首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fruit tree crops are agricultural commodities of high economic importance, while fruits also represent one of the most vital components of the human diet. Therefore, a great effort has been made to understand the molecular mechanisms covering fundamental biological processes in fruit tree physiology and fruit biology. Thanks to the development of cutting‐edge “omics” technologies such as proteomic analysis, scientists now have powerful tools to support traditional fruit tree research. Such proteomic analyses are establishing high‐density 2DE reference maps and peptide mass fingerprint databases that can lead fruit science into a new postgenomic research era. Here, an overview of the application of proteomics in key aspects of fruit tree physiology as well as in fruit biology, including defense responses to abiotic and biotic stress factors, is presented. Α panoramic view of ripening‐related proteins is also discussed, as an example of proteomic application in fruit science.  相似文献   

2.
An enormous amount of research effort has been devoted to biomarker discovery and validation. With the completion of the human genome, proteomics is now playing an increasing role in this search for new and better biomarkers. Here, what leads to successful biomarker development is reviewed and how these features may be applied in the context of proteomic biomarker research is considered. The “fit‐for‐purpose” approach to biomarker development suggests that untargeted proteomic approaches may be better suited for early stages of biomarker discovery, while targeted approaches are preferred for validation and implementation. A systematic screening of published biomarker articles using MS‐based proteomics reveals that while both targeted and untargeted technologies are used in proteomic biomarker development, most researchers do not combine these approaches. i) The reasons for this discrepancy, (ii) how proteomic technologies can overcome technical challenges that seem to limit their translation into the clinic, and (iii) how MS can improve, complement, or replace existing clinically important assays in the future are discussed.  相似文献   

3.
Proteomic profiling of pancreatic cancer for biomarker discovery   总被引:15,自引:0,他引:15  
Pancreatic cancer is a uniformly lethal disease that is difficult to diagnose at early stage and even more difficult to cure. In recent years, there has been a substantial interest in applying proteomics technologies to identify protein biomarkers for early detection of cancer. Quantitative proteomic profiling of body fluids, tissues, or other biological samples to identify differentially expressed proteins represents a very promising approach for improving the outcome of this disease. Proteins associated with pancreatic cancer identified through proteomic profiling technologies could be useful as biomarkers for the early diagnosis, therapeutic targets, and disease response markers. In this article, we discuss recent progress and challenges for applying quantitative proteomics technologies for biomarker discovery in pancreatic cancer.  相似文献   

4.
Nanjo Y  Nouri MZ  Komatsu S 《Phytochemistry》2011,72(10):1263-1272
Quantitative proteomics is one of the analytical approaches used to clarify crop responses to stress conditions. Recent remarkable advances in proteomics technologies allow for the identification of a wider range of proteins than was previously possible. Current proteomic methods fall into roughly two categories: gel-based quantification methods, including conventional two-dimensional gel electrophoresis and two-dimensional fluorescence difference gel electrophoresis, and MS-based quantification methods consists of label-based and label-free protein quantification approaches. Although MS-based quantification methods have become mainstream in recent years, gel-based quantification methods are still useful for proteomic analyses. Previous studies examining crop responses to stress conditions reveal that each method has both advantages and disadvantages in regard to protein quantification in comparative proteomic analyses. Furthermore, one proteomics approach cannot be fully substituted by another technique. In this review, we discuss and highlight the basis and applications of quantitative proteomic analysis approaches in crop seedlings in response to flooding and osmotic stress as two environmental stresses.  相似文献   

5.
6.
7.
The emergence of shotgun proteomics has facilitated the numerous biological discoveries made by proteomic studies. However, comprehensive proteomic analysis remains challenging and shotgun proteomics is a continually changing field. This review details the recent developments in shotgun proteomics and describes emerging technologies that will influence shotgun proteomics going forward. In addition, proteomic studies of integral membrane proteins remain challenging due to the hydrophobic nature in integral membrane proteins and their general low abundance levels. However, there have been many strategies developed for enriching, isolating and separating membrane proteins for proteomic analysis that have moved this field forward. In summary, while shotgun proteomics is a widely used and mature technology, the continued pace of improvements in mass spectrometry and proteomic technology and methods indicate that future studies will have an even greater impact on biological discovery.  相似文献   

8.
Although proteomics has been exploited in a wide range of diseases for identification of biomarkers and pathophysiological mechanisms, there are still biomedical disciplines such as otology where proteomics platforms are underused due to technical challenges and/or complex features of the disease. Thus, in the past few years, healthcare and scientific agencies have advocated the development and adoption of proteomic technologies in otological research. However, few studies have been conducted and limited literature is available in this area. Here, we present the state of the art of proteomics in otology, discussing the substantial evidence from recent experimental models and clinical studies in inner-ear conditions. We also delineate a series of critical issues including minute size of the inner ear, delicacy and poor accessibility of tissue that researchers face while undertaking otology proteomics research. Furthermore, we provide perspective to enhance the impact and lead to the clinical implementation of these proteomics-based strategies.  相似文献   

9.
Oncoproteomics is the application of proteomics technologies in oncology. Functional proteomics is a promising technique for the rational identification of biomarkers and novel therapeutic targets for cancers. Recent progress in proteomics has opened new avenues for tumor-associated biomarker discovery. With the advent of new and improved proteomics technologies, such as the development of quantitative proteomic methods, high-resolution, -speed and -sensitivity mass spectrometry and protein arrays, as well as advanced bioinformatics for data handling and interpretation, it is now possible to discover biomarkers that can reliably and accurately predict outcomes during cancer management and treatment. However, there are several difficulties in the study of proteins/peptides that are not inherent in the study of nucleic acids. New challenges arise in large-scale proteomic profiling when dealing with complex biological mixtures. Nevertheless, oncoproteomics offers great promise for unveiling the complex molecular events of tumorigenesis, as well as those that control clinically important tumor behaviors, such as metastasis, invasion and resistance to therapy. In this review, the development and advancement of oncoproteomics technologies for cancer research in recent years are expounded.  相似文献   

10.
Proteomic analysis of striated muscle   总被引:1,自引:0,他引:1  
The techniques collectively known as proteomics are useful for characterizing the protein phenotype of a particular tissue or cell as well as quantitatively identifying differences in the levels of individual proteins following modulation of a tissue or cell. In the area of striated muscle research, proteomics has been a useful tool for identifying qualitative and quantitative changes in the striated muscle protein phenotype resulting from either disease or physiological modulation. Proteomics is useful for these investigations because many of the changes in the striated muscle phenotype resulting from either disease or changes in physiological state are qualitative and not quantitative changes. For example, modification of striated muscle proteins by phosphorylation and proteolytic cleavage are readily observed using proteomic technologies while these changes would not be identified using genomic technology. In this review, I will discuss the application of proteomic technology to striated muscle research, research designed to identify key protein changes that are either causal for or markers of a striated muscle disease or physiological condition.  相似文献   

11.
Cells are highly responsive to their environment. One of the main strategies used by cells in signal transduction is protein phosphorylation, a reversible modification that regulates numerous biological processes. Misregulation of phosphorylation-mediated processes is often implicated in many human diseases and cancers. A global and quantitative analysis of protein phosphorylation provides a powerful new approach and has the potential to reveal new insights in signaling pathways. Recent technological advances in high resolution mass spectrometers and multidimensional liquid chromatography, combined with the use of stable isotope labeling of proteins, have led to the application of quantitative phosphoproteomics to study in vivo signal transduction events on a proteome-wide scale. Here we review recent advancements in quantitative phosphoproteomic technologies, discuss their potentials and identify areas for future development. A key objective of proteomic technology is its application to addressing biological questions. We will therefore describe how current quantitative phosphoproteomic technology can be used to study the molecular basis of phosphorylation events in the DNA damage response.Key words: proteomics, mass spectrometry, DNA damage response, phosphorylation, HILIC, SILAC  相似文献   

12.
Oncoproteomics is the application of proteomics technologies in oncology. Functional proteomics is a promising technique for the rational identification of biomarkers and novel therapeutic targets for cancers. Recent progress in proteomics has opened new avenues for tumor-associated biomarker discovery. With the advent of new and improved proteomics technologies, such as the development of quantitative proteomic methods, high-resolution, -speed and -sensitivity mass spectrometry and protein arrays, as well as advanced bioinformatics for data handling and interpretation, it is now possible to discover biomarkers that can reliably and accurately predict outcomes during cancer management and treatment. However, there are several difficulties in the study of proteins/peptides that are not inherent in the study of nucleic acids. New challenges arise in large-scale proteomic profiling when dealing with complex biological mixtures. Nevertheless, oncoproteomics offers great promise for unveiling the complex molecular events of tumorigenesis, as well as those that control clinically important tumor behaviors, such as metastasis, invasion and resistance to therapy. In this review, the development and advancement of oncoproteomics technologies for cancer research in recent years are expounded.  相似文献   

13.
In spite of the rapid advances in the development of the new proteomic technologies, there are, to date, relatively fewer studies aiming to explore the neuronal proteome. One of the reasons is the complexity of the brain, which presents high cellular heterogeneity and a unique subcellular compartmentalization. Therefore, tissue fractionation of the brain to enrich proteins of interest will reduce the complexity of the proteomics approach leading to the production of manageable and meaningful results. In this review, general considerations and strategies of proteomics, the advantages and challenges to exploring the neuronal proteome are described and summarized. In addition, this article presents an overview of recent advances of proteomic technologies and shows that proteomics can serve as a valuable tool to globally explore the changes in brain proteome during various disease states. Understanding the molecular basis of brain function will be extremely useful in identifying novel targets for the treatment of brain diseases.  相似文献   

14.
植物蛋白质组学研究进展   总被引:39,自引:0,他引:39       下载免费PDF全文
 蛋白质组学是后基因组时代功能基因组学研究的新兴学科和热点领域。该文简要介绍了蛋白质组学产生的科学背景、研究方法和研究内容。蛋白质组学研究方法主要有双向聚丙烯酰胺凝胶电泳(2D-PAGE)、质谱(Mass-spectrometric)技术、蛋白质芯片(Protein chips)技术、酵母双杂交系统(Yeast two-hybrid system)、植物蛋白质组数据库等。其应用的范围包括植物群体遗传学、在个体水平上植物对生物和非生物环境的适应机制、植物的发育和组织器官的分化过程,以及不同亚细胞结构在生理生态过程中的作用等诸多方面。同时对植物蛋白质组学的发展前景进行了展望。  相似文献   

15.
快速发展的亚细胞蛋白质组学   总被引:4,自引:1,他引:3  
亚细胞蛋白质组是蛋白质组学领域中的一支新生力量 ,已成为蛋白质组学新的主流方向 ,通过多种策略和技术方法 ,一些重要的亚细胞结构的蛋白质组不断的得到分析 ,到目前为止 ,几乎所有亚细胞结构的蛋白质组学研究都有报道 ,而且已经深入到亚细胞器和复合体水平 ;另外 ,不仅局限于对亚细胞结构的蛋白组成进行简单分析 ,而且更注重功能性分析 ,将定量技术和差异分析引入亚细胞蛋白质组学 ,来观察此亚细胞结构的蛋白质组在某些生理或病理条件下的变化 ,这已经成为亚细胞蛋白质组学新的发展方向 .亚细胞蛋白质组学最大的困难在于怎样确认鉴定出来蛋白质的定位 ,是在提取过程中的污染还是真正在此亚细胞结构中有定位 ?这将是亚细胞蛋白质组学需要努力解决的挑战 .文章全面介绍了亚细胞蛋白质组学的最新研究进展 ,阐述了亚细胞蛋白质组学面临的挑战 ,并对亚细胞蛋白质组学的发展方向作了展望 .  相似文献   

16.
The high-throughput identification and accurate quantification of proteins are essential components of proteomic strategies for studying cellular functions and processes. Techniques that are largely based on stable isotope protein or peptide labeling and automated tandem mass spectrometry are increasingly being applied in quantitative proteomic studies. Over the past year, significant progress has been made toward improving and diversifying these technologies with respect to the methods for stable isotope labeling, process automation and data processing and analysis. Advances in stable isotope protein labeling and recent biological studies that used stable isotope based quantitative proteomics techniques are reviewed.  相似文献   

17.
田世平 《植物学报》2013,48(5):481-488
成熟和衰老是果实生命周期中的两个重要阶段, 直接影响果实的品质保持及采后寿命。果实的成熟、衰老是一个复杂的生理过程, 受诸多内源因子的调控和外源因素的影响。该文重点综述近年来果实成熟、衰老分子机制方面的研究进展, 以及外源信号分子对果实成熟和衰老的调控作用。  相似文献   

18.
Platelets are the fundamental players in primary hemostasis, but are also involved in several pathological conditions. The remarkable advances in proteomic methodologies have allowed a better understanding of the basic physiological pathways underlying platelet biology. In addition, recent platelet proteomics focused on disease conditions, helping to elucidate the molecular mechanisms of complex and/or unknown human disorders and to find novel biomarkers for early diagnosis and drug targets. The most common and innovative proteomic techniques, both gel-based and gel-free, used in platelet proteomics will be reviewed here. A particular focus will be given to studies that used a subproteomic strategy to analyze specific platelet conditions (resting or activated), compartments (membrane, granules and microparticles) or fractions (phosphoproteome or glycoproteome). The thousands of platelet proteins and interactions discovered so far by these different powerful proteomic approaches represent a precious source of information for both basic science and clinical applications in the field of platelet biology.  相似文献   

19.
Matros A  Kaspar S  Witzel K  Mock HP 《Phytochemistry》2011,72(10):963-974
Recent innovations in liquid chromatography-mass spectrometry (LC-MS)-based methods have facilitated quantitative and functional proteomic analyses of large numbers of proteins derived from complex samples without any need for protein or peptide labelling. Regardless of its great potential, the application of these proteomics techniques to plant science started only recently. Here we present an overview of label-free quantitative proteomics features and their employment for analysing plants. Recent methods used for quantitative protein analyses by MS techniques are summarized and major challenges associated with label-free LC-MS-based approaches, including sample preparation, peptide separation, quantification and kinetic studies, are discussed. Database search algorithms and specific aspects regarding protein identification of non-sequenced organisms are also addressed. So far, label-free LC-MS in plant science has been used to establish cellular or subcellular proteome maps, characterize plant-pathogen interactions or stress defence reactions, and for profiling protein patterns during developmental processes. Improvements in both, analytical platforms (separation technology and bioinformatics/statistical analysis) and high throughput nucleotide sequencing technologies will enhance the power of this method.  相似文献   

20.
The genome sequence is the “blue-print of life,” but proteomics provides the link to the actual physiology of living cells. Because of their low complexity bacteria are excellent model systems to identify the entire protein assembly of a living organism. Here we show that the majority of proteins expressed in growing and non-growing cells of the human pathogen Staphylococcus aureus can be identified and even quantified by a metabolic labeling proteomic approach. S. aureus has been selected as model for this proteomic study, because it poses a major risk to our health care system by combining high pathogenicity with an increasing frequency of multiple antibiotic resistance, thus requiring the development of new anti-staphylococcal therapy strategies. Since such strategies will likely have to target extracellular and surface-exposed virulence factors as well as staphylococcal survival and adaptation capabilities, we decided to combine four subproteomic fractions: cytosolic proteins, membrane-bound proteins, cell surface-associated and extracellular proteins, to comprehensively cover the entire proteome of S. aureus. This quantitative proteomics approach integrating data ranging from gene expression to subcellular localization in growing and non-growing cells is a proof of principle for whole-cell physiological proteomics that can now be extended to address physiological questions in infection-relevant settings. Importantly, with more than 1700 identified proteins (and 1450 quantified proteins) corresponding to a coverage of about three-quarters of the expressed proteins, our model study represents the most comprehensive quantification of a bacterial proteome reported to date. It thus paves the way towards a new level in understanding of cell physiology and pathophysiology of S. aureus and related pathogenic bacteria, opening new avenues for infection-related research on this crucial pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号