首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 841 毫秒
1.
We tested toxins of Bacillus thuringiensis against larvae from susceptible, Cry1C-resistant, and Cry1A-resistant strains of diamondback moth (Plutella xylostella). The Cry1C-resistant strain, which was derived from a field population that had evolved resistance to B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai, was selected repeatedly with Cry1C in the laboratory. The Cry1C-resistant strain had strong cross-resistance to Cry1Ab, Cry1Ac, and Cry1F, low to moderate cross-resistance to Cry1Aa and Cry9Ca, and no cross-resistance to Cry1Bb, Cry1Ja, and Cry2A. Resistance to Cry1C declined when selection was relaxed. Together with previously reported data, the new data on the cross-resistance of a Cry1C-resistant strain reported here suggest that resistance to Cry1A and Cry1C toxins confers little or no cross-resistance to Cry1Bb, Cry2Aa, or Cry9Ca. Therefore, these toxins might be useful in rotations or combinations with Cry1A and Cry1C toxins. Cry9Ca was much more potent than Cry1Bb or Cry2Aa and thus might be especially useful against diamondback moth.  相似文献   

2.
A population (SERD3) of the diamondback moth (Plutella xylostella L.) with field-evolved resistance to Bacillus thuringiensis subsp. kurstaki HD-1 (Dipel) and B. thuringiensis subsp. aizawai (Florbac) was collected. Laboratory-based selection of two subpopulations of SERD3 with B. thuringiensis subsp. kurstaki (Btk-Sel) or B. thuringiensis subsp. aizawai (Bta-Sel) increased resistance to the selecting agent with little apparent cross-resistance. This result suggested the presence of independent resistance mechanisms. Reversal of resistance to B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai was observed in the unselected SERD3 subpopulation. Binding to midgut brush border membrane vesicles was examined for insecticidal crystal proteins specific to B. thuringiensis subsp. kurstaki (Cry1Ac), B. thuringiensis subsp. aizawai (Cry1Ca), or both (Cry1Aa and Cry1Ab). In the unselected SERD3 subpopulation (ca. 50- and 30-fold resistance to B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai), specific binding of Cry1Aa, Cry1Ac, and Cry1Ca was similar to that for a susceptible population (ROTH), but binding of Cry1Ab was minimal. The Btk-Sel (ca. 600-and 60-fold resistance to B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai) and Bta-Sel (ca. 80-and 300-fold resistance to B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai) subpopulations also showed reduced binding to Cry1Ab. Binding of Cry1Ca was not affected in the Bta-Sel subpopulation. The results suggest that reduced binding of Cry1Ab can partly explain resistance to B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai. However, the binding of Cry1Aa, Cry1Ac, and Cry1Ca and the lack of cross-resistance between the Btk-Sel and Bta-Sel subpopulations also suggest that additional resistance mechanisms are present.  相似文献   

3.
Two strains of the diamondback moth, Plutella xylostella (L.), were selected using Cry1C protoxin and transgenic broccoli plants expressing a Cry1C toxin of Bacillus thuringiensis (Bt). Both strains were resistant to Cry1C but had different cross-resistance patterns. We used 12 Bt protoxins for cross-resistance tests, including Cry1Aa, Cry1Ab, Cry1Ac, Cry1Bb, Cry1C, Cry1D, Cry1E, Cry1F, Cry1J, Cry2Ab, Cry9Aa, and Cry9C. Compared with the unselected sister strain (BCS), the resistance ratio (BR) of one strain (BCS-Cry1C-1) to the Cry1C protoxin was 1,090-fold with high level of cross-resistance to Cry1Aa, Cry1Ab, Cry1Ac, Cry1F, and Cry1J (RR > 390-fold). The cross-resistance to Cry1A, Cry1F, and Cry1J in this strain was probably related to the Cry1A resistance gene(s) that came from the initial field population and was caused by intensive sprayings of Bt products containing Cry1A protoxins. The neonates of this strain can survive on transgenic broccoli plants expressing either Cry1Ac or Cry1C toxins. The other strain (BCS-Cry1C-2) was highly resistant to Cry1C but not cross-resistant to other Bt protoxins. The neonates of this strain can survive on transgenic broccoli expressing Cry1C toxin but not Cry1Ac toxin. The gene(s) conferring resistance to Cry1C segregates independently from Cry1Ac resistance in these strains. The toxicity of Cry1E and Cry2Ab protoxins was low to all of the three strains. The overall progress of all work has resulted in a unique model system to test the stacked genes strategy for resistance management of Bt transgenic crops.  相似文献   

4.
Insecticidal crystal proteins from Bacillus thuringiensis in sprays and transgenic crops are extremely useful for environmentally sound pest management, but their long-term efficacy is threatened by evolution of resistance by target pests. The diamondback moth (Plutella xylostella) is the first insect to evolve resistance to B. thuringiensis in open-field populations. The only known mechanism of resistance to B. thuringiensis in the diamondback moth is reduced binding of toxin to midgut binding sites. In the present work we analyzed competitive binding of B. thuringiensis toxins Cry1Aa, Cry1Ab, Cry1Ac, and Cry1F to brush border membrane vesicles from larval midguts in a susceptible strain and in resistant strains from the Philippines, Hawaii, and Pennsylvania. Based on the results, we propose a model for binding of B. thuringiensis crystal proteins in susceptible larvae with two binding sites for Cry1Aa, one of which is shared with Cry1Ab, Cry1Ac, and Cry1F. Our results show that the common binding site is altered in each of the three resistant strains. In the strain from the Philippines, the alteration reduced binding of Cry1Ab but did not affect binding of the other crystal proteins. In the resistant strains from Hawaii and Pennsylvania, the alteration affected binding of Cry1Aa, Cry1Ab, Cry1Ac, and Cry1F. Previously reported evidence that a single mutation can confer resistance to Cry1Ab, Cry1Ac, and Cry1F corresponds to expectations based on the binding model. However, the following two other observations do not: the mutation in the Philippines strain affected binding of only Cry1Ab, and one mutation was sufficient for resistance to Cry1Aa. The imperfect correspondence between the model and observations suggests that reduced binding is not the only mechanism of resistance in the diamondback moth and that some, but not all, patterns of resistance and cross-resistance can be predicted correctly from the results of competitive binding analyses of susceptible strains.  相似文献   

5.
Culex quinquefasciatus mosquitoes with high levels of resistance to single or multiple toxins from Bacillus thuringiensis subsp. israelensis were tested for cross-resistance to the Bacillus thuringiensis subsp. jegathesan polypeptide Cry19A. No cross-resistance was detected in mosquitoes that had been selected with the Cry11A, Cry4A and Cry4B, or Cry4A, Cry4B, Cry11A, and CytA toxins. A low but statistically significant level of cross-resistance, three to fourfold, was detected in the colony selected with Cry4A, Cry4B, and Cry11A. This cross-resistance was similar to that previously detected with B. thuringiensis subsp. jegathesan in the same colony. These data help explain the toxicity of B. thuringiensis subsp. jegathesan against the resistant colonies and indicate that the Cry19A polypeptide might be useful in managing resistance and/or as a component of synthetic combinations of mosquitocidal toxins.  相似文献   

6.
Two strains of pink bollworm (Pectinophora gossypiella) selected in the laboratory for resistance to Bacillus thuringiensis toxin Cry1Ac had substantial cross-resistance to Cry1Aa and Cry1Ab but not to Cry1Bb, Cry1Ca, Cry1Da, Cry1Ea, Cry1Ja, Cry2Aa, Cry9Ca, H04, or H205. The narrow spectrum of resistance and the cross-resistance to activated toxin Cry1Ab suggest that reduced binding of toxin to midgut target sites could be an important mechanism of resistance.  相似文献   

7.
So far, the only insect that has evolved resistance in the field to Bacillus thuringiensis toxins is the diamondback moth (Plutella xylostella). Documentation and analysis of resistant strains rely on comparisons with laboratory strains that have not been exposed to B. thuringiensis toxins. Previously published reports show considerable variation among laboratories in responses of unselected laboratory strains to B. thuringiensis toxins. Because different laboratories have used different unselected strains, such variation could be caused by differences in bioassay methods among laboratories, genetic differences among unselected strains, or both. Here we tested three unselected strains against five B. thuringiensis toxins (Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ca, and Cry1Da) using two bioassay methods. Tests of the LAB-V strain from The Netherlands in different laboratories using different bioassay methods yielded only minor differences in results. In contrast, side-by-side comparisons revealed major genetic differences in susceptibility between strains. Compared with the LAB-V strain, the ROTH strain from England was 17- to 170-fold more susceptible to Cry1Aa and Cry1Ac, respectively, whereas the LAB-PS strain from Hawaii was 8-fold more susceptible to Cry1Ab and 13-fold more susceptible to Cry1Da and did not differ significantly from the LAB-V strain in response to Cry1Aa, Cry1Ac, or Cry1Ca. The relative potencies of toxins were similar among LAB-V, ROTH, and LAB-PS, with Cry1Ab and Cry1Ac being most toxic and Cry1Da being least toxic. Therefore, before choosing a standard reference strain upon which to base comparisons, it is highly advisable to perform an analysis of variation in susceptibility among field and laboratory populations.  相似文献   

8.
Laboratory selection increased resistance to the Bacillus thuringiensis toxin Cry1C in a strain of diamondback moth (Plutella xylostella). The selected strain was derived from a field population that had evolved high levels of resistance to Bacillus thuringiensis subsp. kurstaki and moderate resistance to Cry1C. Relative to the responses of a susceptible strain of diamondback moth, the resistance to Cry1C of the selected strain increased to 62-fold after six generations of selection. The realized heritability of resistance was 0.10. Analysis of F(inf1) hybrid progeny from reciprocal crosses between the selected strain and a susceptible strain showed that resistance to Cry1C was autosomally inherited. The dominance of resistance to Cry1C depended on the concentration; inheritance was increasingly dominant as the concentration decreased. Responses of progeny from single-pair families showed that resistance to Cry1C and resistance to Cry1Ab were inherited independently, which enhances opportunities for managing resistance. However, compared with projections based on previously reported recessive inheritance of resistance to Cry1A toxins, the potentially dominant inheritance of resistance to Cry1C observed here could accelerate evolution of resistance.  相似文献   

9.
We tested Cyt1Aa, a cytolytic endotoxin of Bacillus thuringiensis, against susceptible and Cry1A-resistant larvae of two lepidopteran pests, diamondback moth (Plutella xylostella) and pink bollworm (Pectinophora gossypiella). Unlike previous results obtained with mosquito and beetle larvae, Cyt1Aa alone or in combination with Cry toxins was not highly toxic to the lepidopteran larvae that we examined.  相似文献   

10.
Bacillus thuringiensis toxins act by binding to specific target sites in the insect midgut epithelial membrane. The best-known mechanism of resistance to B. thuringiensis toxins is reduced binding to target sites. Because alteration of a binding site shared by several toxins may cause resistance to all of them, knowledge of which toxins share binding sites is useful for predicting cross-resistance. Conversely, cross-resistance among toxins suggests that the toxins share a binding site. At least two strains of diamondback moth (Plutella xylostella) with resistance to Cry1A toxins and reduced binding of Cry1A toxins have strong cross-resistance to Cry1Ja. Thus, we hypothesized that Cry1Ja shares binding sites with Cry1A toxins. We tested this hypothesis in six moth and butterfly species, each from a different family: Cacyreus marshalli (Lycaenidae), Lobesia botrana (Tortricidae), Manduca sexta (Sphingidae), Pectinophora gossypiella (Gelechiidae), P. xylostella (Plutellidae), and Spodoptera exigua (Noctuidae). Although the extent of competition varied among species, experiments with biotinylated Cry1Ja and radiolabeled Cry1Ac showed that Cry1Ja and Cry1Ac competed for binding sites in all six species. A recent report also indicates shared binding sites for Cry1Ja and Cry1A toxins in Heliothis virescens (Noctuidae). Thus, shared binding sites for Cry1Ja and Cry1A occur in all lepidopteran species tested so far.  相似文献   

11.
The long-term usefulness of Bacillus thuringiensis Cry toxins, either in sprays or in transgenic crops, may be compromised by the evolution of resistance in target insects. Managing the evolution of resistance to B. thuringiensis toxins requires extensive knowledge about the mechanisms, genetics, and ecology of resistance genes. To date, laboratory-selected populations have provided information on the diverse genetics and mechanisms of resistance to B. thuringiensis, highly resistant field populations being rare. However, the selection pressures on field and laboratory populations are very different and may produce resistance genes with distinct characteristics. In order to better understand the genetics, biochemical mechanisms, and ecology of field-evolved resistance, a diamondback moth (Plutella xylostella) field population (Karak) which had been exposed to intensive spraying with B. thuringiensis subsp. kurstaki was collected from Malaysia. We detected a very high level of resistance to Cry1Ac; high levels of resistance to B. thuringiensis subsp. kurstaki Cry1Aa, Cry1Ab, and Cry1Fa; and a moderate level of resistance to Cry1Ca. The toxicity of Cry1Ja to the Karak population was not significantly different from that to a standard laboratory population (LAB-UK). Notable features of the Karak population were that field-selected resistance to B. thuringiensis subsp. kurstaki did not decline at all in unselected populations over 11 generations in laboratory microcosm experiments and that resistance to Cry1Ac declined only threefold over the same period. This finding may be due to a lack of fitness costs expressed by resistance strains, since such costs can be environmentally dependent and may not occur under ordinary laboratory culture conditions. Alternatively, resistance in the Karak population may have been near fixation, leading to a very slow increase in heterozygosity. Reciprocal genetic crosses between Karak and LAB-UK populations indicated that resistance was autosomal and recessive. At the highest dose of Cry1Ac tested, resistance was completely recessive, while at the lowest dose, it was incompletely dominant. A direct test of monogenic inheritance based on a backcross of F1 progeny with the Karak population suggested that resistance to Cry1Ac was controlled by a single locus. Binding studies with 125I-labeled Cry1Ab and Cry1Ac revealed greatly reduced binding to brush border membrane vesicles prepared from this field population.  相似文献   

12.
Insecticidal crystal proteins from Bacillus thuringiensis in sprays and transgenic crops are extremely useful for environmentally sound pest management, but their long-term efficacy is threatened by evolution of resistance by target pests. The diamondback moth (Plutella xylostella) is the first insect to evolve resistance to B. thuringiensis in open-field populations. The only known mechanism of resistance to B. thuringiensis in the diamondback moth is reduced binding of toxin to midgut binding sites. In the present work we analyzed competitive binding of B. thuringiensis toxins Cry1Aa, Cry1Ab, Cry1Ac, and Cry1F to brush border membrane vesicles from larval midguts in a susceptible strain and in resistant strains from the Philippines, Hawaii, and Pennsylvania. Based on the results, we propose a model for binding of B. thuringiensis crystal proteins in susceptible larvae with two binding sites for Cry1Aa, one of which is shared with Cry1Ab, Cry1Ac, and Cry1F. Our results show that the common binding site is altered in each of the three resistant strains. In the strain from the Philippines, the alteration reduced binding of Cry1Ab but did not affect binding of the other crystal proteins. In the resistant strains from Hawaii and Pennsylvania, the alteration affected binding of Cry1Aa, Cry1Ab, Cry1Ac, and Cry1F. Previously reported evidence that a single mutation can confer resistance to Cry1Ab, Cry1Ac, and Cry1F corresponds to expectations based on the binding model. However, the following two other observations do not: the mutation in the Philippines strain affected binding of only Cry1Ab, and one mutation was sufficient for resistance to Cry1Aa. The imperfect correspondence between the model and observations suggests that reduced binding is not the only mechanism of resistance in the diamondback moth and that some, but not all, patterns of resistance and cross-resistance can be predicted correctly from the results of competitive binding analyses of susceptible strains.  相似文献   

13.
Molecular cloning and characterization of a novel cry gene, cry32Aa, of Bacillus thuringiensis subsp. yunnanensis was carried out. The Cry32Aa protein was predicted to have a molecular mass of 139.2 kDa and was found to have an unusual 42-amino-acid-long tail at the C terminus. The cry32Aa gene was localized on the 103-MDa plasmid of the organism. Bioassays showed no toxicity against several moths and mosquitoes. However, it exhibited weak toxicity against larvae of the diamondback moth, Plutella xylostella.  相似文献   

14.
Two strains of pink bollworm (Pectinophora gossypiella) selected in the laboratory for resistance to Bacillus thuringiensis toxin Cry1Ac had substantial cross-resistance to Cry1Aa and Cry1Ab but not to Cry1Bb, Cry1Ca, Cry1Da, Cry1Ea, Cry1Ja, Cry2Aa, Cry9Ca, H04, or H205. The narrow spectrum of resistance and the cross-resistance to activated toxin Cry1Ab suggest that reduced binding of toxin to midgut target sites could be an important mechanism of resistance.  相似文献   

15.
Selection with Bacillus thuringiensis subsp. kurstaki, which contains CryIA and CryII toxins, caused a >200-fold cross-resistance to CryIF toxin from B. thuringiensis subsp. aizawai in the diamondback moth, Plutella xylostella. CryIE was not toxic, but CryIB was highly toxic to both selected and unselected larvae. The results show that extremely high levels of cross-resistance can be conferred across classes of CryI toxins of B. thuringiensis.  相似文献   

16.
Insecticides based on Bacillus thuringiensis subsp. israelensis have been used for mosquito and blackfly control for more than 20 years, yet no resistance to this bacterium has been reported. Moreover, in contrast to B. thuringiensis subspecies toxic to coleopteran or lepidopteran larvae, only low levels of resistance to B. thuringiensis subsp. israelensis have been obtained in laboratory experiments where mosquito larvae were placed under heavy selection pressure for more than 30 generations. Selection of Culex quinquefasciatus with mutants of B. thuringiensis subsp. israelensis that contained different combinations of its Cry proteins and Cyt1Aa suggested that the latter protein delayed resistance. This hypothesis, however, has not been tested experimentally. Here we report experiments in which separate C. quinquefasciatus populations were selected for 20 generations to recombinant strains of B. thuringiensis that produced either Cyt1Aa, Cry11Aa, or a 1:3 mixture of these strains. At the end of selection, the resistance ratio was 1,237 in the Cry11Aa-selected population and 242 in the Cyt1Aa-selected population. The resistance ratio, however, was only 8 in the population selected with the 1:3 ratio of Cyt1Aa and Cry11Aa strains. When the resistant mosquito strain developed by selection to the Cyt1Aa-Cry11Aa combination was assayed against Cry11Aa after 48 generations, resistance to this protein was 9.3-fold. This indicates that in the presence of Cyt1Aa, resistance to Cry11Aa evolved, but at a much lower rate than when Cyt1Aa was absent. These results indicate that Cyt1Aa is the principal factor responsible for delaying the evolution and expression of resistance to mosquitocidal Cry proteins.  相似文献   

17.
18.
Evolution of resistance by pests could cut short the success of transgenic plants producing toxins from Bacillus thuringiensis, such as Bt cotton. The most common mechanism of insect resistance to B. thuringiensis is reduced binding of toxins to target sites in the brush border membrane of the larval midgut. We compared toxin binding in resistant and susceptible strains of Pectinophora gossypiella, a major pest of cotton worldwide. Using Cry1Ab and Cry1Ac labeled with (125)I and brush border membrane vesicles (BBMV), competition experiments were performed with unlabeled Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ba, Cry1Ca, Cry1Ja, Cry2Aa, and Cry9Ca. In the susceptible strain, Cry1Aa, Cry1Ab, Cry1Ac, and Cry1Ja bound to a common binding site that was not shared by the other toxins tested. Reciprocal competition experiments with Cry1Ab, Cry1Ac, and Cry1Ja showed that these toxins do not bind to any additional binding sites. In the resistant strain, binding of (125)I-Cry1Ac was not significantly affected; however, (125)I-Cry1Ab did not bind to the BBMV. This result, along with previous data from this strain, shows that the resistance fits the "mode 1" pattern of resistance described previously in Plutella xylostella, Plodia interpunctella, and Heliothis virescens.  相似文献   

19.
So far, the only insect that has evolved resistance in the field to Bacillus thuringiensis toxins is the diamondback moth (Plutella xylostella). Documentation and analysis of resistant strains rely on comparisons with laboratory strains that have not been exposed to B. thuringiensis toxins. Previously published reports show considerable variation among laboratories in responses of unselected laboratory strains to B. thuringiensis toxins. Because different laboratories have used different unselected strains, such variation could be caused by differences in bioassay methods among laboratories, genetic differences among unselected strains, or both. Here we tested three unselected strains against five B. thuringiensis toxins (Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ca, and Cry1Da) using two bioassay methods. Tests of the LAB-V strain from The Netherlands in different laboratories using different bioassay methods yielded only minor differences in results. In contrast, side-by-side comparisons revealed major genetic differences in susceptibility between strains. Compared with the LAB-V strain, the ROTH strain from England was 17- to 170-fold more susceptible to Cry1Aa and Cry1Ac, respectively, whereas the LAB-PS strain from Hawaii was 8-fold more susceptible to Cry1Ab and 13-fold more susceptible to Cry1Da and did not differ significantly from the LAB-V strain in response to Cry1Aa, Cry1Ac, or Cry1Ca. The relative potencies of toxins were similar among LAB-V, ROTH, and LAB-PS, with Cry1Ab and Cry1Ac being most toxic and Cry1Da being least toxic. Therefore, before choosing a standard reference strain upon which to base comparisons, it is highly advisable to perform an analysis of variation in susceptibility among field and laboratory populations.  相似文献   

20.
A laboratory strain (GY) of Helicoverpa armigera (Hubner) was established from surviving larvae collected from transgenic cotton expressing a Bacillus thuringiensis var. kurstaki insecticidal protein (Bt cotton) in Gaoyang County, Hebei Province, People's Republic of China, in 2001. The GYBT strain was derived from the GY strain through 28 generations of selection with activated Cry1Ac delivered by diet surface contamination. When resistance to Cry1Ac in the GYBT strain increased to 564-fold after selection, we detected high levels of cross-resistance to Cry1Aa (103-fold) and Cry1Ab (>46-fold) in the GYBT strain with reference to those in the GY strain. The GYBT strain had a low level of cross-resistance to B. thuringiensis var. kurstaki formulation (Btk) (5-fold) and no cross-resistance to Cry2Aa (1.4-fold). Genetic analysis showed that Cry1Ac resistance in the GYBT strain was controlled by one autosomal and incompletely recessive gene. The cross-resistance pattern and inheritance mode suggest that the Cry1Ac resistance in the GYBT strain of H. armigera belongs to "mode 1," the most common type of lepidopteran resistance to B. thuringiensis toxins. A cadherin gene was cloned and sequenced from both the GY and GYBT strains. Disruption of the cadherin gene by a premature stop codon was associated with a high level of Cry1Ac resistance in H. armigera. Tight linkage between Cry1Ac resistance and the cadherin locus was observed in a backcross analysis. Together with previous evidence found with Heliothis virescens and Pectinophora gossypiella, our results confirmed that the cadherin gene is a preferred target for developing DNA-based monitoring of B. thuringiensis resistance in field populations of lepidopteran pests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号