首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Li D  Yu J  Gu F  Pang X  Ma X  Li R  Liu N  Ma X 《Genetic testing》2008,12(2):325-330
Mutations in the fibrillin-1 (FBN1) gene have been identified in patients with Marfan syndrome (MFS) and Marfan-like connective tissue disorders. In this study, two Chinese families were recruited. The patients in family 1 were well characterized with MFS, while those in family 2 displayed Marfan-like disorders such as ectopia lentis (EL) and marfanoid habitus, but did not develop cardiovascular diseases. We aimed to analyze the pathogenic mutations and their relationships with phenotypes in these two Chinese families. All participants underwent complete physical, ophthalmic, and cardiovascular examinations. The 65 exons and flanking intronic sequences of FBN1 were amplified by polymerase chain reaction, and screened for mutations by denaturing high-performance liquid chromatography and sequencing. One hundred and fifteen unrelated controls were analyzed using the same methods to confirm the mutations. In family 1, we identified the mutation p.C499S in the calcium-binding epidermal growth factor (cbEGF)-like domain 3 of FBN1. In family 2, the mutation p.C908Y was identified in an interdomain region of the hybrid motif 2 linked to the cbEGF-like domain 10. It can be concluded that FBN1 mutations involving cysteine substitutions are usually associated with MFS and EL with some MFS features. Moreover, pathology seemed more serious when the mutations disrupted the three disulfide bridges in the cbEGF-like domains, which was more likely to cause typical MFS than if the mutations occurred in the hybrid motifs. Our data preliminarily establish a genotype-phenotype correlation in the diagnostic process of MFS and predominant EL with Marfan-like features.  相似文献   

2.
A Novel Mutation of the Fibrillin Gene Causing Ectopia Lentis   总被引:1,自引:0,他引:1  
Ectopia lentis (EL), a dominantly inherited connective tissue disorder, has been genetically linked to the fibrillin gene on chromosome 15 (FBN1) in earlier studies. Here, we report the first EL mutation in the FBN1 gene confirming that EL is caused by mutations of this gene. So far, several mutations in the FBN1 gene have been reported in patients with Marfan syndrome (MFS). EL and MFS are clinically related but distinct conditions with typical manifestations in the ocular and skeletal systems, the fundamental difference between them being the absence of cardiovascular involvement in EL. We report a point mutation, cosegregating with the disease in the described family, that displays EL over four generations. The mutation changes a conserved glutamic acid residue in an EGF-like motif, which is the major structural component of the fibrillin and is repeated throughout the polypeptide. In vitro mutagenetic studies have demonstrated the necessity of an analogous glutamic acid residue for calcium binding in an EGF-like repeat of human factor IX. This provides a possible explanation for the role of this mutation in the disease pathogenesis.  相似文献   

3.
Marfan syndrome (MFS) is a dominant monogenic disease caused by mutations in fibrillin 1 (FBN1). Cardiovascular complications are the leading causes of mortality among MFS. In the present study, a whole-exome sequencing of MFS in the Chinese population was conducted to investigate the correlation between FBNI gene mutation and MFS. Forty-four low-frequency harmful loci were identified for the FBN1 gene in HGMD database. In addition, 38 loci were identified in the same database that have not been related to MFS before. A strict filtering and screening protocol revealed two patients of the studied group have double mutations in the FBN1 gene. The two patients harboring the double mutations expressed a prominent, highly pathological phenotype in the affected family. In addition to the FBN1 gene, we also found that 27 patients had mutations in the PKD1 gene, however these patients did not have kidney disease, and 16 of the 27 patients expressed aortic related complications. Genotype-phenotype analysis showed that patients with aortic complications are older in the family, aged between 20 and 40 years.  相似文献   

4.
The fibrillin-1 (FBN1) gene mutations result in Marfan syndrome (MFS) and have a variety of phenotypic variations. This disease is involved in the skeletal, ocular and cardiovascular system. Here we analyzed genotype-phenotype correlation in two Chinese families with MFS. Two patients with thoracic aortic aneurysms and dissections were diagnosed as MFS according to the revised Ghent criteria. Peripheral blood samples were collected and genomic DNAs were isolated from available cases, namely, patient-1 and his daughter and son, and patient-2 and his parents. According to the next-generation sequencing results, the mutations in FBN1 were confirmed by direct sequencing. A heterozygous frameshift mutation in exon 12 of FBN1 was found in the proband-1 and his daughter. They showed cardiovascular phenotype thoracic aortic aneurysms and dissections, a life-threatening vascular disease, and atrial septal defect respectively. One de novo missense mutation in exon 50 of FBN1 was identified only in the patient-2, showing aortic root aneurysm and aortic root dilatation. Intriguingly, two novel mutations mainly caused the cardiovascular complications in affected family members. No meaningful mutations were found in these two patients by screening all exons of 428 genes related with cardiovascular disease. The high incidence of cardiovascular manifestations might be associated with the two novel mutations in exon 12 and 50 of FBN1.  相似文献   

5.
Mutations in the fibrillin-1 (FBN1) gene cause Marfan syndrome (MFS) and have been associated with a wide range of overlapping phenotypes. Clinical care is complicated by variable age at onset and the wide range of severity of aortic features. The factors that modulate phenotypical severity, both among and within families, remain to be determined. The availability of international FBN1 mutation Universal Mutation Database (UMD-FBN1) has allowed us to perform the largest collaborative study ever reported, to investigate the correlation between the FBN1 genotype and the nature and severity of the clinical phenotype. A range of qualitative and quantitative clinical parameters (skeletal, cardiovascular, ophthalmologic, skin, pulmonary, and dural) was compared for different classes of mutation (types and locations) in 1,013 probands with a pathogenic FBN1 mutation. A higher probability of ectopia lentis was found for patients with a missense mutation substituting or producing a cysteine, when compared with other missense mutations. Patients with an FBN1 premature termination codon had a more severe skeletal and skin phenotype than did patients with an inframe mutation. Mutations in exons 24-32 were associated with a more severe and complete phenotype, including younger age at diagnosis of type I fibrillinopathy and higher probability of developing ectopia lentis, ascending aortic dilatation, aortic surgery, mitral valve abnormalities, scoliosis, and shorter survival; the majority of these results were replicated even when cases of neonatal MFS were excluded. These correlations, found between different mutation types and clinical manifestations, might be explained by different underlying genetic mechanisms (dominant negative versus haploinsufficiency) and by consideration of the two main physiological functions of fibrillin-1 (structural versus mediator of TGF beta signalling). Exon 24-32 mutations define a high-risk group for cardiac manifestations associated with severe prognosis at all ages.  相似文献   

6.
Mutations in the fibrillin-1 gene (FBN1) cause Marfan syndrome (MFS), an autosomal dominant disorder of connective tissue with highly variable clinical manifestations. FBN1 contains 47 epidermal growth factor (EGF)-like modules, 43 of which display a consensus sequence for calcium binding (cbEGF). Calcium binding by cbEGF modules is thought to be essential for the conformation and stability of fibrillin-1. Missense mutations in cbEGF modules are the most common mutations found in MFS and generally affect one of the six highly conserved cysteines or residues of the calcium-binding consensus sequence. We have generated a series of recombinant fibrillin-1 fragments containing six cbEGF modules (cbEGF nos. 15-20) with various mutations at different positions of cbEGF module no. 17, which is known to contain a cryptic cleavage site for trypsin. A mutation affecting a residue of the calcium-binding consensus sequence (K1300E) found in a patient with relatively mild clinical manifestations of classic MFS caused a modest increase in susceptibility to in vitro proteolysis by trypsin, whereas a mutation affecting the sixth cysteine residue of the same cbEGF module (C1320S) reported in a severely affected patient caused a dramatic increase in susceptibility to in vitro proteolysis by trypsin. A mutation at the cryptic cleavage site for trypsin abolished sensitivity of wild-type fragments and fragments containing K1300E to trypsin proteolysis. Whereas the relevance of in vitro proteolysis to the in vivo pathogenesis of MFS remains unclear, our findings demonstrate that individual mutations in cbEGF modules can affect these modules differentially and may suggest an explanation for some genotype-phenotype relationships in MFS.  相似文献   

7.
目的:明确两个中国北方汉族马凡综合征(Marfan syndrome,MFS)家系的临床特点,并对其进行基因诊断。方法:对两个家系进行家系调查和系谱分析,应用聚合酶链式反应-DNA测序方法对原纤维蛋白1基因(Fibrillin-1,FBN1)的所有外显子进行测序。应用Swiss-model、Polyphen-2和SIFT软件对发现的变异位点进行功能预测。结果:两个家系均呈常染色显性遗传特点,在家系1患者中发现一个新的插入突变,即第13外显子1691位碱基处插入碱基A(1691 ins A),导致蛋白在第571位氨基酸处翻译提前终止。此外,在家系2患者中发现一个已知的点突变,即第27外显子第3463位碱基由G变为A(3463 GA),导致第1155位氨基酸由天冬氨酸变为天冬酰胺。这两个变异位点在家系的健康人及50例健康对照中均未出现。功能预测发现这两个变异位点均可能会影响FBN1蛋白的结构或功能。结论:在两个MFS家系中发现一个新插入突变位点(1691 ins A)和一个已知点突变位点(3463 GA),为扩大FBN1基因的突变谱及进一步阐明FBN1基因突变在MFS中的作用提供理论依据。  相似文献   

8.
Cardiovascular manifestations in patients with Marfan syndrome (MFS) are related to aortic and valvular abnormalities. However, dilatation of the left ventricle (LV) can occur, even in the absence of aortic surgery or valvular abnormalities. We evaluated genetic characteristics of patients with MFS with LV dilatation. One hundred eighty-two patients fulfilling the MFS criteria, without valvular abnormalities or previous aortic surgery, with a complete FBN1 analysis, were studied. FBN1 mutations were identified in over 81% of patients. Twenty-nine patients (16%) demonstrated LV dilatation (LV end diastolic diameter corrected for age and body surface area > 112%). FBN1-positive patients carrying a non-missense mutation more often had LV dilatation than missense mutation carriers (14/74 versus 5/75; p < 0.05). Finally, FBN1-negative MFS patients significantly more often demonstrated LV dilatation than FBN1-positive patients (10/33 versus 19/149; p < 0.05). It is concluded that LV dilatation in MFS patients is more often seen in patients with a non-missense mutation and in those patients without an FBN1 mutation. Therefore physicians should be aware of the possibility of LV dilatation in these patients even in the absence of valvular pathology.  相似文献   

9.
Mutations in the FBN1 gene cause Marfan syndrome (MFS), a dominantly inherited connective tissue disease. Almost all the identified FBN1mutations have been family specific, and the rate of new mutations is high. We report here a de novo FBN1mutation that was identified in two sisters with MFS born to clinically unaffected parents. The paternity and maternity were unequivocally confirmed by genotyping. Although one of the parents had to be an obligatory carrier for the mutation, we could not detect the mutation in the leukocyte DNA of either parent. To identify which parent was a mosaic for the mutation we analyzed several tissues from both parents, with a quantitative and sensitive solid-phase minisequencing method. The mutation was not, however, detectable in any of the analyzed tissues. Although the mutation could not be identified in a sperm sample from the father or in samples of multiple tissue from the mother, we concluded that the mother was the likely mosaic parent and that the mutation must have occurred during the early development of her germ-line cells. Mosaicism confined to germ-line cells has rarely been reported, and this report of mosaicism for the FBN1 mutation in MFS represents an important case, in light of the evaluation of the recurrence risk in genetic counseling of families with MFS.  相似文献   

10.
Mutations in the fibrillin-1 (FBN1) gene cause Marfan syndrome (MFS) and the other type-1 fibrillinopathies. Finding these mutations is a major challenge considering that the FBN1 gene has a coding region of 8,600 base pairs divided into 65 exons. Most of the more than 600 known mutations have been identified using a mutation scanning method prior to sequencing of fragments with a suspected mutation. However, it is not obvious that these screening methods are ideal, considering cost, efficiency, and sensitivity. We have sequenced the entire FBN1 coding sequence and flanking intronic sequences in samples from 105 patients with suspected MFS, taking advantage of robotic devices, which reduce the cost of supplies and the quantity of manual work. In addition, automation avoids many tedious steps, thus reducing the opportunity for human error. Automated assembling of PCR, purification of PCR products, and assembly of sequencing reactions resulted in completion of the FBN1 sequence in half of the time needed for the manual protocol. Mutations were identified in 69 individuals. The mutation detection rate (76%), types, and genetic distribution of mutations resemble the findings in other MFS populations. We conclude that automated sequencing using the robotic systems is well suited as a primary strategy for diagnostic mutation identification in FBN1.  相似文献   

11.
汉族马凡综合征(MFS)患者FBN1基因两种新发突变分析   总被引:1,自引:0,他引:1  
为调查马凡综合征(Marfan syndrome, MFS)患者的原纤维蛋白-1(Fibrillin-1, FBN1)基因突变情况, 应用聚合酶链反应(PCR)和变性高效液相色谱法(Denaturing high-performance liquid chromatography, DHPLC)对MFS患者的FBN1基因进行突变筛查, 对DHPLC初筛异常的DNA片段进行测序分析。结果在两个MFS家系中发现FBN1基因两种新的突变: 一种为复合突变包含第55号外显子的缺失突变c.6862_6871delGGCTGTGTAG (p.Gly2288MetfsX109)、同义突变c.6861A>G和内含子的突变c.[6871+1_6871+11delGTAAGAGGATC; 6871+34dupCATCAGAAGTGACAGTGGACA]; 另一种为第20号外显子的错义突变c.2462G>A(p.Cys821Tyr)。研究表明, FBN1基因的缺失突变c.[6862_6871delGGCTGTGTAG; 6871+1_6871+11delGTAAGAGGATC] (p.Gly2288MetfsX109)和错义突变c.2462G>A(p.Cys821Tyr)可能分别是这两个家系患者的致病原因。  相似文献   

12.
Fibrillin-1 is a large cysteine-rich glycoprotein of the 10-nm microfibrils in the extracellular matrix. A spectrum of mutations in the fibrillin-1 gene (FBN1) have been identified in patients with Marfan syndrome (MFS), and the majority of mutations resulting in the neonatal and often lethal form of MFS have been identified in the restricted region of exons 24–32 of theFBN1gene. Here we report a novel point mutation in exon 25 of theFBN1gene in a patient with lethal MFS. The mutation resulted in a molecular defect rarely encountered in human diseases, the creation of an extra consensus sequence forN-glycosylation. Metabolic labeling of the patient fibroblast culture andin vitroexpression of the mutagenized cDNA construct suggest that this novelN-glycosylation site is actually utilized. Immunohistochemical and ultrastructural analyses of the fibroblast cultures of the patient show that this excessiveN-glycosylation severely affects microfibril formationin vitro;this finding emphasizes the importance of correct posttranslational modifications of fibrillin molecules for correct aggregation into microfibrillar structures.  相似文献   

13.
In order to further understand the role of fibrillin-1 (FBN1, OMIM 134797) perturbations in the pathogenesis of Marfan syndrome (MFS, OMIM 154700) we studied a Han Chinese family in which MFS was segregating. In the Chinese family with 5 affected members, mutation screening for FBN1 was performed using direct sequencing. A novel non-synonymous mutation in the transforming growth factor beta binding protein-like (TB) domain of the FBN1 gene was found. The missense mutation c.3022T>C (C1008R) located in exon 24. This mutation was present in the proband and in two other affected family members, but in neither unaffected family members nor unrelated control subjects. The novel non-synonymous mutation, c.3022T>C (C1008R) in the TB domain of FBN1 gene, may be involved in the pathogenesis of MFS in a Han Chinese family.  相似文献   

14.
Fibrillin is the major component of extracellular microfibrils. Mutations in the fibrillin gene on chromosome 15 (FBN1) were described at first in the heritable connective tissue disorder, Marfan syndrome (MFS). More recently, FBN1 has also been shown to harbor mutations related to a spectrum of conditions phenotypically related to MFS and many mutations will have to be accumulated before genotype/phenotype relationships emerge. To facilitate mutational analysis of the FBN1 gene, a software package along with a computerized database (currently listing 63 entries) have been created.  相似文献   

15.
16.
17.
18.
Marfan syndrome (MFS) is an autosomal dominant connective tissue disorder caused by mutations in the fibrillin-1 gene FBN1. Mutation detection of this 65-exon gene presents a particular challenge for the diagnostic service in cost, time constraints, and the need to maintain a stringently optimized assay procedure. Using denaturing high-performance liquid chromatography (dHPLC), we have designed a procedure for rapid mutation scanning, redesigning 50% of published primer sets, screening by Ensembl to avoid inclusion of polymorphic variations and employing a limited set of PCR conditions to allow for a high-throughput 96-well format. We have screened 262 unrelated patients with MFS or Marfan-like phenotypes and detected 103 (39.3%) mutations including 93 different mutations, 72 of which are novel. The mutations include 55 missense (53.4%) 19 splice site (18.5%), 17 frameshift (16.5%), 11 nonsense (10.7%) and 1 in-frame deletion/insertion.  相似文献   

19.
In this report we have described an affected sib in a large Turkish family who appears to have a new distinct dominantly-inherited blindness, scoliosis and arachnodactyly syndrome. The combination of clinical abnormalities in these patients did not initially suggest Marfan syndrome or other connective tissue disorders associated with ectopia lentis. The proband was a 16-year-old boy who was referred to our clinics for scoliosis. He had arachnodactyly of both fingers and toes. He had been suffering from progressive visual loss and strabismus since he was eight-years-old. His 20-year-old brother had severe kyphoscoliosis, and arachnodactyly of fingers and toes. He was 130 cm tall and was bilaterally blind. His 23-year-old sister had only eye findings but no arachnodactyly or scoliosis. His 60-year-old father had mild scoliosis, blindness and arachnodactyly and mother was normal. We performed routine mutation analyses in the genes FBN1, TGFBR1 and TGFBR2, but no mutation has been detected. Our Turkish patients are most likely affected by a hitherto unrecorded condition which is caused by an autosomal dominant gene defect with variable expression but we can not exclude multigenic inheritance. Further studies are needed to assess the contribution of sex influence to the syndrome because the female relative is less affected.  相似文献   

20.
We describe here the identification of defined mutations in both alleles of the fibrillin gene (FBN1) in a compound-heterozygote Marfan syndrome (MFS) child who had a very severe form of MFS resulting in death from cardiac failure at the age of 4 mo. The nonconsanguineous parents were both affected with MFS. The father's heterozygous point mutation has earlier been reported to result in W217G substitution, the mother was here shown to carry a heterozygous point mutation resulting in G2627R substitution, and the child had inherited both these mutations. The mutant FBN1 alleles were demonstrated to be transcribed with equal efficiency compared with the normal alleles, but metabolic labeling of fibroblast cultures from the child and both parents showed reduced biosynthesis and secretion of profibrillin. Also, the respective amounts of fibrillin in cell-culture media and extracellular-matrix extracts were markedly diminished, particularly in the cell cultures from father and child. In addition, immunofluorescence analysis of the cell cultures of all three family members revealed a drastically reduced amount of microfibrils, and virtually no visible fibrils could be seen in the case of the compound-heterozygote child. These findings demonstrate incomplete dominance of fibrillin mutations and underline the fatal consequences of the complete absence of normal fibrillin molecules in the microfibrils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号