首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 260 毫秒
1.
In this article, we report on the alkaloid profile and dynamic of alkaloid content and diversity in two Narcissus plants at different stages of development. The alkaloid profile of the two Narcissus species was investigated by GC/MS and HPTLC. Fifty eight Amaryllidaceae alkaloids were detected, and 25 of them were identified in the different organs of N. tazetta and N. papyraceus. The alkaloid 3‐O‐methyl‐9‐O‐demethylmaritidine is tentatively identified here for the first time from the Amaryllidaceae family, and four alkaloids (tazettamide, sternbergine, 1‐O‐acetyllycorine, 2,11‐didehydro‐2‐dehydroxylycorine) are tentatively identified for the first time in the genus Narcissus. The different organs of the two species analyzed showed remarkable differences in their alkaloid pattern, type of biosynthesis, main alkaloid and number of alkaloids. Lycorine‐type alkaloids dominated the alkaloid, metabolism in N. papyraceus, while alkaloids of narciclasine‐, galanthamine‐ and homolycorine‐types were found only in the species N. tazetta L.  相似文献   

2.
Plants of the Amaryllidaceae family have been under intense scrutiny for the presence of the specific metabolites responsible for the medicinal properties associated with them. The study began in 1877 with the isolation of alkaloid lycorine from Narcissus pseudonarcissus and since then more than 100 alkaloids, exhibiting diverse biological activities, have been isolated from the Amaryllidaceae plants. Based on the present scientific evidence, it is likely that isocarbostyril constituents of the Amaryllidaceae, such as narciclasine, pancratistatin and their congeners, are the most important metabolites responsible for the therapeutic benefits of these plant species in the folk medical treatment of cancer. Notably, Narcissus poeticus L., used by the ancient Greek physicians, is now known to contain about 0.12 g of narciclasine per kg of fresh bulbs. The focus of the present research work is the chemistry and biology of these compounds as specifically relevant to their potential use in medicine. In particular, the anticancer evaluation of lycorine, narciclasine as well as of other Amaryllidaceae alkaloids and their synthetic derivatives are presented in this paper. The structure–activity relationships among some groups of Amaryllidaceae alkaloids will be discussed.  相似文献   

3.
The Amaryllidaceae alkaloids, represent a group of isoquinoline alkaloids, which are produced almost solely by members of the Amaryllidaceae family. The alkaloids of this family have attracted considerable amount of interest due to some important pharmacological activities they were shown to possess. In the last decade, our phytochemical studies on four Galanthus (Amaryllidaceae) species of Turkish origin have yielded quite a number of new alkaloids with diverse structures. Among these alkaloids, gracilines and plicamines constitute two new subgroups for the Amaryllidaceae alkaloids. The gracilines contain an incorporated 10b,4a-ethanoiminodibenzo[b,d]pyrane skeleton. The plicamines are dinitrogenous compounds, where the oxygen atom in position 7 of a tazettine skeleton is replaced by a nitrogen atom substituted by a pendant 4-hydroxyphenethyl moiety. One of the new alkaloids, galanthindole, which possesses a nonfused indole ring, unlike the already known subgroups of Amaryllidaceae alkaloids, may be considered as the prototype of a third new subgroup of the Amaryllidaceae alkaloids. Additionally, two known isoquinoline alkaloids which do not possess one of the established skeletons of the Amaryllidaceae alkaloids, namely ( − )-capnoidine and (+)-bulbocapnine, have been isolated from a Turkish Galanthus species. Totally, 21 new, 20 known alkaloids and 2 known lignans have been characterized. In this review, the isolation and structure elucidation of these compounds with interesting chemical structures are described.  相似文献   

4.
Two new alkaloid N-oxides, 1-O-acetyldihydromethylpseudolycorine N-oxide, and 11-hydroxyvittatine N-oxide, ten known alkaloids; arolycoricidine, haemanthamine, O-methylnorbelladine, narcidine, dihydrolycorine, 8-O-demethylmaritidine, stylopine and protopine, nicotinic acid and tyramine were isolated from Galanthus trojanus A.P. Davis & N. Özhatay (Amaryllidaceae). The chemical structures of the isolates were elucidated by UV, IR, MS, CD, 1D and 2D NMR experiments. The in vitro antiprotozoal and cytotoxic potentials of the compounds were also evaluated.  相似文献   

5.
The process of alkaloid biosynthesis by Pancratium maritimum shoot culture, cultivated under submerged conditions, was investigated. Twenty-two compounds of different structural types of the Amaryllidaceae alkaloids (tyramine, narciclasine, galanthamine, haemanthamine, lycorine, pancracine, tazettine and homolycorine types) were detected in the studied samples from biomass and cultural liquid. Dominant compounds in the shoots were of tyramine, lycorine and haemanthamine types, whereas in the culture media were found mainly lycorine type compounds. Based on the multi-metabolic estimation of the alkaloid metabolism and physiological peculiarities, liquid cultures of P. maritimum shoots could be defined as prospective biological systems for producing bioactive molecules with acetylcholinesterase inhibitory and apoptotic activities.  相似文献   

6.
Chemical studies on the crude MeOH extract of stems and barks of Nauclea latifolia resulted in the isolation of five new indole alkaloids, latifoliamides A–E ( 1 – 5 , resp.), along with one known alkaloid, angustoline ( 6 ). The structures of these compounds were elucidated by means of extensive NMR spectral studies. Compound 1 has a 20‐ethylidenetetrahydrofuran ring incorporated in its structure and represents the first example of this class of indole alkaloids. All of the isolates exhibited moderate in vitro renin inhibitory activities.  相似文献   

7.
The Libellus de Medicinalibus Indorum Herbis (Booklet of Indian Medicinal Plants) is the first book of medicinal plants written in the American continent. It was first published in 1939 as ‘An Aztec Herbal’. One of the depicted plants is Huetzcanixochitl (laughing flower) interpreted as Zephyranthes fosteri (Amaryllidaceae). No chemical or pharmacological studies are reported for this species; so, we decide to investigate it. The GC/MS of the bulbs and aerial parts extracts indicated that they contain Amaryllidaceae alkaloids, among them: lycorine, 3-O-acetylpowelline, and norlycoramine. An unknown major alkaloid was isolated and identified by 1H, 13C-NMR and MS, as 3′-demethoxy-6-epimesembranol ( 1 ). The methanolic extract, the alkaloid fraction, and compound 1 inhibited acetylcholinesterase in vitro. Mesembrine alkaloids are found in Sceletium species (Aizoaceae). Several are known as serotonin recapture inhibitors and have been proposed as potential antidepressant drugs. The presence of 1 suggests that Z. fosteri was probably used in pre-Columbian times in Mexico as a ‘stimulant and euphoriant’, alike Sceletium tortuosum by several ethnic groups in South Africa.  相似文献   

8.
The aim of this work was to investigate the alkaloid patterns of Lapiedra martinezii and their relation to biogeography and phenology focused in a phylogenetic comparison. Plants from 14 populations of L. martinezii, covering almost its entire distribution area, were subjected to morphological, ecological, and phytochemical analysis. Experiments for different alkaloid‐type content are proposed as a new tool for analysis of plant distribution. Several plants were transplanted for weekly observation of their phenological changes, and alkaloids from different plant organs were extracted, listed, and compared. The alkaloid pattern of L. martinezii comprises 49 compounds of homolycorine, lycorine, tazettine, haemantamine, and narciclasine types. The populations located in the north and south margins of the distribution area displayed alkaloid patterns different from those of the central area. Changes in these patterns during their phenological cycle may be related to a better defence for plant reproduction. L. martinezii is an old relict plant, and it has maintained some of the more primitive morphological features and alkaloid profiles of the Mediterranean Amaryllidaceae. The variations in alkaloid content observed could be interpreted in a phylogenetic sense, and those found in their phenological changes, in an adaptive one.  相似文献   

9.
Two new Amaryllidaceae alkaloid N-oxides, incartine N-oxide (1) and lycorine N-oxide (2) together with one β-carboline alkaloid, 1-acetyl-β-carboline (3) and six known alkaloids namely, incartine (4), N-trans feruloyltyramine (5), lycorine (6), O-methylnorbelladine (7), vittatine (8) and 11-hydroxyvittatine (9) were isolated from Galanthus rizehensis Stern (Amaryllidaceae). The structures of the alkaloids were elucidated by spectroscopic analyses (UV, IR, MS, 1D and 2D NMR). Acetylcholinesterase inhibitory activity potentials of the compounds were also determined.  相似文献   

10.
The bulbs of Zephyranthes robusta (Amaryllidaceae) have been extensively analyzed for their chemical constituents, resulting in the isolation of 13 alkaloids. The chemical structures of the isolated compounds were elucidated by mass‐spectrometric, and 1D‐ and 2D‐NMR spectroscopic experiments. The complete NMR assignments were achieved for hippeastidine. All isolated alkaloids were evaluated for their erythrocytic acetylcholinesterase and serum butyrylcholinesterase inhibitory activities using the Ellman's method. Significant acetylcholinesterase inhibition activity was exhibited by 8‐O‐demethylmaritidine (IC50(HuAChE) 28.0±0.9 μM ).  相似文献   

11.
A bioassay‐guided fractionation of Cynanchum komarovii crude alkaloid extract led to the isolation of two alkaloids. The isolated alkaloids were identified as 7‐demethoxytylophorine (1) and 6‐hydroxyl‐2,3‐dimethoxy phenanthroindolizidine (2) based on the comparison of their spectroscopic characteristics with the literature data. Insecticidal, antifeedant and growth inhibitory effects of these two alkaloids against the 3rd instar larvae of Plutella xylostella L. (Lepidoptera: Plutellidae) were examined. The results showed that alkaloid 1 was more toxic than alkaloid 2 against the 3rd instar larvae of Plutella xylostella L., but both alkaloids were less toxic than the total alkaloid fraction. For antifeedant activity, alkaloid 1 showed AFC50 of 1.82 mg/ml at 24 h after treatment, alkaloid 2 showed 3.89 mg/ml, while total alkaloids showed 1.56 mg/ml. In dipping toxicity test, alkaloids 1 and 2 produced 93.3% and 63.3% mortality at 72 h after treatment, respectively, while total alkaloids produced 96.7% mortality. The LC50 values for alkaloids 1, 2 and the total alkaloids were 3.54, 9.21 and 2.63 mg/ml, respectively. The development of larvae was also inhibited, and the growth inhibition rates at the concentration of 15.00 mg/ml were 92.8%, 78.2% and 98.6% for alkaloids 1, 2 and total alkaloids, respectively, at 72 h after treatment. Compared with antifeedant and dipping effect, the alkaloids 1, 2 and total alkaloid fraction revealed weak feeding toxicity, and their corrected mortality rates at the concentration of 15.00 mg/ml were 60.0%, 40.0% and 63.3% at 7 days after treatment. The LC50 values for alkaloids 1, 2 and total alkaloids were 12.58, 32.37 and 8.88 mg/ml, respectively, at 7 days after treatment.  相似文献   

12.
One new fawcettimine-type alkaloid ( 1 ), one new miscellaneous-type alkaloid ( 2 ), four new lycodine-type alkaloids ( 3 – 6 ), and eight known ones ( 7 – 14 ) were isolated from the whole plants of Huperzia serrata. Their structures and absolute configurations were elucidated based on spectroscopic data, X-ray diffraction, ECD calculation and Mosher's method. Compound 1 was a rare C18N2-type Lycopodium alkaloid, possessing serratinine skeleton with an amide side chain in C-5. The absolute configuration of the 18-OH of compounds 4 – 6 were first determined by Mosher's method. Moreover, compounds 1 – 14 were assayed anti-acetylcholinesterase effect in vitro, and compound 7 showed significant anti-acetylcholinesterase activity with an IC50 value of 16.18±1.64 μM.  相似文献   

13.
Aconitum carmichaelii Debeaux is a widely used traditional Chinese medicine and an important source of clinical drugs, of which the parent and lateral roots are known as ‘Chuanwu’ and ‘Fuzi’, respectively. Four new C19‐diterpenoid alkaloids, carmichasines A – D ( 1 – 4 ), were isolated from the roots of Aconitum carmichaelii, together with twelve known compounds ( 5 – 16 ). Their structures were elucidated via spectroscopic analyses, including HR‐ESI‐MS, IR, and NMR. Carmichasine A ( 1 ) is the first natural C19‐diterpenoid alkaloid possessing a cyano group. Most of the diterpenoid alkaloids isolated were C19‐category, which might provide further clues for understanding the chemotaxonomic significance of this plant. The cytotoxicity of the new compounds was also investigated against several human cancer cell lines, including MCF‐7, HCT116, A549, and 786‐0, and none of them showed considerable cytotoxic activity.  相似文献   

14.
The investigation deals with in vitro clonal propagation of L. aestivum L. (summer snowflake), a threatened Amaryllidaceae plant species in Bulgaria used in the pharmaceutical industry as raw material for production of galanthamine-based medicines. Plants of known origin and with different alkaloid profile were taken from the living collection of the Institute of Botany, Sofia. Bulbs were used to initiate in vitro cultures and 24 clones were multiplied. The influence of the clone origin on the propagation coefficient, shoot and bulblet morphology, alkaloid profile and content of galanthamine, lycorine, and four related alkaloids was evaluated. Clones kept stable alkaloid profiles and for most of them, high regeneration rates were noted. Galanthamine content of some clones was commensurable with that of Bulgarian populations of L. aestivum of commercial importance. Five clones: four galanthamine-type and one lycorine-type were selected as promising for further investigation.  相似文献   

15.
Seven alkaloids have been isolated from fresh bulbs of Narcissus angustifolius subsp. transcarpathicus (Amaryllidaceae). Nangustine, reported here for the first time, is the first 5,11-methanomorphanthridine alkaloid with a C-3/C-4 substitution. The structure and stereochemistry of this new alkaloid, as well as those previously known, have been determined by physical and spectroscopic methods. Spectroscopic data of pancracine have been completed. The in vitro assay activity against the parasitic protozoa Trypanosoma brucei rhodesiense, Trypanosoma cruzi, Leishmania donovani and Plasmodium falciparum was carried out with the compounds nangustine and pancracine.  相似文献   

16.
Shoot culture of summer snowflake (Leucojum aestivum L.) was successfully cultivated in an advanced modified glass‐column bioreactor with internal sections for production of Amaryllidaceae alkaloids. The highest amounts of dry biomass (20.8 g/L) and galanthamine (1.7 mg/L) were achieved when shoots were cultured at 22°C and 18 L/(L·h) flow rate of inlet air. At these conditions, the L. aestivum shoot culture possessed mixotrophic‐type nutrition, synthesizing the highest amounts of chlorophyll (0.24 mg/g DW (dry weight) chlorophyll A and 0.13 mg/g DW chlorophyll B). The alkaloids extract of shoot biomass showed high acetylcholinesterase inhibitory activity (IC50 = 4.6 mg). The gas chromatography–mass spectrometry (GC/MS) profiling of biosynthesized alkaloids revealed that galanthamine and related compounds were presented in higher extracellular proportions while lycorine and hemanthamine‐type compounds had higher intracellular proportions. The developed modified bubble‐column bioreactor with internal sections provided conditions ensuring the growth and galanthamine production by L. aestivum shoot culture.  相似文献   

17.
Lysine decarboxylase converts l ‐lysine to cadaverine as a branching point for the biosynthesis of plant Lys‐derived alkaloids. Although cadaverine contributes towards the biosynthesis of Lys‐derived alkaloids, its catabolism, including metabolic intermediates and the enzymes involved, is not known. Here, we generated transgenic Arabidopsis lines by expressing an exogenous lysine/ornithine decarboxylase gene from Lupinus angustifolius (La‐L/ODC) and identified cadaverine‐derived metabolites as the products of the emerged biosynthetic pathway. Through untargeted metabolic profiling, we observed the upregulation of polyamine metabolism, phenylpropanoid biosynthesis and the biosynthesis of several Lys‐derived alkaloids in the transgenic lines. Moreover, we found several cadaverine‐derived metabolites specifically detected in the transgenic lines compared with the non‐transformed control. Among these, three specific metabolites were identified and confirmed as 5‐aminopentanal, 5‐aminopentanoate and δ‐valerolactam. Cadaverine catabolism in a representative transgenic line (DC29) was traced by feeding stable isotope‐labeled [α‐15N]‐ or [ε‐15N]‐l ‐lysine. Our results show similar 15N incorporation ratios from both isotopomers for the specific metabolite features identified, indicating that these metabolites were synthesized via the symmetric structure of cadaverine. We propose biosynthetic pathways for the metabolites on the basis of metabolite chemistry and enzymes known or identified through catalyzing specific biochemical reactions in this study. Our study shows that this pool of enzymes with promiscuous activities is the driving force for metabolite diversification in plants. Thus, this study not only provides valuable information for understanding the catabolic mechanism of cadaverine but also demonstrates that cadaverine accumulation is one of the factors to expand plant chemodiversity, which may lead to the emergence of Lys‐derived alkaloid biosynthesis.  相似文献   

18.
19.
An integrated approach using targeted metabolite profiles and modest EST libraries each containing approximately 3500 unigenes was developed in order to discover and functionally characterize novel genes involved in plant‐specialized metabolism. EST databases have been established for benzylisoquinoline alkaloid‐producing cell cultures of Eschscholzia californica, Papaver bracteatum and Thalictrum flavum, and are a rich repository of alkaloid biosynthetic genes. ESI‐FTICR‐MS and ESI‐MS/MS analyses facilitated unambiguous identification and relative quantification of the alkaloids in each system. Manual integration of known and candidate biosynthetic genes in each EST library with benzylisoquinoline alkaloid biosynthetic networks assembled from empirical metabolite profiles allowed identification and functional characterization of four N‐methyltransferases (NMTs). One cDNA from T. flavum encoded pavine N‐methyltransferase (TfPavNMT), which showed a unique preference for (±)‐pavine and represents the first isolated enzyme involved in the pavine alkaloid branch pathway. Correlation of the occurrence of specific alkaloids, the complement of ESTs encoding known benzylisoquinoline alkaloid biosynthetic genes and the differential substrate range of characterized NMTs demonstrated the feasibility of bilaterally predicting enzyme function and species‐dependent specialized metabolite profiles.  相似文献   

20.
Twelve indole alkaloids belonging to the Ajmaline-, Sarpagine-, Yohimbine-, and Heteroyohimbine-type have been isolated and identified from cell suspension cultures of Rauwolfia serpentina. Ten of the alkaloids were found for the first time in cultured R. serpentina cells. The yield of the main alkaloid vomilenine was 51 times more than that of differentiated plants. Crude enzymes isolated from this cell suspension culture completely metabolize the biogenetic precursor strictosidine under formation of several alkaloidal compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号