首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nutrients are essential for normal physiological processes in plants, and they play important roles in defence mechanisms against pathogens. Oil palms cultivated on peat are more prone to nutrient deficiency, especially micronutrients, and this may affect their susceptibility to Ganoderma species, the major threat to the sustainability of oil palm throughout South‐East Asia. This study was conducted to investigate the association of copper (Cu) and zinc (Zn) in mature oil palm to the spatial distribution of Ganoderma species in the plantations on peat. Foliar samples (frond 17) of oil palm from two plantations (Betong and Miri) on peat in Sarawak, Malaysia, were collected based on the spatial distribution pattern of Ganoderma, and total Cu and Zn were quantified spectrometrically. The experiment was conducted twice at a 1‐year interval. The concentrations of Cu and Zn were significantly lower in oil palms from infected areas in contrast to those from uninfected areas. In addition, oil palms in infected areas in Miri suffered Cu and Zn deficiencies. Furthermore, Cu and Zn were significantly lower in the oil palms in Miri that had higher Ganoderma occurrence, as compared to those in Betong, which had significantly higher Cu and Zn but lower Ganoderma occurrence.  相似文献   

2.
The taxonomy of the causal pathogen of basal stem rot of oil palms, Ganoderma is somewhat problematic at present. In order to determine the genetic distance relationship between G. boninense isolates and non-boninense isolates, a random amplified microsatellites DNA (RAMS) technique was carried out. The result was then compared with interfertility data of G. boninense that had been determined in previous mating studies to confirm the species of G. boninense. Dendrogram from cluster analysis based on UPGMA of RAMS data showed that two major clusters, I and II which separated at a genetic distance of 0.7935 were generated. Cluster I consisted of all the biological species G. boninense isolates namely CNLB, GSDK 3, PER 71, WD 814, GBL 3, GBL 6, OC, GH 02, 170 SL and 348781 while all non-boninense isolates namely G. ASAM, WRR, TFRI 129, G. RES, GJ, and CNLM were grouped together in cluster II. Although the RAMS markers showed polymorphisms in all the isolates tested, the results obtained were in agreement with the interfertility data. Therefore, the RAMS data could support the interfertility data for the identification of Ganoderma isolates.  相似文献   

3.
From comparison of the alignments of the internally transcribed spacers (ITS) of ribosomal DNA from Ganoderma associated with oil palm basal stem rot (BSR) and other Ganoderma species, two specific primer pairs were selected to provide a specific DNA amplification of pathogenic Ganoderma in oil palm. Each primer pair produced a single PCR product of about 450 bp (for primer pair IT1–IT2) and 334 bp (for primer pair IT1–IT3) when oil palm Ganoderma DNA was used. No PCR amplification product was observed when other Ganoderma species DNA was used in PCR amplification with these primer pairs. Three specific restriction enzyme sites were identified in the ITS and intergenic spacer (IGS1) regions. The restriction enzymes MluI, SacI and HinfI were used to digest the ITS-PCR product and restriction enzymes TfiI, ScaI and HincII were used to digest the IGS1-PCR product. Of the three restriction enzymes used in each rDNA region, MluI specifically digested the ITS regions, and TfiI specifically digested the IGS1 region of oil palm Ganoderma. Analysis of the published ITS nucleotide sequences of 31 Ganoderma species showed that the MluI restriction site was not present in other Ganoderma species. The use of both specific primers and restriction enzyme analysis can be applied as a standard protocol to identify pathogenic Ganoderma in oil palm. In this study, the use of specific primers and PCR-RFLP analyses of the rDNA gave consistent results for the characterisation of pathogenic Ganoderma, and indicated that Ganoderma strains associated with BSR disease in oil palms belong to a single species.  相似文献   

4.
Basal stem rot of oil palm caused by Ganoderma boninense is of major economic importance. Observations of the low incidence of disease due to Ganoderma species in natural stands, suggest that the disease is kept under control by some biological means. Trichoderma spp. are saprophytic fungi with high antagonistic activities against soil-borne pathogens. However, their abundance and distribution are soil and crop specific. Trichoderma species have been found to be concentrated in the A1 (0–30 cm) and Be soil horizons (30–60 cm), although the abundance of Trichoderma was not significantly different between the oil palm and non-oil palm ecosystems. Characterisation of Trichoderma isolates based on cultural, morphological and DNA polymorphism showed that T. harzianum, T. virens, T. koningii and T. longibrachiatum made up 72, 14, 10 and 4% of the total Trichoderma isolates isolated. As Trichoderma species are present in the oil palm ecosystem, but at lower numbers and in locations different from those desired, soil augmentation with antagonistic Trichoderma spp. can be developed as a strategy towards integrated management of basal stem rot of oil palm.  相似文献   

5.
Kawai M  Yamahara M  Ohta A 《Mycorrhiza》2008,18(4):205-210
The mating systems of most ectomycorrhizal fungi have not been elucidated because of two reasons. One is the difficulty of obtaining homokaryotic isolates for mating tests caused by the low germination rate of basidiospores, and another is the difficulty of checking dikaryotization caused by the absence or inconsistent production of clamp connections on heterokaryotic mycelia under laboratory conditions. Basidiospore germination of a few ectomycorrhizal fungi has been induced by living roots of their host plants. Based on this information, we examined methods to obtain homokaryotic isolates of Rhizopogon rubescens using its host plant, Pinus thunbergii. The basidiospores of R. rubescens appeared to germinate well on an agar plate, on which axenic pine seedlings were grown in advance to induce germination, even when the seedlings were removed from the plate at the time of spore inoculation. To enhance the production rate of clamp connections on the heterokaryotic mycelia of R. rubescens, the culture medium composition was modified. The pH of the medium was critical for the production of clamp connections, and the optimal pH was higher for the production of clamp connections than for mycelial growth. These findings made it possible to conduct mating tests, and we found that the mating system of R. rubescens is bipolar with a multiallelic mating type factor.  相似文献   

6.
The objective of this study was to assess the interactions between Scytalidium parasiticum (Sp) and Ganoderma boninense, the causal agent of basal stem rot (BSR) in oil palm (Elaeis guineensis). When compared with Scytalidium ganodermophthorum and Scytalidium sphaerosporum, Sp showed greater inhibition towards all Ganoderma isolates during dual-culture assays. At the interaction zone, coiling of host hyphae, formation of short lateral enlarged contact structures, and production of appressorium-like organs organs were observed in Sp on G. boninense. These were followed by the degradation, shrinkage, and deformation of G. boninense mycelia. Sp reduced mycelial survival and fruiting body regeneration of G. boninense. Sp's non-volatile metabolites suppressed the growth of G. boninense. Our results show that Sp could be a necrotrophic mycoparasite of G. boninense. Nursery experiments revealed that Sp was non-pathogenic to oil palm seedlings, and it could suppress Ganoderma infection and reduce disease severity. Sp increased the height of palms in the positive control with non-Ganoderma-inoculated rubber wood block and Sp inoculum compared to similar control without Sp. Leaf area was greater in the G. boninense G8 inoculated palms when Sp was present compared to without Sp. These results show that Sp might be a potential biocontrol candidate against BSR.  相似文献   

7.
Ganoderma boninense basal stem rot poses a serious threat to the oil palm industry. The effects of external disease symptoms and coastal soils (Briah – Typic Endoaquepts, Jawa – Typic Sulfaquepts, and Selangor – Typic Humaquepts) on the life expectancy of the infected palms, from disease detection to death, were studied. Six-monthly censuses on disease classes for each palm were recorded between 2004 and 2012. Survival curves of disease symptoms and soil types were compared using Kaplan–Meier and log-rank methods, respectively. Ganoderma-infected palms in acid-sulphate (AS) and potential AS soils recorded lower life expectancy. Survival duration of infected palms with foliar symptoms was 12-months shorter. External factors, such as soil type may influence the survival of infected palms and soil types may pre-dispose oil palm to higher risk of Ganoderma infection. More effective Ganoderma management for palms planted on Coastal soils (with and without AS layer) have been proposed.  相似文献   

8.
Basal Stem Rot (BSR) disease caused by Ganoderma boninense is the most destructive disease in oil palm, especially in Indonesia and Malaysia. The available control measures for BSR disease such as cultural practices and mechanical and chemical treatment have not proved satisfactory due to the fact that Ganoderma has various resting stages such as melanised mycelium, basidiospores and pseudosclerotia. Alternative control measures to overcome the Ganoderma problem are focused on the use of biological control agents and planting resistant material. Present studies conducted at Indonesian Oil Palm Research Institute (IOPRI) are focused on enhancing the use of biological control agents for Ganoderma. These activities include screening biological agents from the oil palm rhizosphere in order to evaluate their effectiveness as biological agents in glasshouse and field trials, testing their antagonistic activities in large scale experiments and eradicating potential disease inoculum with biological agents. Several promising biological agents have been isolated, mainly Trichoderma harzianum, T. viride, Gliocladium viride, Pseudomonas fluorescens, and Bacillus sp. A glasshouse and field trial for Ganoderma control indicated that treatment with T. harzianum and G. viride was superior to Bacillus sp. A large scale trial showed that the disease incidence was lower in a field treated with biological agents than in untreated fields. In a short term programme, research activities at IOPRI are currently focusing on selecting fungi that can completely degrade plant material in order to eradicate inoculum. Digging holes around the palm bole and adding empty fruit bunches have been investigated as ways to stimulate biological agents.  相似文献   

9.
Phellinus sulphurascens Pilát causes laminated root rot of coniferous species in both western North America (WNA) and Asia. Accurate somatic incompatibility tests for mapping population structures have been difficult to conduct for P. sulphurascens because no single, unambiguous criterion has allowed differentiation of homokaryotic and heterokaryotic isolates. In a population study of P. sulphurascens in WNA, two types of ITS sequences were found in the single spore and vegetative isolates. All single spore isolates (SSIs) had either ITS type-1 or type-2 whereas some vegetative isolates had both ITS types. The segregation pattern for inheritance of ITS, which we observed in SSIs from eight basidiocarps, suggested that each ITS type occurred in a different nucleus and that each basidiospore inherited only one ITS type. In four SSIs from Russia and eight heterokaryotic isolates from Japan, nine different ITS types, referred to as type-3 to -11, were detected. A variety of pairing tests conducted between known Asian and WNA homokaryon and heterokaryon isolates did not always give consistent results with respect to fungal mat morphologies and formation of demarcation lines. However, the ITS types that occurred after pairing tests did follow consistent patterns. Thus, using ITS polymorphisms and pairing tests between Asian tester isolates and 49 vegetative isolates from WNA, we were able to accurately distinguish between homokaryotic and heterokaryotic isolates.  相似文献   

10.
Pilotti CA 《Mycopathologia》2005,159(1):129-137
Oil palm (Elaeis guineensis Jacq.) has been grown in Papua New Guinea since the early 1960s. The most important disease of oil palm in PNG is a stem rot of the palm base. This is the same disease that constitutes a major threat to sustainable oil palm production in SE Asia. Investigations into the causal pathogen have revealed that the stem rots in PNG are caused predominantly by the basidiomycete Ganoderma boninense, with a minor pathogen identified as G. tornatum G. tornatum was found to have a broad host range whereas G. boninense appears to be restricted to palms. The population structure of G. boninense was investigated using inter-fertility studies between isolates collected from basal stem rots on oil palm. Although the G. boninense field populations are predominantly comprised of distinct individuals, a number of isolates were found that share single mating alleles. This indicates that out-crossing had occurred over several generations in the resident or wild population of G. boninense prior to colonization of oil palm. No direct hereditary relationship between isolates on neighbouring diseased palms was found, although an indirect link between isolates causing upper stem rot and basal stem rot was detected.  相似文献   

11.
Pathogenicity tests with Fusarium oxysporum isolated form Malaysian oil palm were made with oil palms seedlings raised form Malaysian seed as well s with wilt-susceptible seedlings gown from African seed. Oil palm seedlings grown form Malaysian seed were also inoculated with African isolates of F. oxysporum f. sp. elaeidis and F. oxysporum var. redolens. The experiments were made under normal soil moisture conditions and under water stress. F. oxysporum f. sp. elaeidis isolates form Africa were pathogenic to oil palm seedlings from Malaysian seeds but the Malaysian F oxysporum isolates were non-pathogenic to plams grown from Malaysian seed or the wilt-susceptible palms from African seed. Seedlings from Malaysian seed proved to be highly susceptible to the vascular wilt disease caused by F. oxysporum f. sp. elaeidis as 75–90% of the palms were infected. The susceptibility of the palms from Malaysian seed varied with different African isolates tested. The Yaligimba isolate from Zaire which was found to be F. oxysporum var. redolens was the most virulent. Disease was more severe when oil palm seedlings were subjected to a period of water stress. The incidence of death in the seedlings under stress conditions was 45% as compared with only 15% for palms grown under normal conditions.  相似文献   

12.
The pathogenicity of Ganoderma boninense was tested on coconut seedlings under greenhouse conditions and infection confirmed by using immunological and molecular diagnostic tools. Desiccation of older leaves and the emergence of sporophores were observed from pathogen-inoculated seedlings, whereas a control seedling does not show any pathogenic symptoms. Mature sporophores were formed within 10–13 weeks after inoculation. Polyclonal antibodies raised against mycelial proteins of Ganoderma were used for detection of Ganoderma in infected field palm and seedlings through indirect enzyme-linked immunosorbent assay technique. We adopted dot-immunobinding assay for the detection of Ganoderma from greenhouse and field samples. Under nucleic-acid-based diagnosis, G. boninense (167 bp) was detected from artificially inoculated seedlings and infected field palms by polymerase chain reaction. Apart from these, histopathological studies also support the Ganoderma pathogenicity in coconut seedlings. The pathogenicity test and combination of all the three diagnostic methods for Ganoderma could be highly reliable, rapid, sensitive and effective screening of resistance in planting material in the future.  相似文献   

13.
Existence of variability in morphological traits and growth rate of mycelium of homokaryotic single basidiospores can be exploited for the development of inter-strainal hybrids. We isolated 182 single basidiospores from mushroom bodies of P. sajor-caju, P. florida, P. eous and one wild relative of Pleurotus called Hypsizygus ulmaris. The single spores were isolated using a new technique that is less prone to contamination and more efficient than the common techniques used by earlier workers. All the isolates showed a varied range of cultural morphology. Mating types of all the isolates within the species were identified on the basis of hyphal fusion via anastomosis with the tester strains. Four compatible pairs of isolates with well prominent tuft in the contact zone were selected for dikaryon isolation. Dikaryons were used for spawn preparation and mushroom cultivation. The dikaryotic isolates with their replicates were evaluated for spawn run period, yield and biological efficiency. 42 isolates (10 di- and 32 mono-karyotic isolates) were analyzed with RAPD genetic markers. Phenotypic characters and mating types of all the 42 isolates analyzed genetically were correlated with their genetic polymorphism data. The isolates showed very large diversity both at the phenotypic and the genotypic level. Available phenotypic and genotypic data can further help in the selection of monosporous isolates for developing inter-strainal hybrids which can lead to better prospects for genetic improvement in different species of Pleurotus.  相似文献   

14.
Ganoderma boninense is a white rot basidiomycete that causes basal stem rot disease of oil palm (Elaeis guineensis). The aims of this study were to identify endophytic basidiomycetes occurring naturally within oil palm and to assess their potential as biocontrol agents against G. boninense strain PER71 in vitro. In total, 376 isolates were recovered from samples collected from the root, stem and leaves of oil palm using Ganoderma‐selective medium. Ten of these isolates (2.7% of the total 376 isolates) were identified as basidiomycetes on the basis of clamp connections and the production of poroid basidiomes after incubation in glass jars containing PDA medium for 7–12 days. The isolates were identified using ITS rDNA sequencing as Neonothopanus nambi (five isolates), Schizophyllum commune (four isolates) and Ganoderma orbiforme (one isolate). The N. nambi isolates showed the greatest antagonistic activity against G. boninense, based on 73–85% inhibition of the radial growth measurements of G. boninense in dual culture and 76–100% inhibition of G. boninense growth in a culture filtrate assay. Possible modes of action for the antagonism shown by N. nambi against G. boninense in vitro include competition for substrate availability, space and the production of non‐volatile metabolites or antibiotics that inhibited the growth of G. boninense. Further in vivo investigations are required to determine the ability of N. nambi isolates to colonize oil palm seedlings and to protect oil palm from infection when challenged with G. boninense.  相似文献   

15.
Hasan Y  Foster HL  Flood J 《Mycopathologia》2005,159(1):109-112
Three different trials to examine the cause of upper stem rot (USR) infection in oil palm failed to achieve any infection. In the first experiment, inoculum was applied as colonised rubber wood blocks or as spore suspensions. In the second experiment, particular attention was given to ensure that the Ganoderma spores were freshly collected to maintain viability but no infection was observed around the inoculation sites of any of the different oil palm tissues treated. Lastly in the third experiment, both monokaryotic and dikaryotic mycelial cultures were applied directly to cut fronds, which were protected with a moist covering, but no infection was detected after more than two years. Failure to achieve infection by direct inoculation would indicate that USR does not arise from direct infection of living tissues by Ganoderma spores or mycelium, this is probably because of insufficient inoculum potential to cause infection. It is suggested that USR infection is achieved only when a sufficiently large source of inoculum has built up in dead material, probably in frond axils, and this allows invasion of the living tissues.  相似文献   

16.
The genus Ganoderma has a worldwide distribution causing root and stem rot of many plantation crops. A limiting factor in controlling the BSR disease is the lack of reliable diagnostic method(s) for early diagnosis. In this study, we developed polyclonal antiserum for Ganoderma mycelial and extracellular protein, and evaluated its efficacy with different plant samples collected from artificially inoculated coconut seedlings and Ganoderma infected field palms. We also tested the cross-reactivity with the soil-borne and saprophytic fungus collected from different parts of coconut palm. The antisera developed against the crude mycelial protein (CMP) and extracellular protein (ECP) showed a 1:1000 titre value for the detection of Ganoderma. The CMP antisera developed showed more cross-reaction when compared to ECP antisera of Ganoderma. In the DIBA test, at a 1:10 dilution of antigen, 1:1000 dilution of CMP and ECP antisera, 1:5000 dilution of secondary antibody gave clear distinctions in colour development between healthy and diseased samples. In the DIBA test, ECP antisera detected positive control (ECP of Ganoderma MTP and CRS-1 isolate), artificially inoculated roots, infected field roots, infected basal trunk and additionally lesions gave positive reactions which were not found in the CMP antisera tested. Therefore, both ELISA and DIBA tests may be useful for screening a large number of samples and help in the detection of infection at the earliest stage of disease development and this will certainly help to adopt suitable management strategies against Ganoderma disease in palm crops in advance.  相似文献   

17.
灵芝作为一种白腐真菌,同时也是珍稀的食药用真菌,富含多种生物活性成分。液体发酵技术生产周期短、效率高、产量大、品质稳定,是开发利用灵芝资源的重要途径。近年来,灵芝属真菌菌丝体液体发酵技术的开发与应用取得了较大进展。本文对灵芝属真菌液体发酵产物的主要活性成分及其药用效果、液体发酵工艺优化和发酵产物的应用进行综述,并对本领域的未来进行展望。  相似文献   

18.
Basal stem rot caused by Ganoderma lucidum is the most serious disease in coconut and arecanut gardens. Twenty-five Ganoderma isolates were collected from different parts of India and the pathogenicity of Ganoderma was proved on coconut seedlings. Mature sporophores developed within 10–13?weeks after inoculation of pathogen under in vivo. To detect the pathogen at early stage, DNA-based technology, polymerase chain reaction was used. In this, the primers Gan1 and Gan2 produced a product of 167?bp in size for all the Ganoderma isolates tested. Simultaneously, ITS 1 and ITS 4 primers amplified a fragment of 680?bp in the Ganoderma isolates. In addition, Ganoderma isolates showed polymorphism in the random amplified polymorphic DNA analysis.  相似文献   

19.
The pathogenicity of a spiroplasma isolated from coconut palms was tested by (1) transmission experiments to palms and other plants susceptible to infection by mycoplasmas, using the suspected vector of lethal yellowing, Myndus crudus, and vectors of the agents of other yellows diseases and (2) enzyme-linked immunosorbent assay (ELISA) to detect spiroplasma antigens in diseased palm tissues. Results of both these tests were negative and, as earlier attempts to repeat the isolations from lethal yellowing diseased palms had also been unsucessful, it was concluded that this organism was not the causal agent of lethal yellowing disease. Further analysis by serological tests and by polyacrylamide gel electrophoresis (PAGE) of spiroplasma proteins confirmed that the coconut isolates were related to members of the Spiroplasma citri serogroup but were distinct from other strains tested.  相似文献   

20.
This study evaluates the effectiveness of using single-protoplast isolates (SPIs) to study the mating phenomena of Rhizoctonia solani AG-1 IC and IA. SPIs obtained from three field isolates (F-1, Rh28, and RO2) of AG-1 IC were paired with representative single-basidiospore isolate (SBI)-M1/-M2 testers, each from their own field isolates, or paired in all possible combinations. Tufts were formed between SPIs and SBI-M1/-M2 testers and between SPIs-M1 and -M2. The separation ratios of SPIs-M1 and -M2 were approximately 1:1, which were similar to the results obtained with SBIs. SPIs obtained from three isolates (GNSD, R59, and Tr8) of AG-1 IA, which failed to form basidiospores, were paired in all possible combinations. Although no tufts formed among SPIs from Tr8 and R59, tufts did form between SPIs from GNSD. SPIs from GNSD were separated into homokaryotic (-M1 or -M2) and heterokaryotic isolates, and the separation ratio of -M1 and -M2 was also around 1:1. Amplified fragment length polymorphism (AFLP) phenotypes of the tuft isolates formed between GNSD SPIs-M1 and -M2 suggested that these tuft isolates were all heterokaryotic. These results indicate that all three isolates of AG-1 IC and one isolate GNSD of AG-1 IA are heterokaryotic, and that the other two isolates of Tr8 and R59 of AG-1 IA are homokaryotic. Single-protoplast isolates are effective for studies of the mating phenomena of isolates belonging to different AGs of R. solani that could not form a perfect stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号