that Ldlr is tightly linked to a previously unmapped retroviral marker, Xmmv-67.  相似文献   

4.
Y. Chen  DMJ. Duhl    G. S. Barsh 《Genetics》1996,144(1):265-277
The mouse agouti protein is a paracrine signaling molecule that causes yellow pigment synthesis. A pale ventral coloration distinguishes the light-bellied agouti (A(w)) from the agouti (A) allele, and is caused by expression of ventral-specific mRNA isoforms with a unique 5' untranslated exon. Molecular cloning demonstrates this ventral-specific exon lies within a 3.1-kb element that is duplicated in the opposite orientation 15-kb upstream to produce an interrupted palindrome and that similarity between the duplicated elements has been maintained by gene conversion. Orientation of the palindrome is reversed in A compared to A(w), which suggests that mutation from one allele to the other is caused by intrachromosomal homologous recombination mediated by sequences within the duplicated elements. Analysis of 15 inbred strains of laboratory and wild-derived mice with Southern hybridization probes and closely linked microsatellite markers suggests six haplotype groups: one typical for most strains that carry A(w) (129/SvJ, LP/J, CE/J, CAST/Ei), one typical for most strains that carry A (Balb/cJ, CBA/J, FVB/N, PERA/Rk, RBB/Dn); and four that are atypical (MOLC/Rk, MOLG/Dn, PERA/Ei, PERC/Ei, SPRET/Ei, RBA/Dn). Our results suggest a model for molecular evolution of the agouti locus in which homologous recombination can produce a reversible switch in allelic identity.  相似文献   

5.
The dominant hemimelia(Dh) mutation causes various developmental abnormalities in mice. Most -Dh/+ males, crosses between DDD females and DH-Dh/+ males, have lethal abnormalities during the neonatal period. This is a consequence of synergism among three independent gene loci; that is, theDh allele on chromosome (Chr) 1, the DDD allele on an X Chr-linked locus, and a Y Chr-linked locus in some strains. With regard to the Y Chr derived fromMus musculus musculus (M. m. musculus), the Y Chrs of C57BL/6J and BALB/cA caused lethality, but the Y Chr of C3H/HeJ did not, suggesting that not allM. m. musculus Y Chrs are the same. In the present study, whether Y Chrs derived fromM. m. domesticus andM. m. castaneus could cause lethality was investigated. Among seven inbred strains, including AKR/J, DDD, RF/J, SJL/J, SWR/J, TIRANO/Ei, and CAST/Ei, Y Chrs of AKR/ J, DDD, SJL/J, SWR/J, and TIRANO/Ei caused lethality, but Y Chrs of RF/J and CAST/Ei did not. It was unlikely that the mitochondrial genome of the DDD strain contributed to the lethality. The X Chr-linked locus could not compensate for the role of the Y Chr-linked locus. These results suggest that not allM. m. domesticus Y Chrs are the same.  相似文献   

6.
Oligonucleotide primers of random sequence that were 12 bases in length, 58% in GC content, and lacking internal palindromes were designed. By random amplified polymorphic DNA (RAPD) PCR, these primers were used to survey for DNA variations between the progenitors of the mouse AXB and BXA recombinant inbred sets (A/J and C57BL/6J). We identified 17 DNA variants detected by 10 primers. Map positions for these variants were determined by comparing their strain distribution patterns in the AXB, BXA recombinant inbred sets with strain distribution patterns of previously published loci. When necessary, BXD and NXSM recombinant inbred sets were also used. These 17 new loci mapped to 12 chromosomes. The 10 primers were also used to survey 20 inbred mouse strains including the progenitors of other recombinant inbred sets and four mouse strains recently inbred from the wild (CAST/Ei, MOLF/Ei, PERA/Ei, and SPRET/Ei).  相似文献   

7.
To investigate genetic contributions to individual variations of lipoprotein cholesterol concentrations, we performed quantitative trait locus/loci (QTL) analyses of an intercross of CAST/Ei and DBA/2J inbred mouse strains after feeding a high-cholesterol cholic acid diet for 10 weeks. In total, we identified four QTL for HDL cholesterol. Three of these were novel and were named Hdlq10 [20 centimorgans (cM), chromosome 4], Hdlq11 (48 cM, chromosome 6), and Hdlq12 (68 cM, chromosome 6). The fourth QTL, Hdl1 (48 cM, chromosome 2), confirmed a locus discovered previously using a breeding cross that employed different inbred mouse strains. In addition, we identified one novel QTL for total and non-HDL cholesterol (8 cM, chromosome 9) that we named Chol6. Hdlq10, colocalized with a mutagenesis-induced point mutation (Lch), also affecting HDL. We provide molecular evidence for Abca1 as the gene underlying Hdlq10 and Ldlr as the gene underlying Chol6 that, coupled with evidence generated by other researchers using knockout and transgenic models, causes us to postulate that polymorphisms of these genes, different from the mutations leading to Tangier's disease and familial hypercholesterolemia, respectively, are likely primary genetic determinants of quantitative variation of lipoprotein levels in mice and, by orthology, in the human population.  相似文献   

8.
Peripheral B-lymphocyte homeostasis is determined through incompletely defined positive and negative regulatory processes. The A/WySnJ mouse, but not the related A/J strain, has disturbed homeostasis leading to peripheral B-lymphocyte deficiency. B lymphopoeisis is normal in A/WySnJ mice, but the B cells apoptose rapidly in the periphery. This B cell-intrinsic defect segregated as a single locus, Bcmd, in (A/WySnJxA/J)F2 mice. Here we mapped a quantitative-trait locus (QTL) that contributes to the A/WySnJ B-cell deficiency by examining the F2 progeny of a cross between strains A/WySnJ and CAST/Ei. In this cross, minimally 1.9 QTLs controlling peripheral B lymphocyte deficiency segregated. The (A/WySnJxCAST/Ei)F2 mice were phenotyped for splenic B-cell percentage and the DNA from progeny with extreme phenotypes was used to map the QTL by the simple-sequence length polymorphism method. A genome scan showed linkage between peripheral B-cell deficiency and Chromosome (Chr) 15 markers. When closely spaced Chr 15 markers were analyzed, the 99% confidence interval for the QTL map position extended along the entire chromosome length. The peak lod scores >17 occurred between 30 and 45 cM. We conclude that a significant QTL segregating in (A/WySnJxCAST/Ei)F2 mice resides in this middle region of Chr 15.  相似文献   

9.
Electrophoretic variation for an intestinal enzyme that cleaves L-leucyl-beta-naphthylamide has been discovered among inbred mouse strains. Several strains including related strains C57BL/6J, C57BL/10J, C57BR/cdJ, C57L/J, and C58/J demonstrate an electrophoretic band of this enzyme that is absent in other strains and stocks thus far observed. The enzyme is tentatively being called leucine arylaminopeptidase (LAP) and the variant genetic locus Lap-1. The presence of the band is determined by an allele designated Lap-1a. Homozygotes for the alternate allele, Lap-1b, are without the band and heterozygotes are, under our electrophoretic conditions, indistinguishable from Lap-1a homozygotes. Data from recombinant inbred lines and a B6D2F1 X DBA/2J backcross established linkage of Lap-1 to dilute (d) and supernatant malic enzyme (Mod-1) on chromosome 9 in the following order: Lap-1-d-Mod-1. The Lap-1 to d map distance was estimated to be 21.3 +/- 4.6 cM from backcross data and 8.1 +/- 4.8 cM from recombinant inbred lines.  相似文献   

10.
We updated a database of microsatellite marker polymorphisms found in inbred strains of the mouse, most of which were derived from the wild stocks of four Mus musculus subspecies, M. m. domesticus, M. m. musculus, M. m.castaneus and M. m. molossinus. The major aim of constructing this database was to establish the genetic status of these inbred strains as resources for linkage analysis and positional cloning. The inbred strains incorporated in our database are A/J, C57BL/6J, CBA/J, DBA/2J, SM/J, SWR/J, 129Sv/J, MSM/Ms, JF1/Ms, CAST/Ei, NC/Nga, BLG2/Ms, NJL/Ms, PGN2/Ms, SK/CamEi and SWN/Ms, which have not or have only been poorly incorporated in the Whitehead Institute/MIT (WI/MIT) microsatellite database. The number of polymorphic microsatellite loci incorporated in our database is over 1,000 in all strains, and the URL site for our database is located at http:// www.shigen.nig.ac.jp /mouse/mmdbj/mouse.html.  相似文献   

11.
The strain distribution for macronutrient diet selection was described in 13 mouse strains (AKR/J, NZB/B1NJ, C57BL/6J, C57BL/6ByJ, DBA/2J, SPRET/Ei, CD-1, SJL/J, SWR/J, 129/J, BALB/cByJ, CAST/Ei, and A/J) with the use of a self-selection protocol in which separate carbohydrate, fat, and protein diets were simultaneously available for 26-30 days. Relative to carbohydrate, nine strains consumed significantly more calories from the fat diet; two strains consumed more calories from carbohydrate than from fat (BALB/cByJ, CAST/Ei). Diet selection by SWR/J mice was variable over time, resulting in a lack of preference. One strain (A/J) failed to adapt to the diet paradigm due to inadequate protein intake. Comparisons of proportional fat intake across strains revealed that fat selection/consumption ranged from 26 to 83% of total energy. AKR/J, NZB/B1NJ, and C67BL/6J mice self-selected the highest proportion of dietary fat, whereas the CAST/Ei and BALB/cByJ strains chose the lowest. Finally, epididymal fat depot weight was correlated with fat consumption. There were significant positive correlations in AKR/J and C57BL/6J mice, which are highly sensitive to dietary obesity. However, absolute fat intake was inversely correlated with epididymal fat in two of the lean strains: SWR/J and CAST/Ei. We hypothesize that the SWR/J and CAST/Ei strains are highly sensitive to a negative feedback signal generated by increasing body fat, but the AKR/J and C67BL/6J mice are not. The variation in dietary fat selection across inbred strains provides a tool for dissecting the complex genetics of this trait.  相似文献   

12.
Johnson KR  Zheng QY  Erway LC 《Genomics》2000,70(2):171-180
Inbred strains of mice offer promising models for understanding the genetic basis of human presbycusis or age-related hearing loss (AHL). We previously mapped a major gene affecting AHL in C57BL/6J mice. Here, we show that the same Chromosome 10 gene (Ahl) is a major contributor to AHL in nine other inbred mouse strains-129P1/ReJ, A/J, BALB/cByJ, BUB/BnJ, C57BR/cdJ, DBA/2J, NOD/LtJ, SKH2/J, and STOCK760. F1 hybrids between each of these inbred strains and the normal-hearing inbred strain CAST/Ei retain good hearing, indicating that inheritance of AHL is recessive. To follow segregation of hearing loss, F1 hybrids were backcrossed to the parental strains with AHL. Auditory-evoked brain-stem response thresholds were used to assess hearing in more than 1500 N2 mice and analyzed as quantitative traits for linkage associations with Chromosome 10 markers. Highly significant linkage was found in all nine strain backcrosses, with the highest probability (LOD > 70) near the marker D10Mit112. This map position for Ahl is near the waltzer mutation (v) and the modifier of deaf waddler locus (mdfw), suggesting the possibility of allelism. Results from an intercross of C57BL/6J and NOD/LtJ mice indicate that the 6- to 10-month difference in AHL onset between these two strains is not due to allelic heterogeneity of the Ahl gene.  相似文献   

13.
 The recessive male sterility and histoincompatibility mutation (mshi) arose spontaneously in the standard inbred mouse strain BALB/cBy. In addition to generating sterility in homozygous males, mshi controls the loss of a minor histocompatibility antigen designated H-mshi. To determine whether the H-mshi antigen normally expressed by the BALB/cBy strain (H-mshic) is the same as or different from the antigen (H-mshix) expressed by the standard inbred C57BL/6J strain or the wild-derived CAST/Ei and SPRET/Ei strains, animals heterozygous for the mutant antigen-loss allele (H-mshi ) and H-mshi x were grafted with tail skin from BALB/cBy mice. The long-term retention of grafts by these hosts indicates that the H-mshi antigen encoded by the BALB/cBy, C57BL/6J, CAST/Ei, and SPRET/Ei strains is histogenically identical. Conservation of this minor histocompatibility antigen among these evolutionarily diverse strains suggests that H-mshi encodes a functionally important cellular product(s). Received: 1 August 1998 / Accepted: 26 October 1998  相似文献   

14.
Anthrax is a potentially fatal disease resulting from infection with Bacillus anthracis. The outcome of infection is influenced by pathogen-encoded virulence factors such as lethal toxin (LT), as well as by genetic variation within the host. To identify host genes controlling susceptibility to anthrax, a library of congenic mice consisting of strains with homozygous chromosomal segments from the LT-responsive CAST/Ei strain introgressed on a LT-resistant C57BL/6 (B6) background was screened for response to LT. Three congenic strains containing CAST/Ei regions of chromosome 11 were identified that displayed a rapid inflammatory response to LT similar to, but more severe than that driven by a LT-responsive allele of the inflammasome constituent NRLP1B. Importantly, increased response to LT in congenic mice correlated with greater resistance to infection by the Sterne strain of B. anthracis. The genomic region controlling the inflammatory response to LT was mapped to 66.36-74.67 Mb on chromosome 11, a region that encodes the LT-responsive CAST/Ei allele of Nlrp1b. However, known downstream effects of NLRP1B activation, including macrophage pyroptosis, cytokine release, and leukocyte infiltration could not fully explain the response to LT or the resistance to B. anthracis Sterne in congenic mice. Further, the exacerbated response in congenic mice is inherited in a recessive manner while the Nlrp1b-mediated response to LT is dominant. Finally, congenic mice displayed increased responsiveness in a model of sepsis compared with B6 mice. In total, these data suggest that allelic variation of one or more chromosome 11 genes in addition to Nlrp1b controls the severity of host response to multiple inflammatory stimuli and contributes to resistance to B. anthracis Sterne. Expression quantitative trait locus analysis revealed 25 genes within this region as high priority candidates for contributing to the host response to LT.  相似文献   

15.
Noise-induced hearing loss (NIHL) is one of the more common sources of environmentally induced hearing loss in adults. In a mouse model, Castaneous (CAST/Ei) is an inbred strain that is resistant to NIHL, while the C57BL/6J strain is susceptible. We have used the genome-tagged mice (GTM) library of congenic strains, carrying defined segments of the CAST/Ei genome introgressed onto the C57BL/6J background, to search for loci modifying the noise-induced damage seen in the C57BL/6J strain. NIHL was induced by exposing 6-8-week old mice to 108 dB SPL intensity noise. We tested the hearing of each mouse strain up to 23 days after noise exposure using auditory brainstem response (ABR). This study identifies a number of genetic loci that modify the initial response to damaging noise, as well as long-term recovery. The data suggest that multiple alleles within the CAST/Ei genome modify the pathogenesis of NIHL and that screening congenic libraries for loci that underlie traits of interest can be easily carried out in a high-throughput fashion.  相似文献   

16.
Dde I-digested DNA fragments from 11 inbred mouse strains were separated by electrophoresis, blotted and probed with a labeled oligomer, TELO, containing five repeats of the consensus mammalian telomere sequence, TTAGGG. Each strain produced a unique set of hybridizing fragments. Segregation analysis of TELO-hybridizing fragments from the BXD RI strains indicated that each fragment segregated as expected for a single gene. One fragment from strain DBA/2J was genetically linked to locusXmv-9, previously mapped near the distal end of the map of chromosome (Chr) 4 and three fragments toCck, near the distal end of Chr 9, suggesting that these fragments are telomeric and represent the ends of the chromosome maps. Confirmation of these map positions was obtained from a backcross. Fragments associated with the short arm of the Y Chr were found in DNA from strains C57BL/6J and DBA/2J. TELO-hybridizing fragments from DBA/2J were digested by the exonuclease Bal 31, under conditions in which fragments hybridizing to a cDNA probe for themetallothioneine locus, located at the middle of mouse Chr 8, remained intact. Thus both biochemical and genetic tests indicate that several TELO-hybridizing fragments fromDde I-digested DNA are at the ends of chromosomes and probably derive from mouse telomeres. Using this approach should allow the mapping of genes relative to the ends of other mouse chromosomes.  相似文献   

17.
Microsatellite loci are uniformly distributed at approximately 100-kbp intervals on all chromosomes except the chromosome Y, and genetic information about more than 9000 loci and high-throughput polymorphism analysis are now available. Taking advantage of these properties, we carried out whole-genome scanning using eight common inbred strains (CIS) of laboratory mice, including A/J, C57BL/6J, CBA/J, DBA/2J, SM/J, SWR/J, NC/Nga, and 129/SvJ, and eight wild-derived inbred strains (WIS), BGL2/Ms, CAST/Ei, JF1/Ms, MSM/Ms, NJL/Ms, PGN2/Ms, SK/CamEi, and SWN/Ms. We selected and located 1226 informative loci at 1.2-cM average intervals on all of the chromosomes of the 16 strains and compared the polymorphisms of the eight CIS with those from the eight WIS as subspecies representatives. More than 50% of the loci can be identified as WIS (therefore, subspecies-specific) alleles in the CIS genomes. We also discovered that the CIS chromosomes form a mosaic structure with an average ratio of domesticus to non-domesticus alleles of 3:1. Furthermore, the domesticus alleles were present much more frequently on the CIS chromosome X than on their autosomes, suggesting that successive backcrossing of non-domesticus stocks to domesticus stocks had been undergone at the beginning of CIS history.  相似文献   

18.
Localization of the cryptdin locus on mouse chromosome 8   总被引:4,自引:0,他引:4  
Cryptdin is a defensin-related peptide, and its mRNA accumulates to high abundance in epithelial cells of intestinal crypts beginning in the second week of postnatal development. The cryptdin (Defcr) locus was assigned to mouse chromosome 8 by Southern blotting of DNAs from mouse/hamster somatic hybrid cell lines. Analysis of somatic hybrid DNAs for mouse-specific restriction fragments showed zero discordance and perfect concordance with chromosome 8. The Defcr locus was localized on chromosome 8 by analysis of DNAs from recombinant inbred (RI) strains of mice after identification of three potential Defcr alleles based on restriction fragment length polymorphisms (RFLPs) in inbred strains. The strain distribution patterns of the Defcr locus were compared with those of chromosome 8 markers in five panels of RI strains. Analysis of cosegregation of Defcr with xenotropic proviral locus Xmv-26 and additional loci confirmed the chromosomal assignment and showed that Defcr is on proximal chromosome 8 within approximately 6 (1.3 to 21.3) cM of Xmv-26. The mouse Defcr locus and the human defensin gene(s) located on chromosome 8p23 appear to map to homologous regions.  相似文献   

19.
20.
Electrophoretically variant forms of gamma-glutamyl cyclotransferase have been identified in red cells of inbred mouse strains. Each inbred strain exhibited a major band of activity and a minor band that migrated more anodally. The polymorphism affects the migration of both the major and minor bands in a similar way. F1 hybrids between strains with fast forms (A/J) and strains with the slow forms (C57BL/6J) exhibited a four-banded pattern consistent with co-dominant inheritance. The patterns observed in backcross and F2 mice were consistent with the segregation of a pair of autosomal co-dominant alleles. Recombinant inbred strains and a congenic strain were used to show that the locus controlling gamma-glutamyl cyclotransferase (Ggc) is linked to Lyt-2, a lymphocyte alloantigen locus on chromosome 6, with an estimated map distance of 5.0 +/- 2.5 centimorgans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号