首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reconstructing paleoecological patterns associated with hominin taxa, such as Australopithecus afarensis, is important for understanding possible evolutionary mechanisms involved in extinction and speciation events. It is critical to identify local, regional, or pan-African causal factors because patterns at these different levels may affect separate populations of the same species of hominin in unique ways. Habitat reconstructions of 12 submembers of the Hadar and Busidima formations (approximately 3.8-2.35 Ma) are presented here along with faunal differences in these submembers through time. Habitats with medium density tree and bush cover dominated the landscape through much of the earlier time period in the Hadar Formation. The lowermost Sidi Hakoma Member is the most closed habitat. The Denen Dora Member shows the influence of frequent floodplain edaphic grasslands with high abundances of reducin bovids. There is an influx of ungulates in the Kada Hadar Member (approximately 3.2--approximately 2.96 Ma) that indicates a more arid habitat populated by mammals that were recovered from earlier deposits further south in Ethiopia and Kenya. In the younger deposits from the Busidima Formation at Hadar, the landscape was open wooded grassland with some floodplain environments. The fossil assemblages from the Busidima Formation show a substantial species turnover. Although high numbers of A. afarensis specimens are associated with the lower Sidi Hakoma Member, they clearly inhabited a variety of habitats throughout the entire Hadar Formation. Australopithecus afarensis from Laetoli through Hadar times appears to have been a eurytopic species.  相似文献   

2.
Early Miocene fossils from Rusinga Island, Kenya, provide some of the best evidence for catarrhine evolution and diversification, and, together with more than eighty-five other mammalian species, form an important comparative reference for understanding faunal succession in East Africa. While there is consensus over the stratigraphic position of most of Rusinga's volcaniclastic deposits, the lacustrine Kulu Formation has been placed in various parts of the geological sequence by different researchers. To resolve this discrepancy, we conducted detailed geological analyses which indicate that the Kulu Formation was formed in the Early Miocene during a period of volcanic inactivity and subsidence following the early, mainly explosive hyper-alkaline phase of the Kisingiri complex and prior to the final eruptions of nephelinitic lavas. The underlying Hiwegi and older formations were locally deformed and deeply eroded before sedimentation began in the Kulu basin, so that the Kulu sediments may be significantly younger than the 17.8 Ma Hiwegi Formation and not much older than the overlying Kiangata Agglomerata-Lunene Lava series, loosely dated to ca. 15 Ma. The overall similarities between Kulu and Hiwegi faunas imply long-term ecological stability in this region. Our stratigraphic interpretation suggests that the Kulu fauna is contemporaneous with faunas from West Turkana, implying that differences between these assemblages—particularly in the primate communities—reflect paleobiogeographic and/or paleocological differences. Finally, the position of the Kulu Formation restricts the time frame during which the substantial faunal turnover seen in the differences between the primate and mammalian communities of Rusinga and Maboko Islands could have occurred.  相似文献   

3.
The time interval between 3 Ma and 2 Ma marks several important transitions in human evolution, including the extinction of Australopithecus afarensis, the origin of the genus Homo, and the appearance of concentrated stone tool assemblages forming recognizable archaeological sites. The period also marks important changes in Earth’s climatic history, with the onset of northern hemisphere glaciation starting sometime between 2.8 Ma and 2.5 Ma, and it remains an unresolved question in paleoanthropology whether or not the global climatic events influenced in whole or in part, local terrestrial paleoenvironments in Africa and, through this, the course of human evolution.Changes in the terrestrial mammalian faunas of East Africa during this time interval are an important source of data about terrestrial paleoenvironments, and it has been argued that during this time period the mammalian faunas of Africa experienced a sudden pulse in the extinction and origination of taxa. The data corroborating this Turnover Pulse Hypothesis derive from both large mammal and micromammal data, though the fossil record of the former is much more abundant in this interval. New micromammal fossils recovered from ca. 2.4 Ma deposits at locality A.L. 894, low in the Busidima Formation in the Hadar study area of the Afar region, Ethiopia, reveal a significant faunal turnover when compared with previously published material from older 3.2 Ma micromammal assemblages from the Hadar Formation deposits. The results support the hypothesis of a major faunal transition, but larger sample sizes and more extensive temporal sampling are needed to refine the time and rate of change within this interval at Hadar.  相似文献   

4.
The Moiti, Lomogol and Wargolo Tuffs of the Turkana Basin correlate with similar layers in the Sagantole Formation exposed in the Middle Awash Valley, Ethiopia. These correlations demonstrate that the tephrostratigraphy of the Turkana Basin can be applied to the Middle Awash Valley. Consideration of our analyses together with previous analyses shows that more volcanic ash layers are present in the Sagantole Formation than have been reported and also that the proposed correlation of VT-2 between Bodo and Belohdelie is incorrect. In addition, the correlations suggest that the age of the Cindery Tuff of the Sagntole Formation is about 3·8 Ma, at the young end of the range proposed earlier (3·8–4·0 Ma). This implies that the hominid skull fragments from the Sagantole Formation are 3·8–3·9 Ma. The upper part of the Sagantole Formation contains the Lomogol Tuff (ca. 3·6 Ma). Because the Sagantole Formation underlies the Hadar Formation, the base of the Hadar Formation can be no older than 3·8 Ma and is probably younger than 3·6 Ma, in agreement with correlation of the Tulu Bor (ca. 3·35 Ma) and Sidi Hakoma Tuffs. As all hominid fossils presently known from the Hadar Formation are younger than the Sidi Hakoma Tuff, they must be younger than 3·35 Ma. This estimate agrees with faunal evidence from the lower part of the Hadar Formation, and allows placement of hominids from Laetoli, the Middle Awash Valley and the Turkana Basin in temporal order.  相似文献   

5.
Fossil pollen grains extracted from sediments sampled from OGS-6a and OGS-7, two newly excavated Late Pliocene sites of Gona, in the Afar Depression of Ethiopia, indicate a high percentage of afromontane forest and highland taxa (36.8-43.3%), among which Podocarpus cf. gracilor is dominant (19.6-24.2%). Forest taxa typical of the afromontane phytogeographic region have also been identified in the samples. The overall pollen spectrum suggests a mosaic of open and closed habitats, with a considerable wooded environment present during the time associated with the beginnings of early hominid use of flaked stones at Gona. Here we provide details of the results from the pollen analyses. The two sites lie 4-8 m directly below a volcanic tuff dated by 40Ar/39Ar to 2.53 ± 0.15 million years (Ma). The materials were recovered within fine-grained sediments located just above a geomagnetic polarity transition identified as the Gauss-Matuyama boundary dated close to 2.6 Ma, also corroborating the earlier age reported for the East Gona artifacts from EG-10 and EG-12. Thus, the stone artifacts, fossilized broken fauna and pollen grains from OGS-6a and OGS-7 represent archaeological materials from the world's oldest securely dated sites, and offer insights on aspects of the palaeoenvironments around the time of the beginnings of ancestral hominid use of flaked stones, ca. 2.6 Ma.  相似文献   

6.
In this paper we report for the first time hominin remains from the Basal Member of the Hadar Formation at Dikika, in the Awash Valley of Ethiopia, dating to greater than 3.4 Ma. The new fossil, DIK-2-1, is a fragment of a left mandible and associated dentition. The mandible is attributed to Australopithecus afarensis. However, the new fossil exhibits some metric and morphological features that have not previously been seen in the A. afarensis hypodigm, increasing the already impressive degree of variation in the mandibular sample of the species.  相似文献   

7.
Central to the debate surrounding global climate change and Plio-Pleistocene hominin evolution is the degree to which orbital-scale climate patterns influence low-latitude continental ecosystems and how these influences can be distinguished from regional volcano-tectonic events and local environmental effects. The Pliocene Hadar Formation of Ethiopia preserves a record of hominin paleoenvironments from roughly 3.5 to 2.2 Ma at a temporal resolution relevant to evolutionary change within hominins and other taxa. This study integrates the high-resolution sedimentological and paleontological records at Hadar with climate proxies such as marine core isotope, dust, and sapropel records. Consistent cycling observed both between and within fluvial and lacustrine depositional environments prior to 2.9 Ma at Hadar appears to be predominantly climatic in nature. In contrast a significant change in depositional facies after 2.9 Ma to sequences dominated by conglomerate cut-and-fill cycles indicates a strong tectonic signature related to regional developments in the Main Ethiopian Rift. While specific events seen in marine proxy records may have parallels in the Hadar environmental archive, their overall patterns of high versus low variability may be even more relevant. For example, periods of relatively high-amplitude climate oscillations between 3.15 and 2.95 Ma may be linked to noted size-related morphological changes within the Hadar Australopithecus afarensis lineage and a significant increase in more arid-adapted bovid taxa. Increased aridity in East Africa during this period is also indicated by peaks in eolian dust in the marine core record. Conversely, the dominant lacustrine phase at Hadar ca. 3.3 Ma coincides with the least variable period in several climate proxy records, including marine core foraminifera delta(18)O values and eolian dust concentration. This phase is also coeval with low insolation variability and a very distinct and significant long-term period of low dust percentage in circum-Africa marine cores.  相似文献   

8.
An absolute dating technique based on the build-up and decay of 26Al and 10Be in the mineral quartz provides crucial evidence regarding early Acheulean hominid distribution in South Africa. Cosmogenic nuclide burial dating of an ancient alluvial deposit of the Vaal River (Rietputs Formation) in the western interior of South Africa shows that coarse gravel and sand aggradation there occurred ca 1.57 ± 0.22 Ma, with individual ages of samples ranging from 1.89 ± 0.19 to 1.34 ± 0.22 Ma. This was followed by aggradation of laminated and cross-bedded fine alluvium at ca 1.26 ± 0.10 Ma. The Rietputs Formation provides an ideal situation for the use of the cosmogenic nuclide burial dating method, as samples could be obtained from deep mining pits at depths ranging from 7 to 16 meters. Individual dates provide only a minimum age for the stone tool technology preserved within the deposits. Each assemblage represents a time averaged collection. Bifacial tools distributed throughout the coarse gravel and sand unit can be assigned to an early phase of the Acheulean. This is the first absolute radiometric dated evidence for early Acheulean artefacts in South Africa that have been found outside of the early hominid sites of the Gauteng Province. These absolute dates also indicate that handaxe-using hominids inhabited southern Africa as early as their counterparts in East Africa. The simultaneous appearance of the Acheulean in different parts of the continent implies relatively rapid technology development and the widespread use of large cutting tools in the African continent by ca 1.6 Ma.  相似文献   

9.
The amount and seasonal distribution of paleo-rainfall is a major concern of paleoanthropology because they determine the nature of the vegetation and the structure of the ecosystem, particularly in eastern Africa. The δ18O and δ13C of paleosol carbonates are quantitative proxies of these critical features of the paleoenvironment. The Afar region of Ethiopia lies between the African and Indian summer monsoons, and is prone to profound climate change. In the western Afar, the dominant paleoenvironment of the Hadar Formation during the late Pliocene was a major meandering river's distal low, flat floodplain, on which muds accreted that were continuously transformed into vegetated soils with Bk horizons rich in CaCO3. The mean δ13C of paleosols throughout the Hadar Formation translates to an average vegetative cover across the extensive floodplain of about 30% of the C4 grasses and 70% of unspecified C3 plants. The character of the paleosols, such as the one at Locality 333, and their δ18OCarbonate argue for a highly seasonal rainfall of about twice today's amount, implying that the C3 plants were mostly sizeable trees and that the biome for Australopithecus afarensis was a grassy woodland. The amount of grasses abruptly increased in the lower Busidima Formation with its early Homo and artifacts to a more open grassy woodland of ca. 50% grasses. However, this transition in δ13C is not mirrored in the δ18O, which persists at a quite negative average value of −6.4‰ over the entire >2-Myr duration of both formations. This value for the carbonate means that the paleosoil water was a quite negative −4.1‰, a significant 5‰ more negative than our estimate of modern rain at Hadar. We put the negative δ18O of paleo-Hadar's rainfall into an isotopic framework of the dynamic history of climate change in sub-Saharan northern Africa. There have been two end-member climate regimes: (1) an earlier persistently pluvial Pliocene regime, with its strong summer monsoon, as registered in the Hadar Formation; and (2) the modern cyclical, mostly arid regime that began ca. 1 Myr ago, which has been punctuated by about ten cyclically predictable brief millennia-long pluvial episodes. The best known pluvial of the latter regime is the latest one, the African Humid Period (AHP), just 9.0-6.5 kyr ago, whose δ18ORainfall matches that for paleo-Hadar. The known climatological factors that brought on the AHP are probably the same ones that were persistently present for the Afar of the Pliocene. This dynamic rainfall history undoubtedly has influenced hominid occupation of the keystone Afar area at the gateway out of, and into, Africa.  相似文献   

10.
The Late Cenozoic uplift history of a sedimentary basin located in the axial part of the Ou Backbone Range, Northeast Japan, was studied using detailed mapping, fission-track dating and basin analysis. The subsidence analysis of the basin clarified the more complex stepwise uplift of the Ou Backbone Range. Three stages of uplift have been recognized and are interpreted to be the result of compressional stress, possibly accompanied by basin inversion. The three stages are identified as (1) a phase of surface uplift and regional unconformity (12-9 Ma), (2) a stage of differential uplift and compression (6.5-3 Ma) and (3) an intense compression stage (∼ 3 Ma). In the first stage, the eastern sector of the Backbone Range uplifted and a notable unconformity was formed at ∼ 10 Ma. The western sector remained submerged, suggesting that the eastern sector uplifted earlier than the western sector. Although the first uplift stage has been regarded as a tectonically quiet period in Northeast Japan, this tectonic event at ∼ 10 Ma is supposed to have a regional origin because coeval tectonic events took place across all Northeast Japan, as well as on the eastern margin of Asia. This study thus provides new insights into the Neogene tectonic evolution in the eastern margin of Asia.  相似文献   

11.
Sauropod dinosaurs have been found in sediments dating to most of the Cretaceous Period on all major Mesozoic landmasses, but this record is spatiotemporally uneven, even in relatively well-explored North American sediments. Within the 80 million-year-span of the Cretaceous, no definitive sauropod occurrences are known in North America from two ca. 20–25 million-year-long gaps, one from approximately the Berriasian–Barremian and the other from the mid-Cenomanian–late Campanian. Herein, we present an undescribed specimen that was collected in the middle part of the twentieth century that expands the known spatiotemporal distribution of Early Cretaceous North American sauropods, partially filling the earlier gap. The material is from the Berriasian–Valanginian-aged (ca. 139 Ma) Chilson Member of the Lakota Formation of South Dakota and appears to represent the only non-titanosauriform from the Cretaceous of North America or Asia. It closely resembles Camarasaurus and may represent a form closely related to that genus that persisted across the Jurassic–Cretaceous boundary.  相似文献   

12.
拉萨地区林周盆地典中那玛剖面设兴组上部新发现的孢粉组合以落叶、阔叶植物为主体,主要为桦科的Alnipollenites,Betulaepollenites,Carpiniptes,山毛榉科的Quercoidites,胡桃科的Juglanspollenites,榆科的Ulmipollenites,椴科的Tiliapollenites等,孢粉化石多为古近纪常见分子,未发现白垩纪的特征分子。古近纪早期大量出现的三孔沟,网面三孔沟等花粉少量出现;孢粉组合更接近于古近纪中晚期的面貌,其时代可能属于晚始新世。因此,设兴组上部的年代可能是始新世晚期。由此推论,设兴组和林子宗群之间的角度不整合不能代表白垩纪古近纪之间的构造运动,而是代表始新世晚期后的构造运动。同时,林周盆地可能沉积有古近纪的河湖相地层。  相似文献   

13.
The fossil tragelaphins from the late Pliocene of Hadar are described. These are Tragelaphus lockwoodi, new species, and Tragelaphus aff. T. nakuae. Tragelaphus lockwoodi bears long horns that define one complete spiral and that are mediolaterally compressed at the base. In these and other morphological characteristics it approaches the greater kudu, T. strepsiceros, and makes a good ancestral candidate for this living species. The Hadar T. aff. T. nakuae is similar to other specimens of this species from sites >2.8 Ma in East Africa and demonstrates well the major differences between the earlier and later representatives of this taxon. The sizes and morphological variation in the large Hadar T. aff. T. nakuae sample supports the idea that female individuals of this species were horned as is the case today in the elands and the bongo. Tragelaphus lockwoodi is present only in the lower beds of the Hadar Formation, and in small numbers, while T. aff. T. nakuae is recovered in relative abundance from throughout the ca. 3.4-ca. 2.9 Ma sequence.  相似文献   

14.
Discovery of the first complete Early Pleistocene hominin pelvis, Gona BSN49/P27, attributed to Homo erectus, raises a number of issues regarding early hominin body size and shape variation. Here, acetabular breadth, femoral head breadth, and body mass calculated from femoral head breadth are compared in 37 early hominin (6.0-0.26 Ma) specimens, including BSN49/P27. Acetabular and estimated femoral head sizes in the Gona specimen fall close to the means for non-Homo specimens (Orrorin tugenesis, Australopithecus africanus, Paranthropus robustus), and well below the ranges of all previously described Early and Middle Pleistocene Homo specimens. The Gona specimen has an estimated body mass of 33.2 kg, close to the mean for the non-Homo sample (34.1 kg, range 24-51.5 kg, n = 19) and far outside the range for any previously known Homo specimen (mean = 70.5 kg; range 52-82 kg, n = 17). Inclusion of the Gona specimen within H. erectus increases inferred sexual dimorphism in body mass in this taxon to a level greater than that observed here for any other hominin taxon, and increases variation in body mass within H. erectus females to a level much greater than that observed for any living primate species. This raises questions regarding the taxonomic attribution of the Gona specimen. When considered within the context of overall variation in body breadth among early hominins, the mediolaterally very wide Gona pelvis fits within the distribution of other lower latitude Early and Middle Pleistocene specimens, and below that of higher latitude specimens. Thus, ecogeographic variation in body breadth was present among earlier hominins as it is in living humans. The increased M-L pelvic breadth in all earlier hominins relative to modern humans is related to an increase in ellipticity of the birth canal, possibly as a result of a non-rotational birth mechanism that was common to both australopithecines and archaic Homo.  相似文献   

15.
The specimen described herein and assigned to ‘Xyophorus’ sp. (Mammalia, Xenarthra, Tardigrada) was collected in the locality Cerro Zeballos, northwestern Chubut Province, Argentina. The fossiliferous sediments bearing the specimen are correlated with Collón Curá Formation. The specimen has the features described for other members of ‘Xyophorus’ (e.g. shape and size of the molariforms, relationship between diastema length, m1 and m2 length) and has a Diastema Length/Tooth Row Length index (DL/TRL index) of ca. 14, between that of ‘X.’ villarroeli (12.07) from the Mauri Formation, Bolivia (ca. 10.3 Ma) and that of ‘X.’ bondesioi (16.45) from Arroyo Chasicó Formation, Argentina (ca. 10–8.7 Ma). The relationship between DL/TRL index and age of the bearing sediments, would suggest a Tortonian age (late Miocene) for the deposits of Collón Curá Formation at Cerro Zeballos, which results in a ‘younger age’ compared to the middle Miocene age traditionally accepted for the Collón Curá Formation bearing the Colloncuran fauna sensu stricto. Although no absolute ages for Cerro Zeballos are available yet, the geographic proximity of Cerro Zeballos to Cushamen River (with levels dated at ca. 11.2 Ma) supports the tentative Tortonian age indicated by the presence of ‘Xyophorus’ sp.  相似文献   

16.
We show responses of coral reefs to increased amplitude of sea-level changes at the Mid-Pleistocene Climate Transition (MPT) based on lithostratigraphic, sedimentologic and calcareous nannofossil biostratigraphic investigations on Pleistocene reef-complex deposits (Ryukyu Group) on the Motobu Peninsula, Okinawa-jima, Central Ryukyus. Our data show that reef growth started in earliest Quaternary time (1.45-1.65 Ma) and that extensive reef formation dates back to ∼ 0.8 Ma. The mode of Quaternary sedimentation changed at ∼ 0.8 Ma in the study area. Before this time, thick siliciclastics and mixed carbonate-siliciclastics accumulated, which were followed by the deposition of bioclastic sediments (detrital limestone). No indications have been found of episodic subaerial exposures in these deposits and no calcareous nannofossil biozones are lacking. Since the detrital limestone includes biogenic components characterizing fore-reef to shelf environments, the coastal areas of the northern Motobu Peninsula mostly lay in fore-reef to shelf environments for > 0.6 million years (between ∼ 0.8 Ma and 1.45-1.65 Ma), when the sediments had not been subaerially exposed due to sea-level changes characterized by relatively small amplitudes. Coral limestone that formed in the latest Early to Middle Pleistocene between 0.4 Ma and 0.8 Ma extends over the study area, ranging in elevation from 0 to 70 m. This coral limestone grades upward into fore-reef to shelf carbonates (rhodolith, Cycloclypeus-Operculina, and detrital limestones) which is in turn overlain by coral limestone. This succession, combined with configuration of the lithofacies and paleobathymetry inferred from lithology and biogenic components, implies that the reef-complex deposits formed responding to sea-level changes with amplitude of > 60 m. Consequently, we suggest that the change in the mode of sedimentation results from increased amplitude of sea-level fluctuations at ∼ 0.8 Ma. This timing corresponds roughly to the timing of the Mid-Pleistocene Climate Transition (MPT).  相似文献   

17.
The giraffid fossils recovered from ~ 2.8–2.6 million year old (Ma) sediments from Lee Adoyta, Ledi-Geraru, Ethiopia, are described here. Sivatherium maurusium and Giraffa cf. G. gracilis are the two identified taxa, with the former being more abundant than the latter. We interpret this skew of relative abundance to be of paleoenvironmental significance, as Sivatherium is rare and Giraffa is common in the adjacent, but older sediments of the Hadar Formation at Hadar (~ 3.4 to 2.95 Ma), which was characterized by wooded and well-watered habitats through most of its sequence. Stable carbon isotope analyses show that Giraffa remained an obligate browser throughout the lower Awash Valley (LAV) sequence while Sivatherium underwent a dietary transition from a browser in the Hadar Formation to a grazer at Lee Adoyta. This dietary shift in Sivatherium reflects local environmental change through time in the LAV as open habitats spread during the late Pliocene. A compilation of isotopic data from other sites in eastern Africa shows that the LAV dietary shift in Sivatherium occurred roughly one million years earlier than in the Turkana Basin, Kenya, reflecting a spatiotemporally staggered expansion of C4 vegetation across eastern Africa.  相似文献   

18.
19.
The use of rocky palaeoshore bioerosion analysis as a tool to solve stratigraphic and tectonic issues is beginning to bear fruits. The occurrence of an extensive intra-Miocene marine abrasion platform in southern Portugal at Oura (Albufeira) has been identified on the basis of bioerosion trace fossils analysis. The observed ichnodiversity is rather low, with bivalve boring Gastrochaenolites being dominant. Nevertheless, the ichnoassemblage may be assigned to the Entobia ichnofacies. The palaeoichnological study of the Oura hardground confirmed the existence of an important intra-Miocene stratigraphic gap (ca. 3 Ma hiatus), represented by a razor-sharp erosional contact that separates the two main Neogene units in the Algarvian region: the lower carbonate sequence of Lagos–Portimão Formation (Langhian/Serravallian) and the upper siliciclastic sequence of the Cacela Formation (Upper Tortonian).  相似文献   

20.
《Palaeoworld》2021,30(4):602-609
Dickinsonia is an iconic fossil of the Ediacara biota (~575–539 Ma). It was previously known from siliciclastic successions of the White Sea assemblage in Australia, Baltica, and possibly India. Here we describe Dickinsonia sp. from the terminal Ediacaran Shibantan Member limestone (ca. 551–543 Ma) of the Dengying Formation in the Yangtze Gorges area of South China. The stratigraphic distribution of Ediacara-type fossils in the Shibantan Member indicates that this biota uniquely preserves both the White Sea and Nama assemblages in stratigraphic succession. The new data presented here suggests that Dickinsonia had wider paleogeographic and paleoenvironmental distributions, implying its strong dispersal capability and environmental tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号