首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Helicobacter pylori (H. pylori) adheres to human gastric epithelial cells, eliciting various gastroduodenal diseases. Gangliosides play a critical role in bacterial adhesion to cell surfaces. The present study examined how residues of gangliosides are important for inhibition of adhesion of H. pylori to MKN-45 cells. We measured adhesion or detachment effects of gangliosides on the interaction between MKN-45 cells and H. pylori, as well as interleukin-8 production. Among the gangliosides, O-Ac-GD3, GT(1b), GD(1a), GD(1b), GT(1a), and GD3 had potent dose dependent inhibitory effects on adhesion of H. pylori to MKN-45 cells, interleukin-8 production, and vacuole formation induced by H. pylori toxin binding to Vero cells. GD3 also accelerated bacterial detachment of MKN-45 cells with adherent H. pylori in a dose dependent manner. Such results strongly suggest that the mechanism involved in the inhibition of H. pylori adhesion is mediated by the variations of the residues of the NeuAc-NeuAc-Gal-Glc chain of gangliosides. NeuAc-NeuAc-Gal-Glc exhibits a more inhibitory effect on adhesion than the NeuAc-Gal-Glc chain. Such gangioside and oligosaccrharide sequences appear to have therapeutic importance for prevention of H. pylori adhesion, as well as reduction of both inflammation and gastric mucosal injuries.  相似文献   

3.
Helicobacter pylori infection induces apoptosis and inducible nitric oxide synthase (iNOS) expression in gastric epithelial cells. In this study, we investigated the effects of NF-kappaB activation and iNOS expression on apoptosis in H. pylori-infected gastric epithelial cells. The suppression of NF-kappaB significantly increased caspase-3 activity and apoptosis in H. pylori-infected MKN-45 and Hs746T gastric epithelial cell lines as well as primary gastric epithelial cells. An NF-kappaB signaling pathway via NF-kappaB-inducing kinase and IkappaB kinase-beta activation was found to be involved in the inhibition of apoptosis in H. pylori-infected gastric epithelial cells. In gastric epithelial cells transfected with retrovirus containing IkappaBalpha superrepressor, iNOS mRNA and protein levels were reduced, indicating that H. pylori infection induced the expression of iNOS by activating NF-kappaB. Moreover, a NO donor, S-nitroso-N-acetylpenicillamine (100 microM), decreased caspase-3 activity and apoptosis in NF-kappaB-suppressed cells infected with H. pylori. These results suggest that NF-kappaB activation may play a role in protecting gastric epithelial cells from H. pylori-induced apoptosis by upregulating endogenous iNOS.  相似文献   

4.
Helicobacter pylori lipopolysaccharide is a primary virulence factor responsible for eliciting acute mucosal inflammatory responses associated with H. pylori infection. In this study, we applied the animal model of H. pylori lipopolysaccharide-induced acute gastritis to assess the effect of antiulcer agent, ebrotidine, on the gastric mucosal inflammatory responses by analyzing the interplay between the activity of a key apoptotic caspase, caspase-3, epithelial cell apoptosis, and the expression of inducible nitric oxide synthase (NOS-2). METHODS: Rats, pretreated twice daily with ebrotidine at 100 mg/kg, or the vehicle, were subjected to intragastric application of H. pylori lipopolysaccharide at 50 microg/animal, and after 4 additional days on the antiulcer drug or vehicle regimen their mucosal tissue used for histologic assessment, assays of epithelial cells apoptosis, and the measurements of caspase-3 and NOS-2 activities. RESULTS: In the absence of antiulcer agent, H. pylori lipopolysaccharide induced acute reaction characterized by the inflammatory infiltration of the lamina propria, hyperemia, and epithelial hemorrhage. This was accompanied by an 11.2-fold increase in epithelial cell apoptosis, a 6.5-fold induction in mucosal expression of NOS-2, and a 5.4-fold increase in caspase-3 activity. Treatment with H2-receptor antagonist ebrotidine, also known for its gastroprotective effects, produced a 50.9% reduction in the extent of mucosal inflammatory changes elicited by H. pylori lipopolysaccharide and an 82.5% decrease in the epithelial cells apoptosis, while the activity of caspase-3 decreased by 33.7% and that of NOS-2 showed a 72.8% decline. CONCLUSIONS: The findings implicate caspase-3 involvement in gastric mucosal inflammatory responses to H. pylori lipopolysaccharide, and point towards participation of NOS-2 in the amplification of the cell death-signaling cascade. Our study also demonstrate that ebrotidine exerts modulatory effect on the H. pylori-induced mucosal inflammatory responses by interfering with the events propagated by NOS-2 and caspase-3.  相似文献   

5.
6.
Helicobacter pylori causes gastritis and some infections result in peptic ulceration, gastric adenocarcinoma or gastric lymphoma. A critical step in the pathogenesis of these diseases is the ability of H. pylori to adhere to gastric epithelial cells. A role for the lipopolysaccharide O-antigen side-chain in this process has previously been identified. In this study, evidence is presented that the receptor recognized by the O-antigen side-chain is galectin-3, a beta-galactoside-binding lectin. A variety of functions have been ascribed to galectin-3 including modulation of extracellular adhesion and chemotaxis of monocytes and neutrophils. Expression of galectin-3 is upregulated by gastric epithelial cells following adhesion of H. pylori, suggesting that in addition to colonization this protein also plays a role in the host response to infection. Upregulation of galectin-3 is inhibited by treating gastric epithelial cells with the mitogen-activated protein kinase (MAPK) inhibitors U0126 or PD098059 and does not occur in cells infected with either H. pylori cagE or cagA isogenic mutants. This implies that H. pylori-mediated expression of galectin-3 is dependent on delivery of CagA into the host cell cytosol and the subsequent stimulation of MAPK signalling. A further consequence of H. pylori adhesion is that it elicits a rapid release of galectin-3 from infected cells. A role for this phenomenon in initiating the trafficking of phagocytic cells to the site of infection is discussed.  相似文献   

7.
8.
9.
Helicobacter pylori is a major etiological agent in gastroduodenal disorders. In this study, we isolated 36 polyphenols and 4 terpenoids from medicinal plants, and investigated their antibacterial activity against H. pylori in vitro. All hydrolyzable tannins tested demonstrated promising antibacterial activity against H. pylori. Monomeric hydrolyzable tannins revealed especially strong activity. Other compounds demonstrated minimal antibacterial activity with a few exceptions. A monomeric hydrolyzable tannin, Tellimagrandin I demonstrated time- and dose-dependent bactericidal activity against H. pylori in vitro. On the other hand, hydrolyzable tannins did not affect the viability of MKN-28 cells derived from human gastric epithelium. Hydrolyzable tannins, therefore, have potential as new and safe therapeutic regimens against H. pylori infection. Furthermore, we investigated effects of hydrolyzable tannins on lipid bilayer membranes. All the hydrolyzable tannins tested demonstrated dose-dependent membrane-damaging activity. However, it remains to be elucidated whether their membrane-damaging activity directly contributes to their antibacterial action.  相似文献   

10.
11.
12.
13.
We investigated the effect of H. pylori infection on cell proliferation of gastric mucosa using immunostaining for H. pylori or Ki67. H. pylori cells attached to surface mucous cells covering luminal surface and the upper part of gastric foveolae, and up-regulated the proliferative activity of gastric epithelial cells without adhering to the proliferating epithelial cells.  相似文献   

14.
Helicobacter pylori is a major human pathogen associated with gastric diseases such as chronic active gastritis, peptic ulcer, and gastric carcinoma. The growth factor progranulin (PGRN) is a secreted glycoprotein that functions as an important regulator of cell growth, migration, and transformation. We aimed to determine the molecular mechanisms by which H. pylori upregulates the expression of PGRN and the relationship between H. pylori infection and production of PGRN in controlling cell proliferation and migration. Levels of PGRN were examined in gastric tissues from patients and in vitro in gastric epithelial cells. Cell proliferation was measured by colony formation assay. Cell migration was monitored by wound healing migration assay. PGRN protein levels were increased in patients with gastritis and gastric cancer tissue. Infection of gastric epithelial cells with H. pylori significantly increased PGRN expression in a time-dependent manner. Blockade of the p38 and MEK1/2 pathway by inhibitor inhibited H. pylori-mediated PGRN upregulation. Activation of p38 and MEK1/2 pathway by H. pylori was also identified. Knockdown of PGRN attenuated the H. pylori-induced proliferative activity and migration of cancer cells. These findings suggest that the upregulation of PGRN in H. pylori-infected gastric epithelial cells may contribute to the carcinogenic process.  相似文献   

15.
Infection with cagA-positive Helicobacter pylori (H. pylori) is associated with atrophic gastritis, peptic ulcer, and gastric adenocarcinoma. The cagA gene product CagA is translocated from H. pylori into gastric epithelial cells and undergoes tyrosine phosphorylation by Src family kinases (SFKs). Tyrosine-phosphorylated CagA binds and activates SHP-2 phosphatase and the C-terminal Src kinase (Csk) while inducing an elongated cell shape termed the "hummingbird phenotype." Here we show that CagA reduces the level of focal adhesion kinase (FAK) tyrosine phosphorylation in gastric epithelial cells. The decrease in phosphorylated FAK is due to SHP-2-mediated dephosphorylation of FAK at the activating phosphorylation sites, not due to Csk-dependent inhibition of SFKs, which phosphorylate FAK. Coexpression of constitutively active FAK with CagA inhibits induction of the hummingbird phenotype, whereas expression of dominant-negative FAK elicits an elongated cell shape characteristic of the hummingbird phenotype. These results indicate that inhibition of FAK by SHP-2 plays a crucial role in the morphogenetic activity of CagA. Impaired cell adhesion and increased motility by CagA may be involved in the development of gastric lesions associated with cagA-positive H. pylori infection.  相似文献   

16.
17.
Helicobacter pylori has been identified as the major aetiological agent in the development of chronic gastritis and duodenal ulcer, and it plays a role in the development of gastric carcinoma. Attachment of H. pylori to gastric epithelial cells leads to nuclear and cytoskeletal responses in host cells. Here, we show that Rho GTPases Rac1 and Cdc42 were activated during infection of gastric epithelial cells with either the wild-type H. pylori or the mutant strain cagA. In contrast, no activation of Rho GTPases was observed when H. pylori mutant strains (virB7 and PAI) were used that lack functional type IV secretion apparatus. We demonstrated that H. pylori-induced activation of Rac1 and Cdc42 led to the activation of p21-activated kinase 1 (PAK1) mediating nuclear responses, whereas the mutant strain PAI had no effect on PAK1 activity. Activation of Rac1, Cdc42 and PAK1 represented a very early event in colonization of gastric epithelial cells by H. pylori. Rac1 and Cdc42 were recruited to the sites of bacterial attachment and are therefore probably involved in the regulation of local and overall cytoskeleton rearrangement in host cells. Finally, actin rearrangement and epithelial cell motility in H. pylori infection depended on the presence of a functional type IV secretion system encoded by the cag pathogenicity island (PAI).  相似文献   

18.
The gastric pathogen Helicobacter pylori (H. pylori) is linked to peptic ulcer and gastric cancer, but the relevant pathophysiological mechanisms are unclear. We now report that H. pylori stimulates the expression of plasminogen activator inhibitor (PAI)-1, urokinase plasminogen activator (uPA), and its receptor (uPAR) in gastric epithelial cells and the consequences for epithelial cell proliferation. Real-time PCR of biopsies from gastric corpus, but not antrum, showed significantly increased PAI-1, uPA, and uPAR in H. pylori-positive patients. Transfection of primary human gastric epithelial cells with uPA, PAI-1, or uPAR promoters in luciferase reporter constructs revealed expression of all three in H+/K+ATPase- and vesicular monoamine transporter 2-expressing cells; uPA was also expressed in pepsinogen- and uPAR-containing trefoil peptide-1-expressing cells. In each case expression was increased in response to H. pylori and for uPA, but not PAI-1 or uPAR, required the virulence factor CagE. H. pylori also stimulated soluble and cell surface-bound uPA activity, and both were further increased by PAI-1 knockdown, consistent with PAI-1 inhibition of endogenous uPA. H. pylori stimulated epithelial cell proliferation, which was inhibited by uPA immunoneutralization and uPAR knockdown; exogenous uPA also stimulated proliferation that was further increased after PAI-1 knockdown. The proliferative effects of uPA were inhibited by immunoneutralization of the EGF receptor and of heparin-binding EGF (HB-EGF) by the mutant diphtheria toxin CRM197 and an EGF receptor tyrosine kinase inhibitor. H. pylori induction of uPA therefore leads to epithelial proliferation through activation of HB-EGF and is normally inhibited by concomitant induction of PAI-1; treatments directed at inhibition of uPA may slow the progression to gastric cancer.  相似文献   

19.
20.
Emerging evidence has suggested a critical role for activator protein-1 (AP)-1 in regulating various cellular functions. The goal of this study was to investigate the effects of Helicobacter pylori and mitogen-activated protein kinases (MAPK) on AP-1 subcomponents expression and AP-1 DNA-binding activity in gastric epithelial cells. We found that H. pylori infection resulted in a time- and dose-dependent increase in the expression of the proteins c-Jun, JunB, JunD, Fra-1, and c-Fos, which make up the major AP-1 DNA-binding proteins in AGS and MKN45 cells, while the expression levels of Fra-2 and FosB remained unchanged. Helicobacter pylori infection and MAPK inhibition altered AP-1 subcomponent protein expression and AP-1 DNA-binding activity, but did not change the overall subcomponent composition. Different clinical isolates of H. pylori showed various abilities to induce AP-1 DNA binding. Mutation of cagA, cagPAI, or vacA, and the nonphosphorylateable CagA mutant (cagA(EPISA)) resulted in less H. pylori-induced AP-1 DNA-binding activity, while mutation of the H. pylori flagella had no effect. extracellular signal-related kinase (ERK), p38, and c-Jun N-terminal kinase (JNK) each selectively regulated AP-1 subcomponent expression and DNA-binding activity. These results provide more insight into how H. pylori and MAPK modulate AP-1 subcomponents in gastric epithelial cells to alter the expression of downstream target genes and affect cellular functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号