首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A dynamic model of the closed-state pore of an acetylcholine receptor (five M2 α-helices stabilized with a (CH2)105 ring) is used to examine the migration of uncharged and charged probe particles equivalent to a hexahydrated sodium ion (van der Waals diameter 7.27 Å) propelled by varied external force along the channel axis. Ion movement through the pore is hindered by steric constraints and electrostatic interactions. The van der Waals gate is formed by helix residues 13′ (A-Val255, B-Val261, C-Val269, D-Val255, and E-Ile264), whereas the negatively charged residues in the upper part of the channel are important for ion selectivity.  相似文献   

2.
The energetic profile of an ion translated along the axis of an ion channel should reveal whether the structure corresponds to a functionally open or closed state of the channel. In this study, we explore the combined use of Poisson–Boltzmann electrostatic calculations and evaluation of van der Waals interactions between ion and pore to provide an initial appraisal of the gating state of a channel. This approach is exemplified by its application to the bacterial inward rectifier potassium channel KirBac3.1, where it reveals the closed gate to be formed by a ring of leucine (L124) side chains. We have extended this analysis to a comparative survey of gating profiles, including model hydrophobic nanopores, the nicotinic acetylcholine receptor, and a number of potassium channel structures and models. This enables us to identify three gating regimes, and to show the limitation of this computationally inexpensive method. For a (closed) gate radius of 0.4 nm < R < 0.8 nm, a hydrophobic gate may be present. For a gate radius of 0.2 nm < R < 0.4 nm, both electrostatic and van der Waals interactions will contribute to the barrier height. Below R = 0.2 nm, repulsive van der Waals interactions are likely to dominate, resulting in a sterically occluded gate. In general, the method is more useful when the channel is wider; for narrower channels, the flexibility of the protein may allow otherwise-unsurmountable energetic barriers to be overcome.  相似文献   

3.
Gap junctions represent a ubiquitous and integral part of multicellular organisms, providing the only conduit for direct exchange of nutrients, messengers and ions between neighboring cells. However, at the molecular level we have limited knowledge of their endogenous permeants and selectivity features. By probing the accessibility of systematically substituted cysteine residues to thiol blockers (a technique called SCAM), we have identified the pore-lining residues of a gap junction channel composed of Cx32. Analysis of 45 sites in perfused Xenopus oocyte pairs defined M3 as the major pore-lining helix, with M2 (open state) or M1 (closed state) also contributing to the wider cytoplasmic opening of the channel. Additional mapping of a close association between M3 and M4 allowed the helices of the low resolution map (Unger et al., 1999. Science. 283:1176-1180) to be tentatively assigned to the connexin transmembrane domains. Contrary to previous conceptions of the gap junction channel, the residues lining the pore are largely hydrophobic. This indicates that the selective permeabilities of this unique channel class may result from novel mechanisms, including complex van der Waals interactions of permeants with the pore wall, rather than mechanisms involving fixed charges or chelation chemistry as reported for other ion channels.  相似文献   

4.
Ion transport through a gramicidin A like channel in the presence of solvent molecules with van der Waals parameters of water has been studied by means of the molecular dynamics simulation technique. It was found that the presence of solvent molecules in the channel has a tendency to equalize the effective masses of the ions through "association" thus giving the experimentally found ion selectivity to the gramicidin A channel.  相似文献   

5.
Open-state models of a potassium channel   总被引:2,自引:0,他引:2       下载免费PDF全文
The structure of the bacterial potassium channel, KcsA, corresponds to the channel in a closed state. Two lines of evidence suggest that the channel must widen its intracellular mouth when in an open state: 1) internal block by a series of tetraalkylammonium ions and 2) spin labeling experiments. Thus it is known that the protein moves in this region, but it is unclear by how much and the mechanisms that are involved. To address this issue we have applied a novel approach to generate plausible open-state models of KcsA. The approach can be thought of as placing a balloon inside the channel and gradually inflating it. Only the protein sees the balloon, and so water is free to move in and out of the channel. The balloon is a van der Waals sphere whose parameters change by a small amount at each time step, an approach similar to methods used in free energy perturbation calculations. We show that positioning of this balloon at various positions along the pore axis generates similar open-state models, thus indicating that there may be a preferred pathway to an open state. We also show that the resulting structures from this process are conformationally unstable and need to undergo a relaxation process for up to 4 ns. We show that the channel can relax into a new state that has a larger pore radius at the region of the intracellular mouth. The resulting models may be useful in exploring models of the channel in the context of ion permeation and blocking agents.  相似文献   

6.
A critical role of the Family 7 cellobiohydrolase (Cel7A) carbohydrate binding domain (CBD) is to bind to a cellulose surface and increase the enzyme concentration on the surface. Several residues of Trichoderma reesei Cel7A CBD, including Y5, N29, Y31, Y32 and Q34, contribute to cellulose binding, as revealed by early experimental studies. To investigate the interactions between these important residues and cellulose, we applied a thermodynamic integration method to calculate the cellulose–Cel7A CBD binding free energy changes caused by Y5A, N29A, Y31A, Y32A and Q34A mutations. The experimental binding trend was successfully predicted, proving the effectiveness of the complex model. For the two polar residue mutants N29A and Q34A, the changes in the electrostatics are comparable to those of van der Waals, while for three Y to A mutants, the free energy differences mainly come from van der Waals interactions. However, in both cases, the electrostatics dominates the interactions between individual residues and cellulose. The side chains of these residues are rigidified after the complex is formed. The binding free energy changes for the two mutants Y5W and Y31W were also determined, and for these the van der Waals interaction was strengthened but the electrostatics was weakened.  相似文献   

7.
Regulation of membrane protein functions due to hydrophobic coupling with a lipid bilayer has been investigated. An energy formula describing interactions between lipid bilayer and integral ion channels with different structures, which is based on the screened Coulomb interaction approximation, has been developed. Here the interaction energy is represented as being due to charge-based interactions between channel and lipid bilayer. The hydrophobic bilayer thickness channel length mismatch is found to induce channel destabilization exponentially while negative lipid curvature linearly. Experimental parameters related to channel dynamics are consistent with theoretical predictions. To measure comparable energy parameters directly in the system and to elucidate the mechanism at an atomistic level we performed molecular dynamics (MD) simulations of the ion channel forming peptide–lipid complexes. MD simulations indicate that peptides and lipids experience electrostatic and van der Waals interactions for short period of time when found within each other’s proximity. The energies from these two interactions are found to be similar to the energies derived theoretically using the screened Coulomb and the van der Waals interactions between peptides (in ion channel) and lipids (in lipid bilayer) due to mainly their charge properties. The results of in silico MD studies taken together with experimental observable parameters and theoretical energetic predictions suggest that the peptides induce ion channels inside lipid membranes due to peptide–lipid physical interactions. This study provides a new insight helping better understand of the underlying mechanisms of membrane protein functions in cell membrane leading to important biological implications.  相似文献   

8.
The crystal structure of the cooperative dimeric hemoglobin from the arcid clam, Scapharca inaequivalvis, has been determined in the carbonmonoxy state. The phase problem was solved for reflections with Bragg spacings greater than 3 A using anomalous scattering from the porphyrin iron atoms measured at a single wavelength in combination with molecular averaging. The model built into this electron density map has been refined at 2.4 A resolution by means of stereochemically restrained least squares minimization to a conventional R-value of 0.156. The root mean square deviation from ideal bond lengths and angles are 0.013 A and 1.7 degrees, respectively. In addition to the 2336 hemoglobin atoms, 214 water molecules have been incorporated into the model. This structure reveals the details of an assemblage of two identical myoglobin-like subunits that is radically different from vertebrate hemoglobins. The subunit interface is formed by direct apposition of the E and F helices, whereas these surfaces are external in vertebrate hemoglobins. The interface has both hydrophobic and hydrophilic character. Two symmetrically related hydrophobic regions are formed between subunits. Six residues are involved in each of these regions that pack tightly enough to exclude water but have only a few atoms in close van der Waals contact. A number of ordered water molecules line the interface and form bridging hydrogen bonds between subunits. Four intersubunit ionic interactions are formed, two of which involve negatively charged propionate groups of the porphyrin. In contrast to cooperative vertebrate hemoglobins, a hydrogen bond network provides a direct route for communication between the two heme groups.  相似文献   

9.
The human immunodeficiency virus type I (HIV-1) Vpu protein is 81 residues long and has two cytoplasmic and one transmembrane (TM) helical domains. The TM domain oligomerizes to form a monovalent cation selective ion channel and facilitates viral release from host cells. Exactly how many TM domains oligomerize to form the pore is still not understood, with experimental studies indicating the existence of a variety of oligomerization states. In this study, molecular dynamics (MD) simulations were performed to investigate the propensity of the Vpu TM domain to exist in tetrameric, pentameric, and hexameric forms. Starting with an idealized α-helical representation of the TM domain, a thorough search for the possible orientations of the monomer units within each oligomeric form was carried out using replica-exchange MD simulations in an implicit membrane environment. Extensive simulations in a fully hydrated lipid bilayer environment on representative structures obtained from the above approach showed the pentamer to be the most stable oligomeric state, with interhelical van der Waals interactions being critical for stability of the pentamer. Atomic details of the factors responsible for stable pentamer structures are presented. The structural features of the pentamer models are consistent with existing experimental information on the ion channel activity, existence of a kink around the Ile17, and the location of tetherin binding residues. Ser23 is proposed to play an important role in ion channel activity of Vpu and possibly in virus propagation.  相似文献   

10.
The iron-sulfur flavoenzyme adenosine-5'-phosphosulfate (APS) reductase catalyzes a key reaction of the global sulfur cycle by reversibly transforming APS to sulfite and AMP. The structures of the dissimilatory enzyme from Archaeoglobus fulgidus in the reduced state (FAD(red)) and in the sulfite adduct state (FAD-sulfite-AMP) have been recently elucidated at 1.6 and 2.5 A resolution, respectively. Here we present new structural features of the enzyme trapped in four different catalytically relevant states that provide us with a detailed picture of its reaction cycle. In the oxidized state (FAD(ox)), the isoalloxazine moiety of the FAD cofactor exhibits a similarly bent conformation as observed in the structure of the reduced enzyme. In the APS-bound state (FAD(ox)-APS), the substrate APS is embedded into a 17 A long substrate channel in such a way that the isoalloxazine ring is pushed toward the channel bottom, thereby producing a compressed enzyme-substrate complex. A clamp formed by residues ArgA317 and LeuA278 to fix the adenine ring and the curved APS conformation appear to be key factors to hold APS in a strained conformation. This energy-rich state is relaxed during the attack of APS on the reduced FAD. A relaxed FAD-sulfite adduct is observed in the structure of the FAD-sulfite state. Finally, a FAD-sulfite-AMP1 state with AMP within van der Waals distance of the sulfite adduct could be characterized. This structure documents how adjacent negative charges are stabilized by the protein matrix which is crucial for forming APS from AMP and sulfite in the reverse reaction.  相似文献   

11.
The crystal and molecular structure of the nonapeptide antibiotic leucinostatin A, containing some uncommon amino acids and three Aib residues, has been determined by x-ray diffraction analysis. The molecule crystallizes in the orthorhombic space group P2(1)2(1)2(1), a = 10.924, b = 17.810, c = 40.50 A, C62H111N11O13, HCl.H2O, Z = 4. The peptide backbone folds in a regular right-handed alpha-helix conformation, with six intramolecular i----(i + 4) hydrogen bonds, forming C13 rings. The nonapeptide chain includes at the C end an unusual beta-Ala residue, which also adopts the helical structure of the other eight residues. In the crystal the helices are linked head to tail by electrostatic and hydrogen-bond interactions, forming continuous helical rods. The crystal packing is formed by adjacent parallel and antiparallel helical rods. Between adjacent parallel helical columns there are only van der Waals contacts, while between adjacent antiparallel helical columns hydrogen-bond interactions are formed.  相似文献   

12.
Loop-gating is one of two voltage-dependent mechanisms that regulate the open probability of connexin channels. The loop-gate permeability barrier is formed by a segment of the first extracellular loop (E1) (the parahelix) and appears to be accompanied by straightening of the bend angle between E1 and the first transmembrane domain (TM1). Here, all-atom molecular dynamics simulations are used to identify and characterize interacting van der Waals and electrostatic networks that stabilize the parahelices and TM1/E1 bend angles of the open Cx26 hemichannel. Dynamic fluctuations in an electrostatic network in each subunit are directly linked to the stability of parahelix structure and TM1/E1 bend angle in adjacent subunits. The electrostatic network includes charged residues that are pore-lining and thus positioned to be voltage sensors. We propose that the transition to the closed state is initiated by voltage-driven disruption of the networks that stabilize the open-state parahelix configuration, allowing the parahelix to protrude into the channel pore to form the loop-gate barrier. Straightening of the TM1/E1 bend appears to be a consequence of the reorganization of the interacting networks that accompany the conformational change of the parahelix. The electrostatic network extends across subunit boundaries, suggesting a concerted gating mechanism.  相似文献   

13.
J Marra  J Israelachvili 《Biochemistry》1985,24(17):4608-4618
We report direct measurements of the full interbilayer force laws (force vs. distance) between bilayers of various phosphatidylcholines and phosphatidylethanolamine in aqueous solutions. Bilayers were first deposited on molecularly smooth (mica) surfaces and the interbilayer forces then measured at a resolution of 1 A. Three types of forces were identified: attractive van der Waals forces, repulsive electrostatic (double-layer) forces, and (at short range) repulsive steric hydration forces. Double-layer forces, which arise from ion binding, were insignificant in monovalent salt solutions, e.g., NaCl up to 1 M, but were already present in solutions containing millimolar levels of CaCl2 and MgCl2, giving rise to forces in excellent agreement with theory. Ca2+ binds more strongly than Mg2+, and both bind less to lecithin bilayers in the fluid state (T greater than Tc). The plane of charge coincides with the location of the negative phosphate groups, while the effective plane of origin of the van der Waals force is 4-5 A farther out. In water, the adhesion energies are in the range 0.10-0.15 erg/cm2 for lecithins and approximately 0.8 erg/cm2 for phosphatidylethanolamine. The adhesion energies vary on addition of salt due to changes in the repulsive double-layer and hydration forces rather than to a change in the attractive van der Waals force. The short-range repulsive forces which balance the van der Waals force at separations of 10-30 A are due to a combination of hydration and steric repulsions, the latter arising from thermal motions of head groups and thickness fluctuations of fluid bilayers (above Tc). It is also concluded that bilayer fusion is not simply related to the interbilayer force law.  相似文献   

14.
We propose a theoretical novel homodimer model of the β- adrenergic receptor (βAR) in complex with a heterogeneous mixture of free fatty acids (FFAs) and cholesterol based on first-principles calculations. We used the density-functional-based tight binding with dispersion (DFTB-D) method, which accurately evaluates van der Waals interactions between FFAs and amino acid residues in the receptor. The calculations suggest that a stable homodimer of bAR can form a complex with FFAs and cholesterol by extensive van der Waals interactions in the cell membrane, and that the heterogeneous composition of the FFAs is important for the stability of the homodimer complex. The stable van der Waals interactions propagate from one of the bAR to the other through the cholesterol and FFAs in the homodimer complex. The energy propagation in the complex has the potential to enhance molecular signaling in adipocytes, because the stability of the complex can influence anti-adiposity effects after oral treatment of the FFA components.  相似文献   

15.
The three-dimensional structure of the maltose- or maltodextrin-binding protein (Mr = 40,622) with bound maltose has been obtained by crystallographic analysis at 2.8-A resolution. The structure, which has been partially refined at 2.3 A, is ellipsoidal with overall dimensions of 30 x 40 x 65 A and divided into two distinct globular domains by a deep groove. Although each domain is built from two peptide segments from the amino- and carboxyl-terminal halves, both domains exhibit similar supersecondary structure, consisting of a central beta-pleated sheet flanked on both sides with two or three parallel alpha-helices. The groove, which has a depth of 18 A and a base of about 9 x 18 A, contains the maltodextrin-binding site. We have previously observed the same general features in the well-refined structures of six other periplasmic receptors with specificities for L-arabinose, D-galactose/D-glucose, sulfate, phosphate, leucine/isoleucine/valine, and leucine. The bound maltose is buried in the groove and almost completely inaccessible to the bulk solvent. The groove is heavily populated by polar and aromatic groups many of which are involved in extensive hydrogen-bonding and van der Waals interactions with the maltose. All the disaccharide hydroxyl groups, which form a peripheral polar surface approximately in the plane of the sugar rings, are tied in a total of 11 direct hydrogen bonds with six charged side chains, one Trp side chain, and one peptide backbone NH, and five indirect hydrogen bonds via water molecules. The maltose is wedged between four aromatic side chains. The resulting stacking of these aromatic residues on the faces of the glucosyl units provides a majority of the van der Waals contacts in the complex. The nonreducing glucosyl unit of the maltose is involved in approximately twice as many hydrogen bonds and van der Waals contacts as the glucosyl unit at the reducing end. The binding protein-maltose complex shows the best example of the extensive use of polar and aromatic residues in binding oligosaccharides. The tertiary structure of the maltodextrin-binding protein, along with the results of genetic studies by a number of investigators, has also enabled us for the first time to map the different regions on the surface of the protein involved in the interactions with the membrane-bound protein components necessary for transport of and chemotaxis toward maltodextrins. These sites permit distinction of the "open cleft" (without bound sugar) and closed (with bound sugar) conformations of the binding protein by the chemotactic signal transducer with which the maltodextrin-binding protein interacts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
HIV-1 protease (PR) and two drug-resistant variants--PR with the V82A mutation (PR(V82A)) and PR with the I84V mutation (PR(I84V))--were studied using reduced peptide analogs of five natural cleavage sites (CA-p2, p2-NC, p6pol-PR, p1-p6 and NC-p1) to understand the structural and kinetic changes. The common drug-resistant mutations V82A and I84V alter residues forming the substrate-binding site. Eight crystal structures were refined at resolutions of 1.10-1.60 A. Differences in the PR-analog interactions depended on the peptide sequence and were consistent with the relative inhibition. Analog p6(pol)-PR formed more hydrogen bonds of P2 Asn with PR and fewer van der Waals contacts at P1' Pro compared with those formed by CA-p2 or p2-NC in PR complexes. The P3 Gly in p1-p6 provided fewer van der Waals contacts and hydrogen bonds at P2-P3 and more water-mediated interactions. PR(I84V) showed reduced van der Waals interactions with inhibitor compared with PR, which was consistent with kinetic data. The structures suggest that the binding affinity for mutants is modulated by the conformational flexibility of the substrate analogs. The complexes of PR(V82A) showed smaller shifts of the main chain atoms of Ala82 relative to PR, but more movement of the peptide analog, compared to complexes with clinical inhibitors. PR(V82A) was able to compensate for the loss of interaction with inhibitor caused by mutation, in agreement with kinetic data, but substrate analogs have more flexibility than the drugs to accommodate the structural changes caused by mutation. Hence, these structures help to explain how HIV can develop drug resistance while retaining the ability of PR to hydrolyze natural substrates.  相似文献   

17.
Sphingomonas sp. A1 possesses a high molecular weight (HMW) alginate uptake system composed of a novel pit formed on the cell surface and a pit-dependent ATP-binding cassette (ABC) transporter in the inner membrane. The transportation of HMW alginate from the pit to the ABC transporter is mediated by the periplasmic HMW alginate-binding proteins AlgQ1 and AlgQ2. We determined the crystal structure of AlgQ2 complexed with an alginate tetrasaccharide using an alginate-free (apo) form as a search model and refined it at 1.6-A resolution. One tetrasaccharide was found between the N and C-terminal domains, which are connected by three extended hinge loops. The tetrasaccharide complex took on a closed domain form, in contrast to the open domain form of the apo form. The tetrasaccharide was bound in the cleft between the domains through van der Waals interactions and the formation of hydrogen bonds. Among the four sugar residues, the nonreducing end residue was located at the bottom of the cleft and exhibited the largest number of interactions with the surrounding amino acid residues, suggesting that AlgQ2 mainly recognizes and binds to the nonreducing part of a HMW alginate and delivers the polymer to the ABC transporter through conformational changes (open and closed forms) of the two domains.  相似文献   

18.
The impact on the cation-transport free-energy profile of replacing the C-terminal ethanolamine in the gramicidin A channel with a taurine residue is studied using molecular dynamics simulations of gramicidin A (1JNO) embedded in a lipid bilayer (DMPC) with 1 mol/kg NaCl saline solution. The potential of mean force for ion transport is obtained by umbrella sampling. The presence of a negatively charged sulfonate group at the entrance of the gramicidin channel affects the depth and the location of the binding sites, producing a strong attraction for the cations in the bulk. The potential of mean force by the sulfonate acting directly through electrostatics and van der Waals interactions on the test ion is highly modulated by indirect effects (i.e., sulfonate effects on other components of the system that, in turn, affect the ion free-energy profile in the channel). Because the “entry” sites are located symmetrically at both entry and exit of the channel, the deeper free-energy wells should inhibit exit. Given that the channel has increased conductance experimentally, the simulation results suggest that the channel conductance is normally entry limited.  相似文献   

19.
Comparative binding energy (COMBINE) analysis was conducted for 18 substrates of the haloalkane dehalogenase from Xanthobacter autotrophicus GJ10 (DhlA): 1-chlorobutane, 1-chlorohexane, dichloromethane, 1,2-dichloroethane, 1,2-dichloropropane, 2-chloroethanol, epichlorohydrine, 2-chloroacetonitrile, 2-chloroacetamide, and their brominated analogues. The purpose of the COMBINE analysis was to identify the amino acid residues determining the substrate specificity of the haloalkane dehalogenase. This knowledge is essential for the tailoring of this enzyme for biotechnological applications. Complexes of the enzyme with these substrates were modeled and then refined by molecular mechanics energy minimization. The intermolecular enzyme-substrate energy was decomposed into residue-wise van der Waals and electrostatic contributions and complemented by surface area dependent and electrostatic desolvation terms. Partial least-squares projection to latent structures analysis was then used to establish relationships between the energy contributions and the experimental apparent dissociation constants. A model containing van der Waals and electrostatic intermolecular interaction energy contributions calculated using the AMBER force field explained 91% (73% cross-validated) of the quantitative variance in the apparent dissociation constants. A model based on van der Waals intermolecular contributions from AMBER and electrostatic interactions derived from the Poisson-Boltzmann equation explained 93% (74% cross-validated) of the quantitative variance. COMBINE models predicted correctly the change in apparent dissociation constants upon single-point mutation of DhlA for six enzyme-substrate complexes. The amino acid residues contributing most significantly to the substrate specificity of DhlA were identified; they include Asp124, Trp125, Phe164, Phe172, Trp175, Phe222, Pro223, and Leu263. These residues are suitable targets for modification by site-directed mutagenesis.  相似文献   

20.
Lee J  Shin S 《Biophysical journal》2001,81(5):2507-2516
We have studied the mechanism of formation of a 16-residue beta-hairpin from the protein GB1 using molecular dynamics simulations in an aqueous environment. The analysis of unfolding trajectories at high temperatures suggests a refolding pathway consisting of several transient intermediates. The changes in the interaction energies of residues are related with the structural changes during the unfolding of the hairpin. The electrostatic energies of the residues in the turn region are found to be responsible for the transition between the folded state and the hydrophobic core state. The van der Waals interaction energies of the residues in the hydrophobic core reflect the behavior of the radius of gyration of the core region. We have examined the opposing influences of the protein-protein (PP) energy, which favors the native state, and the protein-solvent (PS) energy, which favors unfolding, in the formation of the beta-hairpin structure. It is found that the behavior of the electrostatic components of PP and PS energies reflects the structural changes associated with the loss of backbone hydrogen bonding. Relative changes in the PP and PS van der Waals interactions are related with the disruption of the hydrophobic core of a protein. The results of the simulations support the hydrophobic collapse mechanism of beta-hairpin folding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号