首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Toll‐like receptor 4 (TLR4) activation and signalling in glial cells play critical roles in neurological disorders and in alcohol‐induced brain damage. TLR4 endocytosis upon lipopolysaccharide (LPS) stimulation regulates which signalling pathway is activated, the MyD88‐dependent or the TIR‐domain‐containing adapter‐inducing interferon‐β (TRIF)‐dependent pathway. However, it remains elusive whether ethanol‐induced TLR4 signalling is associated with receptor internalization and trafficking, and which endocytic pathway(s) are used in cortical astrocytes. Using the adenoviral over‐expression of TLR4GFP, confocal microscopy and the imagestream technique, we show that upon ethanol or LPS stimulation, TLR4 co‐localizes with markers of the clathrin and caveolin endocytic pathways, and that this endocytosis is dependent on dynamin. Using chlorpromazin and filipin as inhibitors of the clathrin and rafts/caveolae endocytic pathways, respectively, we demostrate that TRIF‐dependent signalling relies on an intact clathrin pathway, whereas disruption of rafts/caveolae inhibits the MyD88‐ and TRIF‐dependent signalling pathways. Immunofluorescence studies also suggest that lipid rafts and clathrin cooperate for appropriate TLR4 internalization. We also show that ethanol can trigger similar endocytic pathways as LPS does, although ethanol delays clathrin internalization and alters TLR4 vesicular trafficking. Our results provide new insights into the effects of ethanol or LPS on TLR4 signalling in cortical astrocytes, events that may underlie neuroinflammation and brain damage.

  相似文献   


3.
In this study, in vitro and in vivo experiments were carried out with the high‐affinity multifunctional D2/D3 agonist D‐512 to explore its potential neuroprotective effects in models of Parkinson's disease and the potential mechanism(s) underlying such properties. Pre‐treatment with D‐512 in vitro was found to rescue rat adrenal Pheochromocytoma PC12 cells from toxicity induced by 6‐hydroxydopamine administration in a dose‐dependent manner. Neuroprotection was found to coincide with reductions in intracellular reactive oxygen species, lipid peroxidation, and DNA damage. In vivo, pre‐treatment with 0.5 mg/kg D‐512 was protective against neurodegenerative phenotypes associated with systemic administration of MPTP, including losses in striatal dopamine, reductions in numbers of DAergic neurons in the substantia nigra (SN), and locomotor dysfunction. These observations strongly suggest that the multifunctional drug D‐512 may constitute a novel viable therapy for Parkinson's disease.

  相似文献   


4.
The high‐affinity choline transporter (CHT) is responsible for choline uptake into cholinergic neurons, with this being the rate‐limiting step for acetylcholine production. Altering CHT protein disposition directly impacts choline uptake activity and cholinergic neurotransmission. Amyloid precursor protein (APP) interacts with CHT proteins and increases their endocytosis from the cell surface. The goal of this study was to examine regulation of CHT trafficking and activity by wild‐type APP (APPwt) and determine if this differs with Swedish mutant APP (APPSwe) in SH‐SY5Y human neuroblastoma cells. APPSwe differs from APPwt in its trafficking from the cell surface through endosomes. We report for the first time that CHT interacts significantly less with APPSwe than with APPwt. Surprisingly, however, CHT cell surface levels and choline uptake activity are decreased to the same extent and CHT co‐localization to early endosomes increased similarly in cells expressing either APPwt or APPSwe. A critical observation is that CHT co‐immunoprecipitates with βCTF from APPSwe‐expressing cells. We propose that decreased CHT function is mediated differently by APPwt and APPSwe; APPwt interaction with CHT facilitates its endocytosis from the cell surface, whereas the effect of APPSwe on CHT is mediated indirectly potentially by binding to the βCTF fragment or by Aβ released from cells.

  相似文献   


5.
Methyl‐β‐cyclodextrin (MβCD) is a reagent that depletes cholesterol and disrupts lipid rafts, a type of cholesterol‐enriched cell membrane microdomain. Lipid rafts are essential for neuronal functions such as synaptic transmission and plasticity, which are sensitive to even low doses of MβCD. However, how MβCD changes synaptic function, such as N‐methyl‐d ‐aspartate receptor (NMDA‐R) activity, remains unclear. We monitored changes in synaptic transmission and plasticity after disrupting lipid rafts with MβCD. At low concentrations (0.5 mg/mL), MβCD decreased basal synaptic transmission and miniature excitatory post‐synaptic current without changing NMDA‐R‐mediated synaptic transmission and the paired‐pulse facilitation ratio. Interestingly, low doses of MβCD failed to deplete cholesterol or affect α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid receptor (AMPA‐R) and NMDA‐R levels, while clearly reducing GluA1 levels selectively in the synaptosomal fraction. Low doses of MβCD decreased the inhibitory effects of NASPM, an inhibitor for GluA2‐lacking AMPA‐R. MβCD successfully decreased NMDA‐R‐mediated long‐term potentiation but did not affect the formation of either NMDA‐R‐mediated or group I metabotropic glutamate receptor‐dependent long‐term depression. MβCD inhibited de‐depression without affecting de‐potentiation. These results suggest that MβCD regulates GluA1‐dependent synaptic potentiation but not synaptic depression in a cholesterol‐independent manner.

  相似文献   


6.
7.
Cannabinoid Receptor 1 (CB1) has been initially described as the receptor for Delta‐9‐Tetrahydrocannabinol in the central nervous system (CNS), mediating retrograde synaptic signaling of the endocannabinoid system. Beside its expression in various CNS regions, CB1 is ubiquituous in peripheral tissues, where it mediates, among other activities, the cell's energy homeostasis. We sought to examine the role of CB1 in the context of the evolutionarily conserved autophagic machinery, a main constituent of the regulation of the intracellular energy status. Manipulating CB1 by siRNA knockdown in mammalian cells caused an elevated autophagic flux, while the expression of autophagy‐related genes remained unaltered. Pharmacological inhibition of CB1 activity using Rimonabant likewise caused an elevated autophagic flux, which was independent of the mammalian target of rapamycin complex 1, a major switch in the control of canonical autophagy. In addition, knocking down coiled‐coil myosin‐like BCL2‐interacting protein 1, the key‐protein of the second canonical autophagy control complex, was insufficient to reduce the elevated autophagic flux induced by Rimonabant. Interestingly, lysosomal activity is not altered, suggesting a specific effect of CB1 on the regulation of autophagic flux. We conclude that CB1 activity affects the autophagic flux independently of the two major canonic regulation complexes controlling autophagic vesicle formation.

  相似文献   


8.
Brain damage after insult and cognitive decline are related to excitotoxicity and strongly influenced by aging, yet mechanisms of aging‐dependent susceptibility to excitotoxicity are poorly known. Several non‐steroidal anti‐inflammatory drugs (NSAIDs) may prevent excitotoxicity and cognitive decline in the elderly by an unknown mechanism. Interestingly, after several weeks in vitro, hippocampal neurons display important hallmarks of neuronal aging in vivo. Accordingly, rat hippocampal neurons cultured for several weeks were used to investigate mechanisms of aging‐related susceptibility to excitotoxicity and neuroprotection by NSAIDs. We found that NMDA increased cytosolic Ca2+ concentration in young, mature and aged neurons but only promoted apoptosis in aged neurons. Resting Ca2+ levels and responses to NMDA increased with time in culture which correlated with changes in expression of NMDA receptor subunits. In addition, NMDA promoted mitochondrial Ca2+ uptake only in aged cultures. Consistently, specific inhibition of mitochondrial Ca2+ uptake decreased apoptosis. Finally, we found that a series of NSAIDs depolarized mitochondria and inhibited mitochondrial Ca2+ overload, thus preventing NMDA‐induced apoptosis in aged cultures. We conclude that mitochondrial Ca2+ uptake is critical for age‐related susceptibility to excitotoxicity and neuroprotection by NSAIDs.

  相似文献   


9.
10.
The receptor for advanced glycation end products (RAGE) gene expresses two major alternative splicing isoforms, full‐length membrane‐bound RAGE (mRAGE) and secretory RAGE (esRAGE). Both isoforms play important roles in Alzheimer's disease (AD) pathogenesis, either via interaction of mRAGE with β‐amyloid peptide (Aβ) or inhibition of the mRAGE‐activated signaling pathway. In the present study, we showed that heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) and Transformer2β‐1 (Tra2β‐1) were involved in the alternative splicing of mRAGE and esRAGE. Functionally, two factors had an antagonistic effect on the regulation. Glucose deprivation induced an increased ratio of mRAGE/esRAGE via up‐regulation of hnRNP A1 and down‐regulation of Tra2β‐1. Moreover, the ratios of mRAGE/esRAGE and hnRNP A1/Tra2β‐1 were increased in peripheral blood mononuclear cells from AD patients. The results provide a molecular basis for altered splicing of mRAGE and esRAGE in AD pathogenesis.

  相似文献   


11.
Amyloid beta (Aβ) protein is the primary proteinaceous deposit found in the brains of patients with Alzheimer's disease (AD). Evidence suggests that Aβ plays a central role in the development of AD pathology. Here, we show in PC12 cells, Aβ impairs tropomyosin receptor kinase A (TrkA) ubiquitination, phosphorylation, and its association with p75NTR, p62, and TRAF6 induced by nerve growth factor. The ubiquitination and tyrosine phosphorylation of TrkA was also found to be impaired in postmortem human AD hippocampus compared to control. Interestingly, the nitrotyrosylation of TrkA was increased in AD hippocampus and this explains why the phosphotyrosylation and ubiquitination of TrkA was impaired. In AD brain, the production of matrix metalloproteinase‐7 (MMP‐7), which cleaves proNGF, was reduced, thereby leading to the accumulation of pro‐NGF and a decrease in the level of active NGF. TrkA signaling events, including Ras/MAPK and phosphatidylinositol 3‐kinase (PI3K)/Akt pathways, are deactivated with Aβ and in the human AD hippocampus. Findings show that Aβ blocks the TrkA ubiquitination and downstream signaling similar to AD hippocampus.

  相似文献   


12.
The cholinergic system is critically involved in the modulation of cognitive functions, including learning and memory. Acetylcholine acts through muscarinic (mAChRs) and nicotinic receptors (nAChRs), which are both abundantly expressed in the hippocampus. Previous evidence indicates that choline, the precursor and degradation product of Acetylcholine, can itself activate nAChRs and thereby affects intrinsic and synaptic neuronal functions. Here, we asked whether the cellular actions of choline directly affect hippocampal network activity. Using mouse hippocampal slices we found that choline efficiently suppresses spontaneously occurring sharp wave–ripple complexes (SPW‐R) and can induce gamma oscillations. In addition, choline reduces synaptic transmission between hippocampal subfields CA3 and CA1. Surprisingly, these effects are mediated by activation of both mAChRs and α7‐containing nAChRs. Most nicotinic effects became only apparent after local, fast application of choline, indicating rapid desensitization kinetics of nAChRs. Effects were still present following block of choline uptake and are, therefore, likely because of direct actions of choline at the respective receptors. Together, choline turns out to be a potent regulator of patterned network activity within the hippocampus. These actions may be of importance for understanding state transitions in normal and pathologically altered neuronal networks.

  相似文献   


13.
It has been postulated that the accumulation of extracellular α‐synuclein (α‐syn) might alter the neuronal membrane by formation of ‘pore‐like structures’ that will lead to alterations in ionic homeostasis. However, this has never been demonstrated to occur in brain neuronal plasma membranes. In this study, we show that α‐syn oligomers rapidly associate with hippocampal membranes in a punctate fashion, resulting in increased membrane conductance (5 fold over control) and the influx of both calcium and a fluorescent glucose analogue. The enhancement in intracellular calcium (1.7 fold over control) caused a large increase in the frequency of synaptic transmission (2.5 fold over control), calcium transients (3 fold over control), and synaptic vesicle release. Both primary hippocampal and dissociated nigral neurons showed rapid increases in membrane conductance by α‐syn oligomers. In addition, we show here that α‐syn caused synaptotoxic failure associated with a decrease in SV2, a membrane protein of synaptic vesicles associated with neurotransmitter release. In conclusion, extracellular α‐syn oligomers facilitate the perforation of the neuronal plasma membrane, thus explaining, in part, the synaptotoxicity observed in neurodegenerative diseases characterized by its extracellular accumulation.

  相似文献   


14.
Drebrin an actin‐bundling key regulator of dendritic spine genesis and morphology, has been recently proposed as a regulator of hippocampal glutamatergic activity which is critical for memory formation and maintenance. Here, we examined the effects of genetic deletion of drebrin on dendritic spine and on the level of complexes containing major brain receptors. To this end, homozygous and heterozygous drebrin knockout mice generated in our laboratory and related wild‐type control animals were studied. Level of protein complexes containing dopamine receptor D1/dopamine receptor D2, 5‐hydroxytryptamine receptor 1A (5‐HT1AR), and 5‐hydroxytryptamine receptor 7 (5‐HT7R) were significantly reduced in hippocampus of drebrin knockout mice whereas no significant changes were detected for GluR1, 2, and 3 and NR1 as examined by native gel‐based immunoblotting. Drebrin depletion also altered dendritic spine formation, morphology, and reduced levels of dopamine receptor D1 in dendritic spines as evaluated using immunohistochemistry/confocal microscopy. Electrophysiological studies further showed significant reduction in memory‐related hippocampal synaptic plasticity upon drebrin depletion. These findings provide unprecedented experimental support for a role of drebrin in the regulation of memory‐related synaptic plasticity and neurotransmitter receptor signaling, offer relevant information regarding the interpretation of previous studies and help in the design of future studies on dendritic spines.

  相似文献   


15.
16.
In this study, we identified a polymorphism in the 5′‐flanking region of the chicken serotonin transporter (5‐HTT) gene. Sequencing analysis revealed that in comparison with the wild‐type variant (W), a deleted variant (D) is generated by deletion of four nucleotides (5′‐AATT‐3′) and a single nucleotide change (A→T). Using a polyacrylamide gel electrophoresis system, we found that the 360‐bp DNA fragment containing the W variant with the wild‐type sequence 5′‐AATTAATT‐3′ shows intrinsic DNA curvature while the 356‐bp fragment containing the D variant lacking the four base pairs AATT is not curved. Quantitative real‐time RT‐PCR and ELISA demonstrated that the expression of 5‐HTT in D/D chickens was higher than that in W/W and W/D chickens. In addition, transient transfection experiments with chloramphenicol acetyltransferase reporter gene constructs revealed increased 5‐HTT promoter activity mediated by the D variant and a silencer activity of the W variant. Interestingly, females and males with D/D genotype showed significant greater increase in body weight from 6 weeks and 16 weeks of age, respectively, and higher body mass index. Moreover, we found that D/D chickens of both genders were physically more active than W/W and W/D chickens.

  相似文献   


17.
Diet supplementation with ketone bodies (acetoacetate and β‐hydroxybuturate) or medium‐length fatty acids generating ketone bodies has consistently been found to cause modest improvement of mental function in Alzheimer's patients. It was suggested that the therapeutic effect might be more pronounced if treatment was begun at a pre‐clinical stage of the disease instead of well after its manifestation. The pre‐clinical stage is characterized by decade‐long glucose hypometabolism in brain, but ketone body metabolism is intact even initially after disease manifestation. One reason for the impaired glucose metabolism may be early destruction of the noradrenergic brain stem nucleus, locus coeruleus, which stimulates glucose metabolism, at least in astrocytes. These glial cells are essential in Alzheimer pathogenesis. The β‐amyloid peptide Aβ interferes with their cholinergic innervation, which impairs synaptic function because of diminished astrocytic glutamate release. Aβ also reduces glucose metabolism and causes hyperexcitability. Ketone bodies are similarly used against seizures, but the effectively used concentrations are so high that they must interfere with glucose metabolism and de novo synthesis of neurotransmitter glutamate, reducing neuronal glutamatergic signaling. The lower ketone body concentrations used in Alzheimer's disease may owe their effect to support of energy metabolism, but might also inhibit release of gliotransmitter glutamate.

  相似文献   


18.
Parkinson's disease is the second most common neurodegenerative disease and its pathogenesis is closely associated with oxidative stress. Deposition of aggregated α‐synuclein (α‐Syn) occurs in familial and sporadic forms of Parkinson's disease. Here, we studied the effect of oligomeric α‐Syn on one of the major markers of oxidative stress, lipid peroxidation, in primary co‐cultures of neurons and astrocytes. We found that oligomeric but not monomeric α‐Syn significantly increases the rate of production of reactive oxygen species, subsequently inducing lipid peroxidation in both neurons and astrocytes. Pre‐incubation of cells with isotope‐reinforced polyunsaturated fatty acids (D‐PUFAs) completely prevented the effect of oligomeric α‐Syn on lipid peroxidation. Inhibition of lipid peroxidation with D‐PUFAs further protected cells from cell death induced by oligomeric α‐Syn. Thus, lipid peroxidation induced by misfolding of α‐Syn may play an important role in the cellular mechanism of neuronal cell loss in Parkinson's disease.

  相似文献   


19.
Synaptic impairment rather than neuronal loss may be the leading cause of cognitive dysfunction in brain aging. Certain small Rho‐GTPases are involved in synaptic plasticity, and their dysfunction is associated with brain aging and neurodegeneration. Rho‐GTPases undergo prenylation by attachment of geranylgeranylpyrophosphate (GGPP) catalyzed by GGTase‐I. We examined age‐related changes in the abundance of Rho and Rab proteins in membrane and cytosolic fractions as well as of GGTase‐I in brain tissue of 3‐ and 23‐month‐old C57BL/6 mice. We report a shift in the cellular localization of Rho‐GTPases toward reduced levels of membrane‐associated and enhanced cytosolic levels of those proteins in aged mouse brain as compared with younger mice. The age‐related reduction in membrane‐associated Rho proteins was associated with a reduction in GGTase‐Iβ levels that regulates binding of GGPP to Rho‐GTPases. Proteins prenylated by GGTase‐II were not reduced in aged brain indicating a specific targeting of GGTase‐I in the aged brain. Inhibition of GGTase‐I in vitro modeled the effects of aging we observed in vivo. We demonstrate for the first time a decrease in membrane‐associated Rho proteins in aged brain in association with down‐regulation of GGTase‐Iβ. This down‐regulation could be one of the mechanisms causing age‐related weakening of synaptic plasticity.

  相似文献   


20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号