首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe reproductive seasonality of bottlenose dolphins in North Carolina (NC), U.S.A., using strandings data from the entire coast of NC and sighting data from Beaufort, NC and by estimating dates of birth of known females. We found a strong peak of neonate strandings in the spring (April-May), and low levels of neonate strandings in the fall and winter. The distribution of neonate strandings was significantly different from a uniform distribution ( P < 0.001, K = 3.8). We found a unimodal distribution of 282 sightings of neonates with a diffuse peak in the summer. The temporal distribution of sightings of neonates departed significantly from a uniform distribution (P < 0.001, K = 5.1). Estimated birth dates of neonates from known females occurred in May ( n = 6) and June ( n = 4), with a single fall birth. These methods shed light on bottlenose reproductive patterns and underscore the value of using information from multiple types of data. Clarification of bottlenose dolphin reproductive patterns, such as the seasonality of birth, may enhance our understanding of the population structure of this species in the mid-Atlantic region.  相似文献   

2.
3.
Common bottlenose dolphins (Tursiops truncatus) are found worldwide in temperate and tropical regions, often occurring as distinct coastal and offshore ecotypes. Along the west coast of the United States, two stocks are recognized for management based on morphological and photo‐identification studies: a California coastal stock, estimated at 450–500 individuals, and a California/Oregon/Washington offshore stock of about 1,000 animals. This study is the first to analyze genetic differentiation between these stocks. We examined both the hypervariable portion of the mitochondrial DNA (mtDNA) control region and fifteen microsatellite markers for coastal (n = 64) and offshore (n = 69) dolphins. Significant genetic differentiation was found between the two stocks for mtDNA (ΦST = 0.30, P < 0.001; FST = 0.14, P < 0.001) and microsatellite loci (FST = 0.19, P < 0.001). Coastal dolphins had less genetic diversity than offshore dolphins. Further substructuring within the offshore stock was not detected. The level of genetic differentiation between the coastal and offshore dolphins is consistent with long‐term separation and reinforces recognizing them as separate stocks. These findings are particularly important for management of the smaller, less genetically diverse, coastal stock that is vulnerable to a variety of anthropogenic threats.  相似文献   

4.
Regional populations of bottlenose dolphins (Tursiops truncatus) around New Zealand are genetically isolated from each other and the species was recently classified as nationally endangered based on relatively small population sizes and reports of high calf mortality. Here, we estimate the abundance and trends in one of these regional populations, the Bay of Islands, using a photo‐identification database collected from 1997 to 1999 and from 2003 to 2006, containing a total of 3,841 records of 317 individual dolphins. Estimates of abundance obtained with the robust design fluctuated widely but showed a significant decline in the number of dolphins present in the bay over time (7.5% annual rate of decline). Temporary emigration was random and fluctuated considerably (γ  =  0.18, SE = 0.07 to γ  =  0.84, SE = 0.06). Apparent survival was estimated at 0.928 (CI = 0.911–0.942). Seasonal estimates (26 seasons) obtained in POPAN also showed a significant decline in abundance (5.8% annual rate of decline). Despite the decline observed in local abundance, dolphins continue to be found regularly in the Bay of Islands, suggesting that fewer dolphins use the bay on regular basis. Consequently, it seems that a change in habitat use, mortality and possibly low recruitment could underlie the apparent local decline.  相似文献   

5.
Social network analysis has been shown to be effective in studying the social structure of cetacean populations. Common bottlenose dolphins (Tursiops truncatus) inhabiting the Indian River Lagoon (IRL), Florida, have among the highest concentrations of total mercury (THg) in blood reported worldwide. The purpose of this study was to examine the relationship between THg concentrations in IRL dolphins and their social affiliations. Whole blood samples from 98 dolphins with photo‐identification sighting histories were collected between 2003–2007 and 2010–2012. Dolphins were categorized into approximate tertiles of low (mean 199.7 μg/L), medium (mean 366.8 μg/L), and high (mean 990.5 μg/L) THg exposure. Social associations between individual dolphins were defined by the proportion of sightings documented with another known individual. Social network measures of individuals and associations between dyads were examined to determine differences among THg categories. Strong social affiliations of individuals within the highest category of THg were found (P = 0.04), suggesting shared exposures among dolphins foraging in specific areas of the estuary. Network measures of strength and affinity were significantly higher in the highest exposure category. This report used social network analysis as a novel way to examine patterns of exposure to an environmental contaminant in a cetacean population.  相似文献   

6.
The population structure of bottlenose dolphins, Tursiops truncatus, along the U.S. Atlantic coast has recently been redefined from one homogenous population into five coastal stocks. Local studies indicate even finer structure, primarily based on isolation of dolphins inhabiting estuaries. We identified population structuring of non‐estuarine coastal bottlenose dolphins during a study in New Jersey, the northern range along the Atlantic Coast. Using photo‐identification and distribution survey results, an analysis identified two major clusters of individuals significantly separated by five variables (distance from shoreline, group size, occurrence of the barnacle Xenobalanus globicipitis, avoidance behavior, and individual coloration). Sightings assigned to cluster 1 occurred in nearshore shallow waters (0–1.9 km, x?= 3.5 m), and those assigned to cluster 2 occurred further offshore in deeper waters (1.9–6 km, x?= 9.5 m). Only eight of 194 individuals (4%) were identified in both regions. Collectively, this suggests an occurrence of two stocks that are spatially, physically, and behaviorally distinguishable over a small distance. These results indicate that complexity in Tursiops population structure is not limited to latitudinal gradients or barriers created by estuarine habitats, but also by partitioning of habitat as a function of distance from shore and depth over small distances.  相似文献   

7.
On a global scale, false killer whales (Pseudorca crassidens) remain one of the lesser‐known delphinids. The occurrence, site fidelity, association patterns, and presence/absence of foraging in waters off northeastern New Zealand are examined from records collected between 1995 and 2012. The species was rarely encountered; however, of the 61 distinctive, photo‐identified individuals, 88.5% were resighted, with resightings up to 7 yr after initial identification, and movements as far as 650 km documented. Group sizes ranged from 20 to ca. 150. Results indicate that all individuals are linked in a single social network. Most observations were recorded in shallow (<100 m) nearshore waters. Occurrence in these continental shelf waters is likely seasonal, coinciding with the shoreward flooding of a warm current. During 91.5% of encounters, close interspecific associations with common bottlenose dolphins (Tursiops truncatus) were observed. Photo‐identification reveals repeat inter‐ and intraspecific associations among individuals with 34.2% of common bottlenose dolphins resighted together with false killer whales over 1,832 d. While foraging was observed during 39.5% of mixed‐species encounters, results suggest that social and antipredatory factors may also play a role in the formation of these mixed‐species groups.  相似文献   

8.
Coastal bottlenose dolphins (Tursiops truncatus) form a mosaic of resident and seasonal migratory populations along the United States Atlantic seaboard. Seasonal, poorly known migrants (identified as a separate stock) move as far north as New Jersey. During 2003–2005, 73 boat‐based photo‐identification surveys were conducted in southern New Jersey to discern seasonal occurrence, distribution, and patterns of movement and site fidelity. Neonates, young‐of‐year, and adults occurred in the study area from late May through late September, corresponding to water temperatures of 14.0–16.3°C. Of 205 individuals identified, 44% (n= 90) were sighted multiple times within or among years, including 10% (n= 20) of individuals identified in all 3 yr. Almost half (47%) of the multiple sightings were observed along a core area encompassed by the southern part of the Jacques Cousteau National Estuarine Research Reserve. In contrast to stocks studied in southern coastal areas of the U.S. Atlantic and Gulf of Mexico, estuaries were used significantly less than open‐beach habitat, which is consistent with the relative prey abundance in these habitats. Research at additional sites will help confirm whether bottlenose dolphins at the northern end of their migratory range exhibit local site fidelity and habitat preferences similar to those found in this study.  相似文献   

9.
Using photo‐identification data, bottlenose dolphin (Tursiops truncatus) populations can be differentiated based on their use of particular estuaries or coastal habitats. Questions remain, however, about the validity of such fine‐scale population partitioning and whether the resulting assemblages utilize unique forage bases. To address the issue of forage base use, stable isotopes of carbon (δ13C), nitrogen (δ15N) and sulfur (δ34S) were analyzed from skin tissues (n= 74) of bottlenose dolphins sampled seasonally along the coast and in three estuaries near Charleston, South Carolina. Autumn values of δ34S, δ15N, and δ13C and summer values of δ34S indicated that dolphins sampled from these four assemblages utilized unique forage bases, despite limited sample sizes. Likewise, autumn and spring differences in δ15N and δ13C values were evident in the North Edisto River, and in δ34S from dolphins sampled from all three estuarine assemblages; no seasonal differences were identified in the coastal assemblage. Results demonstrate the importance of considering spatial and temporal variation in forage base when developing local management plans for bottlenose dolphin and highlight the discriminatory power of δ34S for estuarine and coastal marine mammals. These results also suggest that stable isotopes could be developed as a complementary tool for photo‐identification based partitioning of bottlenose dolphin populations.  相似文献   

10.
We used mitochondrial and nuclear genetic markers to investigate population structure of common bottlenose dolphins, Tursiops truncatus, around the main Hawaiian Islands. Though broadly distributed throughout the world's oceans, bottlenose dolphins are known to form small populations in coastal waters. Recent photo‐identification data suggest the same is true in Hawaiian waters. We found genetic differentiation among (mtDNA ΦST= 0.014–0.141, microsatellite FST= 0.019–0.050) and low dispersal rates between (0.17–5.77 dispersers per generation) the main Hawaiian Island groups. Our results are consistent with movement rates estimated from photo‐identification data and suggest that each island group supports a demographically independent population. Inclusion in our analyses of samples collected near Palmyra Atoll provided evidence that the Hawaiian Islands are also occasionally visited by members of a genetically distinct, pelagic population. Two of our samples exhibited evidence of partial ancestry from Indo‐Pacific bottlenose dolphins (T. aduncus), a species not known to inhabit the Hawaiian Archipelago. Our findings have important implications for the management of Hawaiian bottlenose dolphins and raise concerns about the vulnerability to human impacts of pelagic species in island ecosystems.  相似文献   

11.
Predation risk has a profound influence on the behavior of marine mammals, affecting grouping patterns and habitat use. Dolphins frequently bear evidence of shark bites, which can provide an indirect measure of predation pressure. Using photo‐identification data, we investigated the prevalence of shark bites on three sympatric species of inshore dolphin, the Australian snubfin (Orcaella heinsohni), Australian humpback (Sousa sahulensis), and Indo‐Pacific bottlenose dolphin (Tursiops aduncus), among four study sites in northwestern Australia. Bite prevalence varied markedly between species, with 72% of snubfin, 46% of humpback, and 18% of bottlenose dolphins exhibiting evidence of shark bites. Binomial logistic regression confirmed a high likelihood of bite presence on snubfin dolphins, and at one particular site for snubfin and bottlenose dolphins. The prevalence of tiger shark (Galeocerdo cuvier) bites on snubfin dolphins was high, and bites attributed to other carcharhinid sharks were observed on all species. While acknowledging methodological differences with other studies, the prevalence of shark bites on snubfin dolphins is among the highest reported for any dolphins, suggesting predation risk represents an important but varying influence thereon. This study provides a baseline for future investigations into the affect of predation risk on the behavioral ecology of these sympatric species.  相似文献   

12.
The identification of species and population boundaries is important in both evolutionary and conservation biology. In recent years, new population genetic and computational methods for estimating population parameters and testing hypotheses in a quantitative manner have emerged. Using a Bayesian framework and a quantitative model‐testing approach, we evaluated the species status and genetic connectedness of bottlenose dolphin (Tursiops spp.) populations off remote northwestern Australia, with a focus on pelagic ‘offshore’ dolphins subject to incidental capture in a trawl fishery. We analysed 71 dolphin samples from three sites beyond the 50 m depth contour (the inshore boundary of the fishery) and up to 170 km offshore, including incidentally caught and free‐ranging individuals associating with trawl vessels, and 273 dolphins sampled at 12 coastal sites inshore of the 50 m depth contour and within 10 km of the coast. Results from 19 nuclear microsatellite markers showed significant population structure between dolphins from within the fishery and coastal sites, but also among dolphins from coastal sites, identifying three coastal populations. Moreover, we found no current or historic gene flow into the offshore population in the region of the fishery, indicating a complete lack of recruitment from coastal sites. Mitochondrial DNA corroborated our findings of genetic isolation between dolphins from the offshore population and coastal sites. Most offshore individuals formed a monophyletic clade with common bottlenose dolphins (T. truncatus), while all 273 individuals sampled coastally formed a well‐supported clade of Indo‐Pacific bottlenose dolphins (T. aduncus). By including a quantitative modelling approach, our study explicitly took evolutionary processes into account for informing the conservation and management of protected species. As such, it may serve as a template for other, similarly inaccessible study populations.  相似文献   

13.
14.
Bottlenose dolphins (Tursiops truncatus) in the Bay of Islands, New Zealand, have been studied for almost two decades. Since 2003, fewer than 150 dolphins visited the bay during each season and the local unit has declined 7.5% annually from 1997 to 2006. The causes of decline are unclear but probably include mortality and emigration. Here, we used a long‐term database to estimate reproductive parameters of female bottlenose dolphins including recruitment rates. A total of 704 surveys were conducted in which 5,577 sightings of 408 individually identified dolphins were collected; of these 53 individuals were identified as reproductive females. The calving rate increased between periods (1997–1999 = 0.13, CL = 0.07–0.21; 2003–2005 = 0.25, CL = 0.16–0.35 calves/reproductive female/year). A 0.25 calving rate suggests that on average, a female gives birth only once every four years, which is consistent with the estimated calving interval (4.3 yr, SD = 1.45) but still is lower than values reported for other populations. Conversely, apparent mortality rates to age 1+ (range: 0.34–0.52) and 2+ (range: 0.15–0.59) were higher than values reported elsewhere. The high apparent calf mortality in conjunction with a decline in local abundance, highlight the vulnerability of bottlenose dolphins in the Bay of Islands. Long‐term studies are required to understand the causes of high calf mortality and the decline in local abundance. Meanwhile, management should focus on minimizing sources of anthropogenic disturbance and enforcing compliance with current legislation.  相似文献   

15.
Diet studies are fundamental for understanding trophic connections in marine ecosystems. In the southeastern US, the common bottlenose dolphin Tursiops truncatus is the predominant marine mammal in coastal waters, but its role as a top predator has received little attention. Diet studies of piscivorous predators, like bottlenose dolphins, start with assessing prey otoliths recovered from stomachs or feces, but digestive erosion hampers species identification and underestimates fish weight (FW). To compensate, FW is often estimated from the least affected otoliths and scaled to other otoliths, which also introduces bias. The sulcus, an otolith surface feature, has a species‐specific shape of its ostium and caudal extents, which is within the otolith edge for some species. We explored whether the sulcus could improve species identification and estimation of prey size using a case study of four sciaenid species targeted by fisheries and bottlenose dolphins in North Carolina. Methods were assessed first on otoliths from a reference collection (n = 421) and applied to prey otoliths (n = 5,308) recovered from 120 stomachs of dead stranded dolphins. We demonstrated in reference‐collection otoliths that cauda to sulcus length (CL:SL) could discriminate between spotted seatrout (Cynoscion nebulosus) and weakfish (Cynoscion regalis) (classification accuracy = 0.98). This method confirmed for the first time predation of spotted seatrout by bottlenose dolphins in North Carolina. Using predictive models developed from reference‐collection otoliths, we provided evidence that digestion affects otolith length more than sulcus or cauda length, making the latter better predictors. Lastly, we explored scenarios of calculating total consumed biomass across degrees of digestion. A suggested approach was for the least digested otoliths to be scaled to other otoliths iteratively from within the same stomach, month, or season as samples allow. Using the otolith sulcus helped overcome challenges of species identification and fish size estimation, indicating their potential use in other diet studies.  相似文献   

16.
The population of Irrawaddy dolphins that occupies the Mekong River in southern Lao People's Democratic Republic and Cambodia is classified as Critically Endangered by the IUCN. Based on capture‐recapture of photo‐identified individuals, we estimated that the total population numbered 93 ±  SE 3.90 individuals (95% CI 86–101), as of April 2007. The combined photo‐identification and carcass recovery program undertaken from 2001 to 2007 established that the Irrawaddy dolphin population inhabiting the Mekong River has reached a critical point with regards to its continued survival, where immediate research and management actions are required to greatly reduce adult mortality, and establish the cause of newborn mortality. In addition, community consultation is required to initiate, and evaluate, urgently required conservation measures. An ongoing well‐designed combined program of abundance estimation (i.e., photo‐identification) and carcass recovery is required to monitor total population size and mortality rates, to inform and evaluate management initiatives. The conclusions of this paper are likely generic to river dolphin populations, particularly where photo‐identification is possible.  相似文献   

17.
Little is known about the ecology and behavior of southern Australian bottlenose dolphins (Tursiops sp.). This hinders assessment of their conservation status and informed decision‐making concerning their management. We used boat‐based surveys and photo‐identification data to investigate site fidelity, residency patterns, and the abundance of southern Australian bottlenose dolphins in Adelaide's coastal waters. Sighting rates and site fidelity varied amongst individuals, and agglomerative hierarchical cluster analysis led to the categorization of individuals into one of three groups: occasional visitors, seasonal residents, or year‐round residents. Lagged identification rates indicated that these dolphins used the study area regularly from year to year following a model of emigration and reimmigration. Abundance estimates obtained from multisample closed capture‐recapture models ranged from 95 individuals (SE ± 45.20) in winter 2013 to 239 (SE ± 54.91) in summer 2014. The varying levels of site fidelity and residency, and the relatively high number of dolphins found throughout the study area highlights the Adelaide metropolitan coast as an important habitat for bottlenose dolphins. As these dolphins also appear to spend considerable time outside the study area, future research, conservation, and management efforts on this population must take into account anthropogenic activities within Adelaide's coastal waters and their adjacencies.  相似文献   

18.
A mark‐resight analysis under Pollock's robust design was applied to Indo‐Pacific bottlenose dolphins Tursiops aduncus in the Swatch‐of‐No‐Ground (SoNG) submarine canyon, Bangladesh, during the winter seasons of 2005–2009. Information from sightings of photo‐identified individuals (1,144) and unmarked individuals generated abundance estimates of 1,701 (95% confidence interval [CI]= 1,533–1,888), 1,927 (95% CI = 1,851–2,006), 2,150 (95% CI = 1,906–2,425), and 2,239 (95% CI = 1,985–2,524) individuals for seasons 1–4, respectively. This makes the population among the largest assessed of the species. Overall apparent survival was estimated as 0.958 (95% CI = 0.802–0.992). Interseasonal probabilities of transitioning to an unobservable state were estimated as 0.045, 0.363, and 0.300 for years 1–2, 2–3, and 3–4, respectively, and the overall probability of remaining in an unobservable state was 0.688. These probabilities, together with an apparent increase in abundance during the study period, indicate that the identified dolphins are part of a larger superpopulation moving throughout a more extensive geographic area. Of the photo‐identified dolphins, 28.2% exhibited injuries related to entanglements with fishing gear. This implies a strong potential for fatal interactions that could jeopardize the conservation status of the population, which otherwise appears favorable.  相似文献   

19.
  • 1 The common dolphins (genus Delphinus) have one of most problematic taxonomies and complex distribution patterns of all cetaceans. Although the taxonomy and the distribution seem to have been clarified somewhat in the eastern North Pacific and Indo‐Pacific Oceans, many questions remain in the Southwestern Atlantic Ocean (SWA). We review the biogeography of Delphinus in the SWA.
  • 2 We reviewed data from strandings, incidental catches and sightings since 1922. Systematic surveys were conducted in five major areas. Twenty‐one natural history collections were examined, and 135 skulls were measured.
  • 3 A total of 184 records of common dolphins were compiled. Delphinus apparently occurs in three stocks in the SWA: one located in northern Brazil and two from southeastern Brazil (~22°S) to central Argentina (~42°S). Two distinct patterns in habitat use were observed by depth: in southeastern Brazil, sightings were restricted to coastal waters with water depths ranging from 18m to 70m. On the other hand, in the area that extends from southern Brazil to Central Argentina (from 28°S to 42°S), sightings were recorded in deeper waters, ranging from 71m to 1435m, with the exception of occasional coastal sightings. The cranial analyses demonstrated that both short‐beaked common dolphins Delphinus delphis and long‐beaked common dolphins Dephinus capensis occur in the SWA.
  • 4 In the SWA, Delphinus seems to occur near areas of high productivity. One stock is associated with the productive waters discharged by the Amazon River and possibily with the coastal upwelling system off the coast of Venezuela, while the other stocks are associated with the Cabo Frio upwelling system and the Subtropical Convergence. Our results indicate that the current taxonomy does not adequately reflect the amount of variation within the genus in the world.
  相似文献   

20.
Investigating resource partitioning among mobile marine predators such as cetaceans is challenging. Here we integrate multiple methodologies (analyses of habitat use, stable isotopes and trace elements) to assess ecological niche partitioning amongst two genetically divergent sympatric subpopulations (North and South) of Indo‐Pacific bottlenose dolphins (Tursiops aduncus) in Moreton Bay, Australia. Comparisons of the mean locations (latitude, longitude) and environmental variables (distance from sandbanks, distance from shore and water depth) observed at sightings of biopsy‐sampled individuals indicated that the North subpopulation occurred in the northwestern bay in significantly deeper water than the South subpopulation, which was found in southeastern nearshore waters and closer to sandbanks. Ratios of stable carbon and nitrogen isotopes in skin samples suggested that North dolphins foraged on higher trophic level prey in relatively more pelagic, offshore habitats, while South dolphins foraged on lower trophic prey in more nearshore, demersal and/or benthic habitats. Habitat partitioning was also reflected in higher blubber concentrations of most of the 13 measured trace elements, in particular lead, in the coastal South compared to the more pelagic North dolphins. These findings indicate that genetic subpopulations of bottlenose dolphins in Moreton Bay are adapted to different niches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号