首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
2.
We have determined X-ray crystal structures with up to 1.5 A resolution of the catalytic domain of death-associated protein kinase (DAPK), the first described member of a novel family of pro-apoptotic and tumor-suppressive serine/threonine kinases. The geometry of the active site was studied in the apo form, in a complex with nonhydrolyzable AMPPnP and in a ternary complex consisting of kinase, AMPPnP and either Mg2+ or Mn2+. The structures revealed a previously undescribed water-mediated stabilization of the interaction between the lysine that is conserved in protein kinases and the beta- and gamma-phosphates of ATP, as well as conformational changes at the active site upon ion binding. Comparison between these structures and nucleotide triphosphate complexes of several other kinases disclosed a number of unique features of the DAPK catalytic domain, among which is a highly ordered basic loop in the N-terminal domain that may participate in enzyme regulation.  相似文献   

3.
Shi S  Chen W  Sun W 《Proteomics》2011,11(24):4712-4725
Many environmental stimuli, including light, biotic and abiotic stress factors, induce changes in cellular Ca(2+) concentrations in plants. Such Ca(2+) signatures are perceived by sensor molecules such as calcineurin B-like (CBL) proteins. AtCBL1, a member of the CBL family which is highly inducible by multiple stress signals, is known to function in the salt stress signal transduction pathway and to positively regulate the plant tolerance to salt. To shed light into the molecular mechanisms of the salt stress response mediated by AtCBL1, a two-dimensional DIGE proteomic approach was applied to identify the differentially expressed proteins in Arabidopsis wild-type and cbl1 null mutant plants in response to salt stress. Seventy-three spots were found altered in expression by least 1.2-fold and 50 proteins were identified by MALDI-TOF/TOF-MS, including some well-known and novel salt-responsive proteins. These proteins function in various processes, such as signal transduction, ROS scavenging, energy production, carbon fixation, metabolism, mRNA processing, protein processing and structural stability. Receptor for activated C kinase 1C (RACK1C, spot 715), a WD40 repeat protein, was up-regulated in the cbl1 null mutant, and two rack1c mutant lines showed decreased tolerance to salt stress, suggesting that RACK1C plays a role in salt stress resistance. In conclusion, our work demonstrated the advantages of the proteomic approach in studies of plant biology and identified candidate proteins in CBL1-mediated salt stress signaling network.  相似文献   

4.
Kim KN  Cheong YH  Gupta R  Luan S 《Plant physiology》2000,124(4):1844-1853
Calcium is a critical component in a number of plant signal transduction pathways. A new family of calcium sensors called calcineurin B-like proteins (AtCBLs) have been recently identified from Arabidopsis. These calcium sensors have been shown to interact with a family of protein kinases (CIPKs). Here we report that each individual member of AtCBL family specifically interacts with a subset of CIPKs and present structural basis for the interaction and for the specificity underlying these interactions. Although the C-terminal region of CIPKs is responsible for interaction with AtCBLs, the N-terminal region of CIPKs is also involved in determining the specificity of such interaction. We have also shown that all three EF-hand motifs in AtCBL members are required for the interaction with CIPKs. Several AtCBL members failed to interact with any of the CIPKs presented in this study, suggesting that these AtCBL members either have other CIPKs as targets or they target distinct proteins other than CIPKs. These results may provide structural basis for the functional specificity of CBL family of calcium sensors and their targets.  相似文献   

5.
Degenerate polymerase chain reaction against conserved kinase catalytic subdomains identified 15 tyrosine and serine-threonine kinases expressed in surgically removed prostatic carcinoma tissues, including six receptor kinases (PDGFBR, IGF1-R, VEGFR2, MET, RYK, and EPH-A1), six non-receptor kinases (ABL, JAK1, JAK2, TYK2, PLK-1, and EMK), and three novel kinases. Several of these kinases are oncogenic, and may function in the development of prostate cancer. One of the novel kinases is a new member of the sterile 20 (STE20) family of serine-threonine kinases which we have called prostate-derived STE20-like kinase (PSK) and characterized functionally. PSK encodes an open reading frame of 3705 nucleotides and contains an N-terminal kinase domain. Immunoprecipitated PSK phosphorylates myelin basic protein and transfected PSK stimulates MKK4 and MKK7 and activates the c-Jun N-terminal kinase mitogen-activated protein kinase pathway. Microinjection of PSK into cells results in localization of PSK to a vesicular compartment and causes a marked reduction in actin stress fibers. In contrast, C-terminally truncated PSK (1-349) did not localize to this compartment or induce a decrease in stress fibers demonstrating a requirement for the C terminus. Kinase-defective PSK (K57A) was unable to reduce stress fibers. PSK is the first member of the STE20 family lacking a Cdc42/Rac binding domain that has been shown to regulate both the c-Jun N-terminal kinase mitogen-activated protein kinase pathway and the actin cytoskeleton.  相似文献   

6.
Protein phosphorylation is one of the major mechanisms by which eukaryotic cells transduce extracellular signals into intracellular responses. Calcium/calmodulin (Ca(2+)/CaM)-dependent protein phosphorylation has been implicated in various cellular processes, yet little is known about Ca(2+)/CaM-dependent protein kinases (CaMKs) in plants. From an Arabidopsis expression library screen using a horseradish peroxidase-conjugated soybean calmodulin isoform (SCaM-1) as a probe, we isolated a full-length cDNA clone that encodes AtCK (Arabidopsis thaliana calcium/calmodulin-dependent protein kinase). The predicted structure of AtCK contains a serine/threonine protein kinase catalytic domain followed by a putative calmodulin-binding domain and a putative Ca(2+)-binding domain. Recombinant AtCK was expressed in E. coli and bound to calmodulin in a Ca(2+)-dependent manner. The ability of CaM to bind to AtCK was confirmed by gel mobility shift and competition assays. AtCK exhibited its highest levels of autophosphorylation in the presence of 3 mM Mn(2+). The phosphorylation of myelin basic protein (MBP) by AtCK was enhanced when AtCK was under the control of calcium-bound CaM, as previously observed for other Ca(2+)/CaM-dependent protein kinases. In contrast to maize and tobacco CCaMKs (calcium and Ca(2+)/CaM-dependent protein kinase), increasing the concentration of calmodulin to more than 3 microgram suppressed the phosphorylation activity of AtCK. Taken together our results indicate that AtCK is a novel Arabidopsis Ca(2+)/CaM-dependent protein kinase which is presumably involved in CaM-mediated signaling.  相似文献   

7.
Serine/threonine kinases in the nervous system.   总被引:2,自引:0,他引:2  
Three principal serine/threonine kinases that catalyze protein phosphorylation in response to second messengers are: cAMP-dependent protein kinase, multifunctional Ca2+/calmodulin-dependent protein kinase, and protein kinase C. Studies are now focusing on the distinct isoforms of these kinases that may subserve specific functions in some systems, and on providing a more molecular understanding of kinase functions. Combined genetic and biochemical approaches are beginning to be used to define unique roles for these kinases.  相似文献   

8.
Insulin receptor was co-purified from human placenta together with insulin-stimulated kinase activity that phosphorylates the insulin receptor on serine residues. By using this 'in vitro' system, the mechanism of activation of the serine kinase by insulin was explored. Peptide 1150, histone, poly(Glu-Tyr), eliminating Mn2+ (Mg2+ only), treatment at 37 degrees C (1 h), N-ethylmaleimide, phosphate, beta-glycerol phosphate and anti-phosphotyrosine antibody all inhibited insulin-receptor tyrosine kinase activity and the ability of insulin to stimulate phosphorylation of the insulin receptor on serine. Additionally, direct stimulation of the receptor tyrosine kinase by vanadate increased serine phosphorylation of the insulin receptor. Insulin-stimulated tyrosine phosphorylation preceded insulin-stimulated serine phosphorylation of the insulin receptor. The activity of the insulin-sensitive receptor serine kinase was not augmented by cyclic AMP, cyclic GMP, Ca2+, Ca2+ + calmodulin, Ca2+ + phosphatidylserine + diolein or spermine, or inhibited appreciably by heparin. Additionally, the serine kinase phosphorylated casein or phosvitin poorly and was active with Mn2+. This indicates that it is distinct from Ca2+, Ca2+/phospholipid, Ca2+/calmodulin, cyclic AMP- and cyclic GMP-dependent protein kinases, casein kinases I and II and insulin-activated ribosomal S6 kinase. Taken together, these data indicate that a novel species of serine kinase catalyses the insulin-dependent phosphorylation of the insulin receptor and that activation of this receptor serine kinase by insulin requires an active insulin-receptor tyrosine kinase.  相似文献   

9.
Oh SI  Park J  Yoon S  Kim Y  Park S  Ryu M  Nam MJ  Ok SH  Kim JK  Shin JS  Kim KN 《Plant physiology》2008,148(4):1883-1896
Calcineurin B-like (CBL) proteins represent a unique family of calcium sensors in plant cells. Sensing the calcium signals elicited by a variety of abiotic stresses, CBLs transmit the information to a group of serine/threonine protein kinases (CBL-interacting protein kinases [CIPKs]), which are currently known as the sole targets of the CBL family. Here, we report that the CBL3 member of this family has a novel interaction partner in addition to the CIPK proteins. Extensive yeast two-hybrid screenings with CBL3 as bait identified an interesting Arabidopsis (Arabidopsis thaliana) cDNA clone (named AtMTAN, for 5'-methylthioadenosine nucleosidase), which encodes a polypeptide similar to EcMTAN from Escherichia coli. Deletion analyses showed that CBL3 utilizes the different structural modules to interact with its distinct target proteins, CIPKs and AtMTAN. In vitro and in vivo analyses verified that CBL3 and AtMTAN physically associate only in the presence of Ca(2+). In addition, we empirically demonstrated that the AtMTAN protein indeed possesses the MTAN activity, which can be inhibited specifically by Ca(2+)-bound CBL3. Overall, these findings suggest that the CBL family members can relay the calcium signals in more diverse ways than previously thought. We also discuss a possible mechanism by which the CBL3-mediated calcium signaling regulates the biosynthesis of ethylene and polyamines, which are involved in plant growth and development as well as various stress responses.  相似文献   

10.
Hoyos ME  Zhang S 《Plant physiology》2000,122(4):1355-1364
Reversible protein phosphorylation/dephosphorylation plays important roles in signaling the plant adaptive responses to salinity/drought stresses. Two protein kinases with molecular masses of 48 and 40 kD are activated in tobacco cells exposed to NaCl. The 48-kD protein kinase was identified as SIPK (salicylic acid-induced protein kinase), a member of the tobacco MAPK (mitogen-activated protein kinase) family that is activated by various other stress stimuli. The activation of the 40-kD protein kinase is rapid and dose-dependent. Other osmolytes such as Pro and sorbitol activate these two kinases with similar kinetics. The activation of 40-kD protein kinase is specific for hyperosmotic stress, as hypotonic stress does not activate it. Therefore, this 40-kD kinase was named HOSAK (high osmotic stress-activated kinase). HOSAK is a Ca(2+)-independent kinase and uses myelin basic protein (MBP) and histone equally well as substrates. The kinase inhibitor K252a rapidly activates HOSAK in tobacco cells, implicating a dephosphorylation mechanism for HOSAK activation. Activation of both SIPK and HOSAK by high osmotic stress is Ca(2+) and abscisic acid (ABA) independent. Furthermore, mutation in SOS3 locus does not affect the activation of either kinase in Arabidopsis seedlings. These results suggest that SIPK and 40-kD HOSAK are two new components in a Ca(2+)- and ABA-independent pathway that may lead to plant adaptation to hyperosmotic stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号