首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
Chronic neuropathic pain is a common consequence of spinal cord injury (SCI), develops over time and negatively impacts quality of life, often leading to substance abuse and suicide. Recent evidence has demonstrated that reactive oxygen species (ROS) play a role in contributing to neuropathic pain in SCI animal models. This investigation examines four compounds that reduce ROS and the downstream lipid peroxidation products, apocynin, 4‐oxo‐tempo, U‐83836E, and tirilazad, and tests if these compounds can reduce nocioceptive behaviors in chronic SCI animals. Apocynin and 4‐oxo‐tempo significantly reduced abnormal mechanical hypersensitivity measured in forelimbs and hindlimbs in a model of chronic SCI‐induced neuropathic pain. Thus, compounds that inhibit ROS or lipid peroxidation products can be used to ameliorate chronic neuropathic pain.

  相似文献   


3.
4.
The β‐amyloid precursor protein (APP) has been extensively studied for its role as the precursor of the β‐amyloid protein (Aβ) of Alzheimer's disease. However, the normal function of APP remains largely unknown. This article reviews studies on the structure, expression and post‐translational processing of APP, as well as studies on the effects of APP in vitro and in vivo. We conclude that the published data provide strong evidence that APP has a trophic function. APP is likely to be involved in neural stem cell development, neuronal survival, neurite outgrowth and neurorepair. However, the mechanisms by which APP exerts its actions remain to be elucidated. The available evidence suggests that APP interacts both intracellularly and extracellularly to regulate various signal transduction mechanisms.

  相似文献   


5.
Protein aggregation is a common feature of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration. How protein aggregates are formed and contribute to neurodegeneration, however, is not clear. Mutation of Ubiquilin 2 (UBQLN2) has recently been linked to ALS and frontotemporal lobar degeneration. Therefore, we examined the effect of ALS‐linked UBQLN2 mutation on endoplasmic reticulum‐associated protein degradation (ERAD). Compared to its wild‐type counterpart, mutated UBQLN2 caused greater accumulation of the ERAD substrate Hong Kong variant of α‐1‐antitrypsin, although ERAD was disturbed by both UBQLN2 over‐expression and knockdown. Also, UBQLN2 interacted with ubiquitin regulatory X domain‐containing protein 8 (UBXD8) in vitro and in vivo, and this interaction was impaired by pathogenic mutation of UBQLN2. As UBXD8 is an endoplasmic membrane protein involved in the translocation of ubiquitinated ERAD substrates, UBQLN2 likely cooperates with UBXD8 to transport defective proteins from the endoplasmic reticulum to the cytosol for degradation, and this cell‐protective function is disturbed by pathogenic mutation of UBQLN2.

  相似文献   


6.
The effects of aging were traditionally thought to be immutable, particularly evident in the loss of plasticity and cognitive abilities occurring in the aged central nervous system (CNS). However, it is becoming increasingly apparent that extrinsic systemic manipulations such as exercise, caloric restriction, and changing blood composition by heterochronic parabiosis or young plasma administration can partially counteract this age‐related loss of plasticity in the aged brain. In this review, we discuss the process of aging and rejuvenation as systemic events. We summarize genetic studies that demonstrate a surprising level of malleability in organismal lifespan, and highlight the potential for systemic manipulations to functionally reverse the effects of aging in the CNS. Based on mounting evidence, we propose that rejuvenating effects of systemic manipulations are mediated, in part, by blood‐borne ‘pro‐youthful’ factors. Thus, systemic manipulations promoting a younger blood composition provide effective strategies to rejuvenate the aged brain. As a consequence, we can now consider reactivating latent plasticity dormant in the aged CNS as a means to rejuvenate regenerative, synaptic, and cognitive functions late in life, with potential implications even for extending lifespan.

  相似文献   


7.
Vaccination therapies constitute potential treatment options in neurodegenerative disorders such as Alzheimer disease or Parkinson disease. While a lot of research has been performed on vaccination against extracellular amyloid β, the focus recently shifted toward vaccination against the intracellular proteins tau and α‐synuclein, with promising results in terms of protein accumulation reduction. In this review, we briefly summarize lessons to be learned from clinical vaccination trials in Alzheimer disease that target amyloid β. We then focus on tau and α‐synuclein. For both proteins, we provide important data on protein immunogenicity, and put them into context with data available from both animals and human vaccination trials targeted at tau and α‐synuclein. Together, we give a comprehensive overview about current clinical data, and discuss associated problems.

  相似文献   

8.
Microtubules in neurons consist of highly dynamic regions as well as stable regions, some of which persist after bouts of severing as short mobile polymers. Concentrated at the plus ends of the highly dynamic regions are microtubule plus end tracking proteins called +TIPs that can interact with an array of other proteins and structures relevant to the plasticity of the neuron. It is also provocative to ponder that short mobile microtubules might similarly convey information with them as they transit within the neuron. Thus, beyond their known conventional functions in supporting neuronal architecture and organelle transport, microtubules may act as ‘information carriers’ in the neuron.

  相似文献   


9.
Microglia are the resident macrophages of the central nervous system that survey the microenvironment for signals of injury or infection. The response to such signals induces an inflammatory response involving macrophages derived from both resident microglia and recruited circulating monocytes. Although implicated as contributors to autoimmune‐mediated injury, microglia/ macrophages have recently been shown to be critical for the important central nervous system regenerative process of remyelination. This functional dichotomy may reflect their ability to be polarized along a continuum of activation states including the well‐characterized cytotoxic M1 and regenerative M2 phenotypes. Here, we review the roles of microglia, monocytes and the macrophages which they give rise to in creating lesion environments favourable to remyelination, highlighting the specific roles of M1 and M2 phenotypes and how the pro‐regenerative role of the innate immune system is altered by ageing.

  相似文献   


10.
11.
Sports‐related head impact and injury has become a very highly contentious public health and medico‐legal issue. Near‐daily news accounts describe the travails of concussed athletes as they struggle with depression, sleep disorders, mood swings, and cognitive problems. Some of these individuals have developed chronic traumatic encephalopathy, a progressive and debilitating neurodegenerative disorder. Animal models have always been an integral part of the study of traumatic brain injury in humans but, historically, they have concentrated on acute, severe brain injuries. This review will describe a small number of new and emerging animal models of sports‐related head injury that have the potential to increase our understanding of how multiple mild head impacts, starting in adolescence, can have serious psychiatric, cognitive and histopathological outcomes much later in life.

  相似文献   


12.
The psychostimulant amphetamine (AMPH) is frequently used to increase catecholamine levels in attention disorders and positron emission tomography imaging studies. Despite the fact that most radiotracers for positron emission tomography studies are characterized in non‐human primates (NHPs), data on regional differences of the effect of AMPH in NHPs are very limited. This study examined the impact of AMPH on extracellular dopamine (DA) levels in the medial prefrontal cortex and the caudate of NHPs using microdialysis. In addition to differences in magnitude, we observed striking differences in the temporal profile of extracellular DA levels between these regions that can likely be attributed to differences in the regulation of dopamine uptake and biosynthesis. The present data suggest that cortical DA levels may remain elevated longer than in the caudate which may contribute to the clinical profile of the actions of AMPH.

  相似文献   


13.
Olfactory sensory neurons (OSNs) are the initial site for olfactory signal transduction. Therefore, their survival is essential to olfactory function. In the current study, we demonstrated that while odorant stimulation promoted rodent OSN survival, it induced generation of reactive oxygen species in a dose‐ and time‐dependent manner as well as loss of membrane potential and fragmentation of mitochondria. The MEK‐Erk pathway played a critical role in mediating these events, as its inhibition decreased odorant stimulation‐dependent OSN survival and exacerbated intracellular stress measured by reactive oxygen species generation and heat‐shock protein 70 expression. The phosphoinositide pathway, rather than the cyclic AMP pathway, mediated the odorant‐induced activation of the MEK‐Erk pathway. These findings provide important insights into the mechanisms of activity‐driven OSN survival, the role of the phosphoinositide pathway in odorant signaling, and demonstrate that odorant detection and odorant stimulation‐mediated survival proceed via independent signaling pathways. This mechanism, which permits independent regulation of odorant detection from survival signaling, may be advantageous if not diminished by repeated or prolonged odor exposure.

  相似文献   


14.
Aging, the main risk factor for Parkinson's disease (PD), is associated with increased α–synuclein levels in substantia nigra pars compacta (SNc). Excess α‐synuclein spurs Lewy‐like pathology and dysregulates the activity of protein phosphatase 2A (PP2A). PP2A dephosphorylates many neuroproteins, including the catecholamine rate‐limiting enzyme, tyrosine hydroxylase (TH). A loss of nigral dopaminergic neurons induces PD movement problems, but before those abnormalities occur, behaviors such as olfactory loss, anxiety, and constipation often manifest. Identifying mouse models with early PD behavioral changes could provide a model in which to test emerging therapeutic compounds. To this end, we evaluated mice expressing A53T mutant human (A53T) α–synuclein for behavior and α–synuclein pathology in olfactory bulb, adrenal gland, and gut. Aging A53T mice exhibited olfactory loss and anxiety that paralleled olfactory and adrenal α‐synuclein aggregation. PP2A activity was also diminished in olfactory and adrenal tissues harboring insoluble α‐synuclein. Low adrenal PP2A activity co‐occurred with TH hyperactivity, making this the first study to link adrenal synucleinopathy to anxiety and catecholamine dysregulation. Aggregated A53T α–synuclein recombinant protein also had impaired stimulatory effects on soluble recombinant PP2A. Collectively, the data identify an excellent model in which to screen compounds for their ability to block the spread of α‐synuclein pathology associated with pre‐motor stages of PD.

  相似文献   


15.
Huntington's disease (HD) is one of many neurodegenerative diseases with reported alterations in brain iron homeostasis that may contribute to neuropathogenesis. Iron accumulation in the specific brain areas of neurodegeneration in HD has been proposed based on observations in post‐mortem tissue and magnetic resonance imaging studies. Altered magnetic resonance imaging signal within specific brain regions undergoing neurodegeneration has been consistently reported and interpreted as altered levels of brain iron. Biochemical studies using various techniques to measure iron species in human samples, mouse tissue, or in vitro has generated equivocal data to support such an association. Whether elevated brain iron occurs in HD, plays a significant contributing role in HD pathogenesis, or is a secondary effect remains currently unclear.

  相似文献   


16.
The mammalian target of rapamycin (mTOR) signalling cascade is involved in the intracellular regulation of protein synthesis, specifically for proteins involved in controlling neuronal morphology and facilitating synaptic plasticity. Research has revealed that the activity of the mTOR cascade is influenced by several extracellular and environmental factors that have been implicated in schizophrenia. Therefore, there is reason to believe that one of the downstream consequences of dysfunction or hypofunction of these factors in schizophrenia is disrupted mTOR signalling and hence impaired protein synthesis. This results in abnormal neurodevelopment and deficient synaptic plasticity, outcomes which could underlie some of the positive, negative and cognitive symptoms of schizophrenia. This review will discuss the functional roles of the mTOR cascade and present evidence in support of a novel mTOR‐based hypothesis of the neuropathology of schizophrenia.

  相似文献   


17.
Our recent studies have shown that endogenous zinc, co‐released with glutamate from the synaptic terminals of vertebrate retinal photoreceptors, provides a feedback mechanism that reduces calcium entry and the concomitant vesicular release of glutamate. We hypothesized that zinc feedback may serve to protect the retina from glutamate excitotoxicity, and conducted in vivo experiments on the retina of the skate (Raja erinacea) to determine the effects of removing endogenous zinc by chelation. These studies showed that removal of zinc by injecting the zinc chelator histidine results in inner retinal damage similar to that induced by the glutamate receptor agonist kainic acid. In contrast, when an equimolar quantity of zinc followed the injection of histidine, the retinal cells were unaffected. Our results are a good indication that zinc, co‐released with glutamate by photoreceptors, provides an auto‐feedback system that plays an important cytoprotective role in the retina.

  相似文献   


18.
The mammalian (or mechanistic) target of rapamycin (mTOR) complex 1 (mTORC1) is a serine and threonine kinase that regulates cell growth, survival, and proliferation. mTORC1 is a master controller of the translation of a subset of mRNAs. In the central nervous system mTORC1 plays a crucial role in mechanisms underlying learning and memory by controlling synaptic protein synthesis. Here, we review recent evidence suggesting that the mTORC1 signaling pathway promotes neuroadaptations following exposure to a diverse group of drugs of abuse including stimulants, cannabinoids, opiates, and alcohol. We further describe potential molecular mechanisms by which drug‐induced mTORC1 activation may alter brain functions. Finally, we propose that mTORC1 is a focal point shared by drugs of abuse to mediate drug‐related behaviors such as reward seeking and excessive drug intake, and offer future directions to decipher the contribution of the kinase to mechanisms underlying addiction.

  相似文献   


19.
Recent investigations into the mechanisms mediating itch transmission have focused on spinal mechanisms, whereas few studies have investigated the role of the cerebral cortex in itch‐related behaviors. Human imaging studies show that several cortical regions are active in correspondence with itch, including the anterior cingulate cortex (ACC). We present here evidence of cortical modulation of pruritogen‐induced scratching behavior. We combine pharmacological, genetic, and electrophysiological approaches to show that cortical GluK1‐containing kainate (KA) receptors are involved in scratching induced by histamine and non‐histamine‐dependent itching stimuli. We further show that scratching corresponds with enhanced excitatory transmission in the ACC through KA receptor modulation of inhibitory circuitry. In addition, we found that inhibiting GluK1‐containing KA receptors in the ACC also reduced behavioral nociceptive responses induced by formalin. Our results reveal a new role of the cortex in pruritogen‐induced scratching.

  相似文献   


20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号