首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
在福建省三明市陈大国有林场开展杉木幼苗土壤增温试验,采用内生长环法研究土壤增温(+5℃)对杉木幼苗细根比呼吸速率和非结构性碳的影响,分析杉木人工林对全球变暖的地下响应及其适应性.结果表明:增温第二年,土壤增温引起细根组织内非结构性碳水化合物(NSC)的较大变化,1月增温处理0~1 mm细根NSC和淀粉浓度下降,1~2 mm细根可溶性糖和NSC浓度下降;7月增温处理0~1 mm细根NSC、可溶性糖和淀粉浓度提高,使1~2mm细根淀粉浓度增加.增温第3年,土壤增温对细根NSC无显著影响.增温处理使0~1 mm细根比根呼吸速率在增温第二年7月增加,而在第三年7月下降;与0~1 mm细根相比,增温处理对1~2 mm细根比呼吸速率没有显著影响.细根呼吸对增温的响应与增温持续时间有关,随增温时间的延长,细根呼吸产生部分驯化,同时能够使细根NSC浓度保持稳定.  相似文献   

2.
应用封闭式生长室系统,研究了CO2浓度升高对红桦(Betula albosinensis)幼苗的根/冠、粗根和细根的干质量、非结构性碳水化合物类含量、碳含量和碳/氮、氮和磷的含量及氮磷吸收量的影响。结果表明:CO2浓度升高使红桦幼苗粗根和细根的干质量增加,同时根/冠值显著升高,表明CO2浓度升高使红桦幼苗生物量向根系的分配增加;与对照相比,粗根的还原糖、蔗糖和总可溶性糖含量显著增加,而在细根中没有显著变化;粗根、细根的淀粉和总的非结构性碳水化合物含量显著增加;CO2浓度升高下粗根和细根的碳含量有升高的趋势但未达到显著水平,同时氮含量降低,碳/氮值升高;氮的吸收量在粗根和细根中均无显著变化。上述结果表明,CO2浓度升高下红桦幼苗根系氮含量下降是由非结构性碳水化合物(主要是淀粉)含量升高和(或)根系生物量增加产生的稀释效应引起的。  相似文献   

3.
氮(N)沉降正在对全球森林生态系统产生显著影响。目前关于氮沉降如何通过影响树木不同径级细根碳水化合物含量,进而影响树木生理特征及生长的机制尚不清楚。本文以2年生油松(Pinus tabuliformis)幼苗细根为对象,研究了短期(2年)氮添加(0、3、6、9g N·m~(-2)·a~(-1),分别记为N0、N3、N6、N9)对不同径级(0~0.5、0.5~1和1~2 mm)细根中非结构性碳水化合物(NSC)和结构性碳水化合物(SC)含量的影响。结果表明:(1)0~0.5 mm细根中碳水化合物含量(512.97 mg·g~(-1))显著低于1~2 mm细根中碳水化合物含量(638.83 mg·g-1)。0~0.5 mm细根中NSC、可溶性糖和淀粉含量显著低于0.5~1及1~2mm;(2)随着细根径级的增加,SC含量和纤维素含量呈增加趋势,而木质素含量呈降低趋势。N添加对3个径级细根中不同碳水化合物组分的影响不同。N添加对0~0.5和0.5~1mm细根中NSC、可溶性糖和淀粉含量均无显著影响,但N9处理显著降低了1~2 mm细根中NSC和可溶性糖含量(16.20%和29.90%),对淀粉含量无显著影响。此外,N3处理显著增加了0~0.5 mm细根中可溶性糖含量(69.65%);(3)N添加对细根中SC、木质素含量没有显著影响,但N3处理显著增加了最细两级根(0~0.5和0.5~1 mm)纤维素含量(35.3%和57.0%),N9处理显著降低了1~2 mm细根中纤维素含量(30.39%);(4)N3处理显著增加了0~0.5 mm细根中NSC/SC,而对另两级根系中该比率无显著影响。结果表明,N添加可能通过影响最细两级根(0~0.5和0.5~1 mm)中NSC、可溶性糖含量及NSC/SC影响植物细根的生理功能和生长。  相似文献   

4.
全球气候变化有促进食叶害虫爆发的趋势.叶片被食会导致光合产物的生产降低,进一步影响非结构性碳水化合物(NSC)在树木体内的储存和分配.本研究以水曲柳2年生苗木根系为研究对象,通过40%去叶处理,于6-10月对根系取样,研究地上碳(C)供应不足条件下主根、粗根和1~5级细根NSC及其组分的分配格局.结果表明: 对照和去叶处理根系NSC浓度及其组分浓度均具有明显的季节动态;与对照相比,去叶处理苗木主根和粗根NSC浓度分别降低3.8%和30.7%,而1~5级细根NSC浓度增加1.2%~23.5%,这主要受淀粉浓度变化的影响;去叶处理苗木主根和粗根可溶性糖浓度增加7.1%和62.3%,而1~5级根可溶性糖浓度显著降低2.7%~42.8%;去叶对苗木根系可溶性糖和淀粉浓度的不同影响,导致二者的比值在主根和粗根中增加,而在1~5级细根中降低.去叶引起光合产物的生产减少,导致水曲柳苗木主根和粗根中淀粉活化后流向细根并以淀粉的形式储存,这可能有利于提高细根对冬季低温胁迫的抵抗力.  相似文献   

5.
以一年生蒙古莸幼苗为对象,设置适宜水分、慢速干旱致死和快速干旱致死3个处理,研究不同干旱强度致死下蒙古莸幼苗各器官中非结构性碳水化合物(NSC,包括可溶性糖和淀粉)的含量变化及其分配规律.结果表明:慢速干旱致死胁迫下各器官可溶性糖含量与适宜水分组无显著差异.随时间的推移,茎可溶性糖含量先增加后减少,淀粉和NSC含量增加;粗根可溶性糖含量减少,淀粉和NSC含量增加;叶可溶性糖含量增加,淀粉和NSC含量减少.致死时(80 d),叶、茎、粗根和细根的NSC含量分别为6.2%、7.8%、8.3%和7.4%.快速干旱致死胁迫下,各器官可溶性糖含量均高于适宜水分处理组,而淀粉和NSC含量均低于适宜水分组.随时间的推移,根可溶性糖含量下降,淀粉和NSC含量上升;茎可溶性糖、淀粉和NSC含量均上升;叶可溶性糖含量上升,淀粉和NSC含量下降.致死时(30 d),叶、茎、粗根和细根的NSC含量分别为5.9%、6.6%、8.9%和7.7%.应对不同的干旱致死情况,蒙古莸幼苗各器官间非结构性碳水化合物呈现出不同的动态变化.在慢速干旱致死胁迫下,NSC优先为维持各器官生理代谢活动提供能量;而在快速干旱致死下,NSC主要以可溶性糖形式维持植物代谢,调节渗透势,促进吸水,应对急剧的干旱胁迫.  相似文献   

6.
在福建三明陈大国有采育场杉木幼苗小区,采用土钻法和内生长环法,以非隔离降水为对照,对隔离降水50%处理一年的杉木幼苗细根生物量和形态、化学计量学、比根呼吸、非结构性碳水化合物等功能特征进行研究.结果表明: 与对照相比,隔离降水处理0~1 mm细根生物量显著降低,1~2 mm细根生物量差异不显著;隔离降水导致细根在形态上发生了适应性变化,0~1 mm和1~2 mm细根比根长分别增加21.1%和30.5%,0~1 mm细根组织密度显著降低,而比表面积显著增加.隔离降水导致细根氮的富集,但限制了对磷的吸收,氮磷比升高,导致营养失衡;隔离降水没有显著改变细根比根呼吸和非结构性碳水化合物含量,但导致1~2 mm细根可溶性糖、糖淀比显著降低,淀粉含量增加33.3%,表明其通过增加非结构性碳水化合物贮存比例以应对降水减少.  相似文献   

7.
高山分布上限灌木的碳与养分生理碳水化合物不足是高山林线树种生长限制假说之一,国内外以碳水化合物为基础的高山林线研究已有很多,而与高山林线相比,人们对碳水化合物在灌丛线形成中的作用知之甚少。除此之外,土壤养分亦被视为限制高山树种向上分布的重要因素之一。本研究将探究欧亚多种高山灌木不同器官中非结构性碳水化合物(NSCs)、氮(N)和磷(P)在不同季节及高低海拔上的含量变化规律。研究结果显示,除了与夏季相比冬季细根中具有较低的P含量以外,不同海拔与季节对灌木不同器官中的N和P含量均无显著影响。冬季灌木枝条中的NSCs和可溶性糖含量显著高于夏季。海拔与季节对细根中NSCs、淀粉、可溶性糖和糖与淀粉比值的影响均有显著的交互作用。在冬季,灌木细根中的可溶性糖与淀粉含量在海拔上限处要显著低于其在低海拔处;而在夏季,这些指标在高低海拔间均无显著差异。本研究结果表明,与高山林线树种相似,海拔分布上限的灌木冬季细根中较低的非结构性碳水化合物含量可能限制了灌木的向上分布。  相似文献   

8.
植物叶片的非结构性碳水化合物(NSC)不仅可以反应植物的碳供应状况,也能反应植物对外界环境的适应策略。利用传统的蒽酮比色法测定了东北3个典型森林生态系统(呼中、凉水和长白山)242种常见植物叶片的非结构碳水化合物,探讨了温带主要森林植物叶片NSC沿纬度梯度的变化趋势及其在物种-生活型-群落间的分布规律。实验结果表明:3个典型森林生态系统植物叶片可溶性糖、淀粉和NSC含量均呈偏正态分布,多数物种的含量偏中低水平;242种植物叶片可溶性糖、淀粉和NSC的平均含量分别为63.31、65.66和128.96 mg/g。在所调查的森林生态系统中,叶片可溶性糖、淀粉和NSC含量在不同生活型中表现各异。此外,乔木植物叶片的可溶性糖、淀粉和NSC含量从北到南呈递增趋势,呼中最低,凉水次之,长白山最高。乔木淀粉含量均表现为落叶树种大于常绿树种,可溶性糖和NSC含量变化趋势复杂。研究结果不仅为阐明东北主要森林生态系统植被碳代谢和生长适应对策提供数据基础,而且对理解植物对未来气候变化的响应机理提供数据支撑。  相似文献   

9.
人类活动加剧和全球变化导致植物在生长季同时受到高浓度地表臭氧(O_3)和干旱的双重胁迫。为了探究两者对植物非结构性碳水化合物(TNC)积累和分配的影响,该实验采用开顶式气室研究了2种O_3浓度(CF,过滤空气; NF40, NF (未过滤空气)+40nmol·mol~(–1)O_3)和2个水分处理(对照,充分灌溉;干旱,非充分灌溉)及其交互作用对杨树基因型‘546’(Populusdeltoides cv.‘55/56’×P. deltoides cv.‘Imperial’)叶片和细根中TNC及其组分(葡萄糖、果糖、蔗糖、多糖、总可溶性糖和淀粉)含量的影响。结果表明:O_3浓度升高显著降低杨树叶片中淀粉和TNC的含量,增加葡萄糖、果糖和总可溶性糖含量,但对细根中淀粉和总可溶性糖含量的影响不显著。干旱胁迫显著增加细根中果糖和多糖含量,降低蔗糖含量,但对叶片中淀粉和总可溶性糖含量的影响不显著。充分灌溉下O_3浓度升高显著增加了杨树叶片多糖和总可溶性糖含量,而干旱下O_3浓度升高显著增加了TNC含量的根叶比。该研究结果发现O_3主要影响叶片中TNC及各组分的含量,而干旱主要影响细根中TNC及各组分的含量。从杨树叶片TNC的响应来看,适度的水分限制有助于减缓O_3的负面伤害。  相似文献   

10.
在聚类分析的基础上,研究云南普洱季风常绿阔叶林主要物种非结构性碳水化合物(NSC)及其组分浓度、分配和季节性动态在林冠层、亚冠层和林下层间的变化特征.结果表明:亚冠层中可溶性糖及NSC浓度最高,分别为3.9%和13.3%,可溶性糖淀粉比在林下层最低,为0.76,而淀粉浓度则在各林层间无显著性差异.3个林层的可溶性糖均主要分配在叶片中,淀粉和NSC主要分配在根中.亚冠层中叶片和树干的可溶性糖浓度显著高于林冠层和林下层,枝和根的可溶性糖浓度在3个林层间无显著性差异;叶片的淀粉浓度则随林层高度降低而增加,但根淀粉浓度则是在林下层最低,为10.7%,枝和树干的淀粉浓度在3个林层间无显著差异;叶片NSC浓度为林冠层(10.7%)显著低于亚冠层(12.3%)和林下层(12.0%),但根的NSC浓度在林下层中最低,为14.2%;林下层叶片、枝、树干中可溶性糖淀粉比值均最低,但根的可溶性糖淀粉比值最低值出现在林冠层(0.79).3个林层NSC及其组分均存在显著的季节性变化,可溶性糖及可溶性糖淀粉比均为雨季显著高于旱季,而淀粉和NSC浓度则均在旱季中较高.不同林层NSC及其组分浓度的差异反映了不同高度树种碳利用策略的差异,部分地解释了物种的共存机制.  相似文献   

11.
掌握树木根部碳存储规律对于准确估算碳在地上器官与地下器官间的分配非常必要。本研究以栓皮栎(Quercus variabilis Blume)为对象,在2016年5月—2017年6月,通过周期性采样方法(共计采样14次),测定了高、低海拔(970和650 m)栓皮栎粗根非结构性碳水化合物(non-structural carbohydrates,NSC)及其组分(可溶性糖和淀粉)含量的年内动态变化。结果表明:除高海拔淀粉外,栓皮栎粗根NSC及其组分含量均随季节变化差异显著(P<0.05)。粗根NSC含量呈现生长季初期(3月)下降,非生长季(2月)达到最高值的变化趋势;栓皮栎粗根NSC组成以淀粉为主,高、低海拔淀粉含量占比分别为61%和71%,这可能与栓皮栎适应区域环境特征有关。不同海拔间,栓皮栎粗根NSC及其组分含量的差异出现在生长季初期(3月,P<0.05)。高海拔(10.26%)栓皮栎粗根NSC含量小于低海拔(13.96%)。栓皮栎粗根NSC含量存在明显的季节波动,粗根在生长季末及非生长季积累的NSC对下一年树木生长启动非常重要,研究结果有助于理解树木地下器官对树木生长的碳供应机制。  相似文献   

12.
不同甘氨酸浓度对无菌水培番茄幼苗生长和氮代谢的影响   总被引:5,自引:0,他引:5  
植物不但能吸收矿质氮(NH+4-N、NO-3-N),而且也能直接吸收有机态氮,如氨基酸、小分子蛋白质等.为探讨有机态氮浓度对番茄幼苗生长和氮代谢的影响,无菌水培条件下采用2个番茄品种(申粉918、沪樱932)设置4种不同浓度(0、1.5、3.0、6 0mmol·L-1)的甘氨酸态氮(Gly-N),研究了番茄幼苗干物质重、吸氮量、氮代谢相关产物和氮代谢关键酶活性.结果表明,无菌水培条件下,随营养液中Gly浓度的增加,番茄植株干物质重、总氮量、地上部和根系游离氨基酸、可溶性蛋白、地上部可溶性糖含量增加.与无氮对照相比,各处理均显著降低了番茄地上部淀粉含量(P<0.05),而Gly浓度对根系淀粉含量无显著影响.随营养液中Gly浓度的增加,番茄地上部和根系的硝酸还原酶(NR)、谷氨酸脱氢酶(NADH-GDH)、丙转氨酶(GPT)和谷草转氨酶(GOT)活性均提高.无氮对照的NR活性与1.5 mmol·L-1 Gly处理之间差异不显著,而与3.0 mmol·L-1和6.0 mmol·L-1 Gly两处理之间差异显著(P<0.05);1.5 mmol·L-1 Gly和3.0 mmol·L-1 Gly两个处理之间的地上部NADH-GDH、GPT和GOT活性差异不显著.Gly浓度与番茄植株干物质重、总氮量呈显著正相关(R2>0.905* *),这表明两个番茄品种均能直接吸收利用甘氨酸.沪樱932吸收Gly的能力显著大于申粉918(P<0.05).因此,Gly-N可以成为番茄生长的良好氮源,其生理效应受Gly浓度的影响;不同品种番茄对Gly的吸收利用能力不同.  相似文献   

13.
"5.12"汶川大地震不仅直接摧毁森林17.3万hm2,还通过对土壤和林内生境的剧烈改变对现存森林造成潜在威胁。以地震重灾区北川的主要分布树种柏木为研究对象,在2009年6月初(夏初)和10月初(秋季)两个时期,对不同类型柏木林的叶、枝、根可溶性糖和淀粉含量进行测定分析,旨在认识震后初期柏木对逆境胁迫的生理响应,为研究大地震对植物体内碳水化合物的影响和对逆境的适应性提供科学依据。结果表明:地震对柏木体内碳水化合物的含量有较大影响,总体表现为严重滑坡类型具有较高的可溶性糖含量,较低的根系淀粉含量。夏初严重滑坡类型柏木叶、枝、根可溶性糖含量分别为(11.44±1.08)%、(4.64±0.42)%、(5.48±0.51)%。就不同器官而言,可溶性糖含量叶>根>枝,淀粉含量叶>枝>根;夏初碳水化合物含量均高于秋季,且仅叶片可溶性糖和淀粉含量在不同季节存在显著性差异(P<0.05),说明柏木叶片对地震反应最为敏感。地震带来的灾害如山体滑坡等对植物的生理活动产生巨大影响,不利于林木生长。  相似文献   

14.
周朝彬  谭岷山  龚伟 《西北植物学报》2018,38(10):1877-1884
以古尔班通古特沙漠地区优势植物种梭梭(Haloxylon ammodendron)为试验材料,通过观察测定不同树龄、不同季节梭梭木质部解剖结构,计算梭梭木质部非结构性碳水化合物(NSC)及其组分的径向运输速率,分析NSC运输特征与木质部射线和导管解剖结构之间的相关性。结果表明:(1)随着树龄的增加,梭梭导管和射线解剖特征均表现出增加趋势;5月梭梭导管长度和导管直径高于其他季节,10月梭梭射线高度、射线宽度和射线细胞壁厚度均高于其他季节。(2)梭梭木质部NSC、可溶性糖和淀粉的径向运输速率随树龄增长呈显著递增趋势,但13年生与18年生树龄间的NSC、可溶性糖和淀粉的径向运输速率差异不显著。(3)5月和10月的梭梭木质部NSC径向运输速率显著高于7月(P<0.05);可溶性糖径向运输速率表现为5月最高、7月最低;淀粉径向运输速率从5月到10月呈显著递减趋势。(4)相关分析结果显示,可溶性糖径向运输速率与导管长度(P<0.05)、导管直径和射线高度呈显著正相关关系(P<0.01);淀粉径向运输速率与导管长度、导管直径间呈极显著正相关关系(P<0.01);NSC径向运输速率与导管直径、射线高度间呈极显著正相关关系。研究认为,梭梭木质部径向运输功能与木射线和导管解剖结构有关,且呈明显季节动态变化。  相似文献   

15.
以实生桃(Prunus persica)苗为试材, 探讨SnRK1对不同浓度蔗糖及处理时间的响应特性, 揭示蔗糖对植株生长发育的影响, 以期为果树生产提供理论依据及技术支持。结果表明, 施加5%蔗糖时, 植株体内SnRK1酶活性最高, 且在一定时间内, 酶活性持续升高; 与对照(清水和甘露醇)相比, 5%蔗糖处理显著提高植株可溶性糖、淀粉和叶片叶绿素含量, 增加植株地上部和地下部生物量, 显著加快植株净光合速率; 通过观察根系构型, 发现5%蔗糖可以显著增加根系总表面积、总体积和侧根数量, 并可促进根系加粗加长生长。qRT-PCR分析表明, 外源蔗糖能促进根系中生长素的合成和转运。综上, 一定浓度蔗糖可以提高植株体内SnRK1酶活性, 影响植株碳代谢, 促进植株生长发育, 且增加根系生长素的合成与转运, 进而影响根系构型。  相似文献   

16.
以实生桃(Prunus persica)苗为试材, 探讨SnRK1对不同浓度蔗糖及处理时间的响应特性, 揭示蔗糖对植株生长发育的影响, 以期为果树生产提供理论依据及技术支持。结果表明, 施加5%蔗糖时, 植株体内SnRK1酶活性最高, 且在一定时间内, 酶活性持续升高; 与对照(清水和甘露醇)相比, 5%蔗糖处理显著提高植株可溶性糖、淀粉和叶片叶绿素含量, 增加植株地上部和地下部生物量, 显著加快植株净光合速率; 通过观察根系构型, 发现5%蔗糖可以显著增加根系总表面积、总体积和侧根数量, 并可促进根系加粗加长生长。qRT-PCR分析表明, 外源蔗糖能促进根系中生长素的合成和转运。综上, 一定浓度蔗糖可以提高植株体内SnRK1酶活性, 影响植株碳代谢, 促进植株生长发育, 且增加根系生长素的合成与转运, 进而影响根系构型。  相似文献   

17.
 Beech seedlings were grown under 8%, 13%, 23% and 100% relative light intensity for 2 years after germination. Starch, sucrose and monosaccharides from the bark and wood parenchyma of shoots and roots were analyzed during the course of the second year. The annual allocation pattern of starch revealed five successive phases: starch disintegration in November (1) was paralleled by high monosaccharide concentrations in the shoot cortex (≤ 33.4 mg/g DW). Seedlings of all light variants reached maximum sucrose concentrations (≤ 82.8 mg/g DW) during starch disintegration in January (2) that coincided with decreased monosaccharide contents. Up to mid-April, resynthesis of starch (3) occurred in most shaded and unshaded seedlings. In May, starch was converted into monosaccharides in all storage tissues (4). Seedlings grown under 13% light intensity showed de novo synthesis of starch (5) 4 weeks after bud burst. These seedlings reached 98% maximum starch storage capacity of the shoot and 89% of the root in July. In mid-October, the maximum starch concentration of the roots increased with light intensity, and this corresponded with an increase of lateral root growth. The variation of shoot and root dry weight was closely related to the content of nonstructural carbohydrates during the second year. The shift of shoot growth to the first half of the growing season and the suppression of lateral root growth during the second half is assumed to be a strategy of young beech to survive under light limiting conditions. Received: 22 May 1997 / Accepted: 10 October 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号