首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two trials were conducted in a 2?×?2?+?1 factorial arrangement based on a completely randomized design to evaluate the effects of different sources of selenium (Se) on performance, blood metabolites, and nutrient digestibility in male lambs on a barley-based diet. The first trial lasted for 70 days and consisted of 30 lambs (35.6?±?2.6 kg mean body weight, about 4–5 months of age) which were randomly allotted to five treatments including: (1) basal diet (containing 0.06 mg Se/kg DM; control) without supplementary Se, (2) basal diet?+?0.20 mg/kg Se as sodium selenite (SeS 0.20), (3) basal diet?+?0.40 mg/kg Se as sodium selenite (SeS 0.40), (4) basal diet?+?0.20 mg/kg Se as selenium yeast (SeY 0.20), and (5) basal diet?+?0.40 mg/kg Se as selenium yeast (SeY 0.40). For the second trial, four lambs from each group of experiment 1 were randomly allocated to individual metabolic cages for 14 days to measure the effects of dietary Se on nutrient digestibility. The results revealed that there were no significant differences for average daily gain, average daily feed intake, feed/gain ratio, hematological parameters (packed cell volume, red blood cell, white blood cell, and hemoglobin values), serum total protein, albumin, globulin, aspartate amino transferase, alkaline phosphatase, and creatine phosphokinase due to supplementation of different amounts and sources of Se in lambs. Dietary Se supplementation significantly improved (P?<?0.001) glutathione peroxidase activity in blood. Furthermore, at the end of the trial, serum tri-iodothyronine (T3) amount also increased (P?<?0.05), while serum thyroxine (T4) amount decreased (P?<?0.05). Digestibility of dry matter, organic matter, crude protein, neutral detergent fiber, and acid detergent fiber increased (P?<?0.05) by Se yeast supplementation. It may be concluded that supplementation of Se in lambs had no significant effect on performance and blood hematology, but increased blood glutathione peroxidase activity and serum T3 amount and decreased serum T4 amount as compared to non-supplemented control lambs. Furthermore, Se yeast improved nutrient digestibility in lambs.  相似文献   

2.
Hypercholesterolemia and lipid peroxidation play complementary roles in atherosclerosis. Artichoke (Cynara scolymus L., Asteraceae) leaf extract (ALE), rich in antioxidants, has cholesterol-reducing effect. We investigated the effect of ALE on serum and hepatic lipid levels and pro-oxidant–antioxidant balance in the liver and heart of hypercholesterolemic rats. Rats were fed on 4% (w/w) cholesterol and 1% cholic acid (w/w) supplemented diet for 1 month. ALE (1.5 g/kg/day) was given by gavage during the last 2 weeks. High cholesterol (HC) diet caused significant increases in serum and liver cholesterol and triglyceride levels. It increased malondialdehyde (MDA) and diene conjugate (DC) levels in both tissues. Hepatic vitamin E levels and hepatic and cardiac glutathione peroxidase (GSH-Px) activities decreased, but superoxide dismutase and glutathione transferase activities, glutathione, and vitamin C levels remained unchanged due to HC diet. Serum cholesterol and triglyceride levels and ratio of cholesterol to high-density lipoprotein (HDL)-cholesterol decreased in ALE plus HC-treated rats, but liver cholesterol and triglyceride levels remained unchanged. Significant decreases in hepatic and cardiac MDA and DC levels and increases in hepatic vitamin E and GSH-Px activities were observed in ALE-treated hypercholesterolemic rats. Our results indicate that ALE decreases serum lipids and hypercholesterolemia-induced pro-oxidant state in both tissues.  相似文献   

3.
The edible red seaweed, Gracilaria changii, was collected from the coastal area of Sarawak, Malaysia, and evaluated for its hypolipidaemic properties using high cholesterol/high fat (HF) induced male Sprague–Dawley rats. In the in vivo study, the HF diet group showed significantly higher total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), atherogenic index (AI) and body weight gain as compared to other treatment groups. At the end of treatment period, rats fed with a HF diet supplemented with 5 % freeze-dried G. changii powder had significantly reduced plasma TC (?39.19 %), LDL-C (?36.36 %), and triglycerides (TG) content (? 25.45 %). Meanwhile, 10 % seaweed powder significantly lowered the plasma TC, LDL-C and TG content by ?40.34, ?35.95 and ?30.91 % respectively, compared to the HF group. The AI of rats supplemented with 10 % seaweed powder was the lowest among the treatment groups and indicates a lowered risk for cardiovascular diseases. The plasma lipid peroxidation of the seaweed powder-fed groups was also significantly lower than the HF group, while the erythrocyte enzyme antioxidant activities of superoxide dismutase, catalase and glutathione peroxidase of the treatment groups were also improved. Diets supplemented with seaweed powder also decreased plasma aspartate aminotransferase and the alanine aminotransferase levels.  相似文献   

4.
Hypercholesterolemia and oxidative stress are known to accelerate coronary artery disease and progression of atherosclerotic lesions. In the present study, an attempt was made to evaluate the putative antihypercholesterolemic and antioxidative effects of an ethanolic extract of the oyster mushroom (Pleurotus ostreatus) and chrysin, one of its major components, in hypercholesterolemic rats. Hypercholesterolemia was induced in rats by a single intraperitoneal injection of Triton WR-1339 (300 mg/kg body weight (b.wt.)), which resulted in persistently elevated blood/serum levels of glucose, lipid profile parameters (total cholesterol, triglycerides, low-density lipoprotein-, and very low-density lipoprotein-cholesterol), and of hepatic marker enzymes (alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and lactate dehydrogenase). In addition, lowered mean activities of hepatic antioxidant enzymes (catalase, superoxide dismutase, and glutathione peroxidase) and lowered mean levels of nonenzymatic antioxidants (reduced glutathione, vitamin C, and vitamin E) were observed. Oral administration of the mushroom extract (500 mg/kg b.wt.) and chrysin (200 mg/kg b.wt.) to hypercholesterolemic rats for 7 days resulted in a significant decrease in mean blood/serum levels of glucose, lipid profile parameters, and hepatic marker enzymes and a concomitant increase in enzymatic and nonenzymatic antioxidant parameters. The hypercholesterolemia-ameliorating effect was more pronounced in chrysin-treated rats than in extract-treated rats, being almost as effective as that of the standard lipid-lowering drug, lovastatin (10 mg/kg b.wt.). These results suggest that chrysin, a major component of the oyster mushroom extract, may protect against the hypercholesterolemia and elevated serum hepatic marker enzyme levels induced in rats injected with Triton WR-1339.  相似文献   

5.
High intake of dietary fructose has been shown to exert a number of adverse metabolic effects in humans and experimental animals. The present study was proposed to elucidate the effect of Catharanthus roseus (C. roseus) leaf powder treatment on alterations in carbohydrate and lipid metabolisms in rats fed with high-fructose diet. Male Wistar rats of body weight around 180 g were divided into four groups, two of these groups (groups C and C+CR) were fed with standard pellet diet and the other two groups (groups F and F+CR) were fed with high-fructose (66 %) diet. C. roseus leaf powder suspension in water (100 mg/kg body weight/day) was administered orally to group C+CR and group F+CR. At the end of a 60-day experimental period, biochemical parameters related to carbohydrate and lipid metabolisms were assayed. C. roseus treatment completely prevented the fructose-induced increased body weight, hyperglycemia, and hypertriglyceridemia. Hyperinsulinemia and insulin resistance observed in group F was significantly decreased with C. roseus treatment in group F+CR. The alterations observed in the activities of enzymes of carbohydrate and lipid metabolisms and contents of hepatic tissue lipids in group F rats were significantly restored to near normal values by C. roseus treatment in group F+CR. In conclusion, our study demonstrates that C. roseus treatment is effective in preventing fructose-induced insulin resistance and hypertriglyceridemia while attenuating the fructose-induced alterations in carbohydrate and lipid metabolisms. This study suggests that the plant can be used as an adjuvant for the prevention and/or management of insulin resistance and disorders related to it.  相似文献   

6.
The main aim of this study was to investigate the beneficial effects of hydro-alcoholic extract of Caralluma fimbriata (CFE) on the effects of high-fat diet feeding on insulin resistance and oxidative stress in Wistar rats. High-fat diet (60 % of fat) and CFE (200 mg/kg body weight/day) were given concurrently to the rats for a period of 90 days. Feeding with high-fat diet resulted in the development of hyperglycemia, hyperinsulinemia, hyperleptinemia, and hypertriglyceridemia and impaired insulin sensitivity (P?<?0.05). Administration of CFE to high-fat diet-fed rats for 90 days resulted in a significant improvement in plasma glucose, insulin, leptin, and triglycerides. Regarding liver antioxidant status, high-fat fed rats showed higher levels of lipid peroxidation, protein oxidation and lower GSH levels and lower activities of enzymatic antioxidants, while CFE treatment prevented all these observed abnormalities. In conclusion, intake of CFE may be beneficial for the suppression of high-fat diet-induced insulin resistance and oxidative stress.  相似文献   

7.
Delignined corncob residue hydrolysate (DCCRH) and detoxified DCCRH were used for single cell oil (SCO) and single cell protein (SCP) production of Cryptococcus curvatus ATCC 96219 and for sophorolipid (SL) production of Wickerhamiella domercqiae var. sophorolipid CGMCC 1576. Both C. curvatus and W. domercqiae could utilize glucose in DCCRH to grow and accumulate lipids or particle-shaped SLs. DCCRH detoxification by activated carbon adsorption not only improved cell growth and lipid accumulation of C. curvatus but also increased SL production and proportion of lactonic SL in total SL. A total biomass of 17.36 g/l with a lipid content of 44.36 % could be achieved after cultivation of C. curvatus on the detoxified DCCRH. The predominant fatty acids of the produced SCO were oleic, stearic, and palmitic acids (27.2, 20.5, and 15.7 %, respectively). When W. domercqiae cells were cultivated on DCCRH and SCO, total SL production of 39.08 g/l (DCCRH?+?SCO) and 42.06 g/l (detoxified DCCRH?+?SCO) were obtained. Furthermore, when cell lysate of C. curvatus, oleic acid, and DCCRH/detoxified DCCRH was used as nitrogen and carbon sources, total SL production reached 37.19 g/l and 48.97 g/l, respectively. These results demonstrated that renewable DCCRH can be utilized for the production of high-value SCO and SLs.  相似文献   

8.
Some causal bases of stroke remain unclear, but the nutritional effects on the epigenetic regulation of different genes may be involved. The aim was to assess the impact of epigenetic processes of human tumor necrosis factor (TNF-α) and paraoxonase (PON) promoters in the susceptibility to stroke when considering body composition and dietary intake. Twenty-four patients (12 non-stroke/12 stroke) were matched by sex (12 male/12 female), age (mean 70?±?12 years old), and BMI (12 normal-weight/12 obese; mean 28.1?±?6.7 kg/m2). Blood cell DNA was isolated and DNA methylation levels of TNF-α (?186 to +349 bp) and PON (?231 to +250 bp) promoters were analyzed by the Sequenom EpiTYPER approach. Histone modifications (H3K9ac and H3K4me3) were analyzed also by chromatin immunoprecipitation in a region of TNF-α (?297 to ?185). Total TNF-α promoter methylation was lower in stroke patients (p?<?0.001) and showed no interaction with body composition (p?=?0.807). TNF-α and PON total methylation levels correlated each other (r?=?0.44; p?=?0.031), especially in stroke patients (r?=?0.72; p?=?0.008). The +309 CpG methylation site from TNF-α promoter was related to body weight (p?=?0.027) and the region containing three CpGs (from ?170 to ?162 bp) to the percentage of lipid intake and dietary indexes (p?<?0.05) in non-stroke patients. The methylation of PON +15 and +241 CpGs was related to body weight (p?=?0.021), waist circumference (p?=?0.020), and energy intake (p?=?0.018), whereas +214 was associated to the quality of the diet (p?<?0.05) in non-stroke patients. When comparing stroke vs non-stroke patients regarding the histone modifications analyzed at TNF-α promoter, no changes were found, although a significant association was identified between circulating TNF-α level and H3K9ac with H3K4me3. TNF-α and PON promoter methylation levels could be involved in the susceptibility to stroke and obesity outcome, respectively. The dietary intake and body composition may influence this epigenetic regulation in non-stroke patients.  相似文献   

9.
The effects of copper/zinc-loaded montmorillonite (Cu/Zn-Mt) on growth performance, mineral retention, intestinal morphology, mucosa antioxidant capacity, and cytokine contents in weaned piglets were investigated in the present study. One hundred eight piglets weaned at 21?±?1 days of age (Duroc × Landrace× Yorkshire; average initial weight of 6.36 kg) were allotted to three treatments for 2 weeks. The three treatments were as follows: (1) control group: basal diet; (2) Cu/Zn-Mt group: basal diet?+?39 mg/kg Cu and 75 mg/kg Zn as Cu/Zn-Mt; (3) Cu?+?Zn?+?Mt group: basal diet?+?mixture of CuSO4, ZnSO4, and Mt (equal amount of Cu, Zn, and Mt to the Cu/Zn-Mt group). Each treatment had six pens of six piglets. The results showed that as compared with the control group and the Cu?+?Zn?+?Mt group, Cu/Zn-Mt supplementation increased (P?<?0.05) the average daily gain and the gain/feed ratio; Cu/Zn-Mt supplementation increased (P?<?0.05) the Cu and Zn concentrations in serum, jejunum, and ileum mucosa, villus height, the ratio of villus height to crypt depth, and the activities of SOD, GSH-Px, and IL-10 levels, and decreased the malondialdehyde concentrations in the jejunum and ileum, and intestinal IL-1β, IL-6, and TNF-α levels. Moreover, supplementation with the mixture of CuSO4, ZnSO4, and Mt had no effect on the growth performance, but increased the mucosa Cu and Zn concentrations, intestinal morphology, antioxidant capacity, and immune function in the duodenum, while it had no effect on the above indexes in the jejunum and ileum. The results indicated that Mt could be used as a controlled carrier for Cu and Zn, which made Cu/Zn-Mt have better biological activities in the intestine than the mixture of Cu, Zn, and Mt.  相似文献   

10.
Increasing levels of a mixture of Ulva spp. produced in an integrated multi-trophic aquaculture (IMTA) system were evaluated in Nile tilapia juveniles for partial replacement of dietary fish meal. A control diet (CTRL) was compared with three experimental diets containing 10 % (U10), 15 % (U15), and 20 % (U20) of Ulva spp. meal. Triplicate groups of fish (13 g initial body weight) were fed each diet for 63 days at 26 °C. Nutrient apparent digestibility coefficients and nitrogen retention efficiency did not vary significantly among diets. By the end of the trial, all groups of fish more than tripled their initial body weight. Specific growth rate and final body weight of U10 diet were similar to CTRL and significantly higher than U15 and U20 diets. Increasing Ulva dietary incorporation levels significantly increased feed conversion ratio (FCR), from 1.0 (CTRL) to 1.4 (U20). Fish fed with U10 diet had the highest protein efficiency ratio and nitrogen retention efficiency allowing this fish to growth and reach a final body weight similar to the CTRL group. Protein content was highest in fish fed with the CTRL diet, whereas the highest lipid content was observed in fish fed with U20 diet. The results show that the incorporation of IMTA-produced Ulva meal in Nile tilapia diets is possible up to 10 % without compromising growth performance, protein utilization, and protein retention of juveniles. The high capacity of Nile tilapia to digest all experimental diets suggests that Ulva meal is a practical partial replacement for fish meal in Nile tilapia diets.  相似文献   

11.
This study investigated effects of dietary supplementation with vitamin C, vitamin E on performance, biochemical parameters, and oxidative stress induced by copper toxicity in broilers. A total of 240, 1-day-old, broilers were assigned to eight groups with three replicates of 10 chicks each. The groups were fed on the following diets: control (basal diet), vitamin C (250 mg/kg diet), vitamin E (250 mg/kg diet), vitamin C + vitamin E (250 mg/kg?+?250 mg/kg diet), and copper (300 mg/kg diet) alone or in combination with the corresponding vitamins. At the 6th week, the body weights of broilers were decreased in copper, copper + vitamin E, and copper + vitamin C + vitamin E groups compared to control. The feed conversion ratio was poor in copper group. Plasma aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase activities, iron, copper concentrations, and erythrocyte malondialdehyde were increased; plasma vitamin A and C concentrations and erythrocyte superoxide dismutase were decreased in copper group compared to control. Glutathione peroxidase, vitamin C, and iron levels were increased; aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and copper levels were decreased in copper + vitamin C group, while superoxide dismutase, glutathione peroxidase, and vitamin E concentrations were increased; aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase were decreased in copper with vitamin E group compared to copper group. The vitamin C concentrations were increased; copper, uric acid, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and malondialdehyde were decreased in copper + vitamin C + vitamin E group compared to copper group. To conclude, copper caused oxidative stress in broilers. The combination of vitamin C and vitamin E addition might alleviate the harmful effects of copper as demonstrated by decreased lipid peroxidation and hepatic enzymes.  相似文献   

12.
Crude extracts from ginseng demonstrated anti-obesity properties. Ginsenoside Rb1 is the main component of ginseng, however, there are only few studies examining its effects in obesity. In the present study, we evaluated its potential anti-obesity effects in the murine model of diet-induced obesity. Seventy male C57BL/6 mice were randomly divided to consume for 12 weeks either chow diet (N = 8) or high-fat (HF) diet (N = 62). The latter mice were then divided into four groups: diet-induced obesity group (DIO; N = 10), obesity-resistant group (OR; N = 10), HF group (N = 5), and the group whose diet was changed from HF to normal diet (DC; N = 5). Intraperitoneal injections of Rb-1 were administered daily to mice in the DIO and OR groups for 3 weeks. Body weight and energy intake were monitored, and fasting blood glucose, lipids, neuropeptide Y, Y2 receptor, and peptide YY were quantified. Compared with HF group, weight gain and food intake of DIO mice with Rb-1 injection was significantly decreased (p < 0.05). Further, levels of blood glucose and some lipids were also decreased in DIO-Rb1 group compared with HF group. Furthermore, Rb1 was also found to modulate serum levels of PYY and NPY, and mRNA expression of NPY, Y2 receptor and PYY in tissue samples of DIO mice. Taken together, ginsenoside Rb1 may be useful in the treatment of obesity via modifying the serum content and mRNA expression of NPY, Y2 receptor and PYY.  相似文献   

13.
Gene–environment interactions need to be studied to better understand the obesity. We aimed at determining whether genetic susceptibility to obesity associates with diet intake levels and whether diet intakes modify the genetic susceptibility. In 29,480 subjects of the population-based Malmö Diet and Cancer Study (MDCS), we first assessed association between 16 genome-wide association studies identified obesity-related single-nucleotide polymorphisms (SNPs) with body mass index (BMI) and associated traits. We then conducted association analyses between a genetic risk score (GRS) comprising of 13 replicated SNPs and the individual SNPs, and relative dietary intakes of fat, carbohydrates, protein, fiber and total energy intake, as well as interaction analyses on BMI and associated traits among 26,107 nondiabetic MDCS participants. GRS associated strongly with increased BMI (P = 3.6 × 10?34), fat mass (P = 6.3 × 10?28) and fat-free mass (P = 1.3 × 10?24). Higher GRS associated with lower total energy intake (P = 0.001) and higher intake of fiber (P = 2.3 × 10?4). No significant interactions were observed between GRS and the studied dietary intakes on BMI or related traits. Of the individual SNPs, after correcting for multiple comparisons, NEGR1 rs2815752 associated with diet intakes and BDNF rs4923461 showed interaction with protein intake on BMI. In conclusion, our study does not provide evidence for a major role for macronutrient-, fiber- or total energy intake levels in modifying genetic susceptibility to obesity measured as GRS. However, our data suggest that the number of risk alleles as well as some of the individual obesity loci may have a role in regulation of food and energy intake and that some individual loci may interact with diet.  相似文献   

14.
To determine the effects of sustained swimming on the use and fate of dietary nutrients in gilthead sea bream, a group of fish were forced to undertake moderate and sustained swimming (1.5 BL s?1) for 3 weeks and compared with a control group undertaking voluntary activity. The exercise group showed a significant increase in specific growth rate (C: 1.13 ± 0.05; E: 1.32 ± 0.06 % day?1, P < 0.05) with no significant change in food intake (C: 3.56 ± 0.20; E: 3.84 ± 0.03 % of body weight). The addition of 13C-starch and 15N-protein to a single meal of 1 % ration allowed analysis of the fate of both nutrients in several tissues and in their components, 6 and 24 h after force-feeding. In exercised fish improved redistribution of dietary components increased the use of carbohydrates and lipid as fuels. Gilthead sea bream have a considerable capacity for carbohydrate absorption irrespective of swimming conditions, but in trained fish 13C rose in all liver fractions with no changes in store contents. This implies higher nutrient turnover with exercise. Higher retention of dietary protein (higher 15N uptake into white muscle during the entire post-prandial period) was found under sustained exercise, highlighting the protein-sparing effect. The combined effects of a carbohydrate-rich, low-protein diet plus sustained swimming enhanced amino acid retention and also prevented excessive lipid deposition in gilthead sea bream.  相似文献   

15.
The present study investigated the underlying mechanism associated with the hypocholesterolemic activity of beta-carotene by examining its effects on the serum lipid profile, fecal cholesterol excretion, and gene expression of the major receptors, enzymes, and transporters involved in cholesterol metabolism. Female Fischer rats were divided into three groups and were fed either a control or a hypercholesterolemic diet supplemented or not supplemented with 0.2 % beta-carotene. After 6 weeks of feeding, blood, livers, and feces were collected for analysis, and quantitative real-time polymerase chain reaction (qRT-PCR) was performed. Dietary supplementation with 0.2 % beta-carotene decreased serum total cholesterol, non-HDL cholesterol, the atherogenic index, and hepatic total lipid and cholesterol contents. These changes were accompanied by an increase in the total lipid and cholesterol contents excreted in the feces. The qRT-PCR analyses demonstrated that the hypercholesterolemic diet promoted a decrease in the gene expression of sterol regulatory element-binding protein 2, 3-hydroxy-3-methylglutaryl CoA reductase, and low-density lipoprotein receptor and an increase in the gene expression of peroxisome proliferator-activated receptor α and cholesterol-7a-hydroxylase. The expression of these genes and gene expression of ATP-binding cassette subfamily G transporters 5and 8 were unaffected by beta-carotene supplementation. In conclusion, the decrease in serum cholesterol and the elevation of fecal cholesterol obtained following beta-carotene administration indicate that this substance may decrease cholesterol absorption in the intestine and increase cholesterol excretion into the feces without a direct effect on the expression of cholesterol metabolism genes.  相似文献   

16.
The present study was designed to examine the role of opioidergic and glutamatergic systems on feeding behavior in neonatal meat-type chicken. In experiment 1, FD3 neonatal broilers ICV injected with (A) saline, (B) DAMGO (µ-opioid receptor agonist, 125 pmol), (C) MK-801 (NMDA glutamate receptors antagonist, 15 nmol) and (D) combination of DAMGO plus MK-801. Experiments 2–5 were similar to experiment 1, except FD3 chicks ICV injected with CNQX (AMPA glutamate receptors antagonist, 390 nmol), AIDA (mGLU1 receptors antagonist, 2 nmol), LY341495 (mGLU2 receptors antagonist, 150 nmol) and UBP1112 (mGLU3 receptors antagonist, 2 nmol) instead of MK-801, respectively. In experiments 6–10, FD3 chicks ICV injected as the same as procedure to the experiments 1–5, except to inject with DPDPE (δ-opioid receptor agonist, 40 nmol) instead of the DAMGO. The experiments 11–15 were similar to the experiments 1–5, except neonatal broilers ICV injected with U-50488H (κ-opioid receptor agonist, 30 nmol) instead of DAMGO. Then the cumulative food intake measured until 120 min post injection. According to the results, ICV injection of DAMGO, significantly decreased food intake (P?<?0.05) while DPDPE and U-50488H increased feeding behavior compared to the control group (P?<?0.05). Co-injection of the DAMGO?+?MK-801 and DAMGO?+?AIDA, significantly decreased DAMGO-induced hypophagia in neonatal chicks (P?<?0.05). Also, co-injection of the DPDPE?+?CNQX significantly amplified DPDPE induced feeding behavior (P?<?0.05). These results suggested interconnection between central opioidergic and glutamatergic systems on feeding behavior mediates via µ- and δ-opioid receptor with NMDA, AMPA and mGLU1 receptors in FD3 neonatal broilers. These findings may shed light on the circuitry underlying interconnection between central opioidergic and glutamatergic systems on feeding behavior.  相似文献   

17.
Agrobacterium tumefaciens (EHA-105 harboring pCAMBIA 1304)-mediated transgenic plant production via direct regeneration from leaf and elite somaclones generation through indirect regeneration in Stevia rebaudiana is reported. Optimum direct regeneration frequency along with highest transformation frequency was found on MS?+?1 mg/l BAP?+?1 mg/l NAA, while indirect regeneration from callus was obtained on MS?+?1 mg/l BAP?+?2 mg/l NAA. Successful transfer of GUS-positive (GUS assay and PCR-based confirmation) transgenic as well as four somaclones up to glasshouse acclimatization has been achieved. Inter-simple sequence repeat (ISSR) profiling of transgenic and somaclonal plants showed a total of 113 bands, out of which 49 were monomorphic (43.36 %) and 64 were polymorphic (56.64 %). Transgenic plant was found to be closer to mother plant, while on the basis of steviol, stevioside, and rebaudioside A profile, somaclone S2 was found to be the best and showed maximum variability in ISSR profiling.  相似文献   

18.
The nutritional properties of seaweeds are incompletely known, and studies on nutrient bioavailability are scarce, although such information is required to evaluate seaweed as a foodstuff. In the present study, samples of wakame (Undaria pinnatifida) and nori (Porphyra purpurea) were analysed to determine their chemical composition. To evaluate the algae as dietary supplements, the effects on rats of the inclusion of these seaweeds in a standard rodent diet were investigated. The control rats were fed a diet containing 100 % standard rodent diet. The wakame diet was obtained by mixing 10 % dried wakame with 90 % standard rodent diet, and the nori diet was obtained by mixing 10 % dried nori with 80 % standard rodent diet and 10 % starch. Food intake and the body weight were measured. Nitrogen ingested and excreted were determined to calculate true digestibility, biological value, net protein utilization and nitrogen balance. Biochemical determinations were made on serum blood samples. The protein content was high (16.8 % for wakame and 33.2 % for nori), the fat content was low (1 % for wakame and 2.8 % for nori) and the carbohydrates comprised 37 % for both seaweeds. The fibre and ash contents in wakame were 16.9 and 28.3 %, respectively, and in nori, they were 7.5 and 21.3 %, respectively. Both seaweeds contain high concentrations of calcium, sodium, potassium, iron and magnesium, and the most abundant vitamin was vitamin A. Few changes were observed in the nutritional parameters, but LDL cholesterol levels were significantly lower in rats fed with seaweed-supplemented diets than in the control rats. Wakame and nori are excellent sources of nutrients and are well accepted by experimental animals.  相似文献   

19.
The objective of this study was to evaluate effects of dietary l-lysine on the intestinal mucosa and expression of cationic amino acid transporters (CAT) in weaned piglets. Twenty-eight piglets weaned at 21 days of age (Duroc × Landrace × Yorkshire; 6.51 ± 0.65 kg body weight) were assigned randomly into one of the four groups: Zein + LYS (zein-based diet + 1.35 % supplemental lysine), Zein ? LYS (zein-based diet), NF (nitrogen-free diet), and CON (basal diet). The experiment lasted for 3 weeks, during which food intake and body weight were recorded. At the end of the trial, blood was collected from the jugular vein of all pigs, followed by their euthanasia. Dietary supplementation with lysine enhanced villus height and crypt depth in the jejunum (P < 0.05). Jejunal mRNA levels for the b0,+-AT, y+LAT1 and CAT1 genes were greater (P < 0.05) in the Zein + LYS group than in the control, and the opposite was observed for CAT1. Dietary content of lysine differentially affected intestinal CAT expression to modulate absorption of lysine and other basic amino acids. Thus, transport of these nutrients is a key regulatory step in utilization of dietary protein by growing pigs and lysine in the diet influences the expression of amino acid transporters in the small intestine.  相似文献   

20.
Atherogenic dyslipidemia characterized by abnormal changes in plasma lipid profile such as low high-density lipoprotein (HDL) and increased triglyceride (TG) levels is strongly associated with atherosclerotic diseases. We aimed to evaluate the levels of pro- and antiatherogenic lipids and erythrocyte membrane cholesterol (EMC) content in normo- and dyslipidemic subjects to investigate whether EMC content could be a useful marker for clinical presentation of atherogenic dyslipidemia. Low-density lipoprotein (LDL), HDL and their subfraction levels and erythrocyte lipid content were determined in 64 normolipidemic (NLs), 42 hypercholesterolemic (HCs) and 42 mixed-type dyslipidemic subjects (MTDs). Plasma atherogenic lipid indices [small–dense LDL (sdLDL)/less-dense HDL (LHDL), TC/HDL-C, TG/HDL-C and Apo B/AI] were higher in MTDs compared to NLs (p < 0.001). The highest sdLDL level was observed in HCs (p < 0.01). Despite a slight increase in EMC level in dyslipidemic subgroups, the difference was not statistically significant. A significant negative correlation, however, was observed between EMC and sdLDL/LHDL in HCs (p < 0.035, r = ?0.386). Receiver operating characteristic curves to predict sdLDL level showed that TG and EMC levels had higher area under curve values compared to other parameters in HCs. We showed that diameters of larger LDL and HDL particles tend to shift toward smaller values in MTDs. Our results suggest that EMC content and TG levels may be a useful predictor for sdLDL level in hypercholesterolemic patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号