首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Common bottlenose dolphins (Tursiops truncatus) are found worldwide in temperate and tropical regions, often occurring as distinct coastal and offshore ecotypes. Along the west coast of the United States, two stocks are recognized for management based on morphological and photo‐identification studies: a California coastal stock, estimated at 450–500 individuals, and a California/Oregon/Washington offshore stock of about 1,000 animals. This study is the first to analyze genetic differentiation between these stocks. We examined both the hypervariable portion of the mitochondrial DNA (mtDNA) control region and fifteen microsatellite markers for coastal (n = 64) and offshore (n = 69) dolphins. Significant genetic differentiation was found between the two stocks for mtDNA (ΦST = 0.30, P < 0.001; FST = 0.14, P < 0.001) and microsatellite loci (FST = 0.19, P < 0.001). Coastal dolphins had less genetic diversity than offshore dolphins. Further substructuring within the offshore stock was not detected. The level of genetic differentiation between the coastal and offshore dolphins is consistent with long‐term separation and reinforces recognizing them as separate stocks. These findings are particularly important for management of the smaller, less genetically diverse, coastal stock that is vulnerable to a variety of anthropogenic threats.  相似文献   

2.
Due to their worldwide distribution and occupancy of different types of environments, bottlenose dolphins display considerable morphological variation. Despite limited understanding about the taxonomic identity of such forms and connectivity among them at global scale, coastal (or inshore) and offshore (or oceanic) ecotypes have been widely recognized in several ocean regions. In the Southwest Atlantic Ocean (SWA), however, there are scarce records of bottlenose dolphins differing in external morphology according to habitat preferences that resemble the coastal‐offshore pattern observed elsewhere. The main aim of this study was to analyze the genetic variability, and test for population structure between coastal (n = 127) and offshore (n = 45) bottlenose dolphins sampled in the SWA to assess whether their external morphological distinction is consistent with genetic differentiation. We used a combination of mtDNA control region sequences and microsatellite genotypes to infer population structure and levels of genetic diversity. Our results from both molecular marker types were congruent and revealed strong levels of structuring (microsatellites FST = 0.385, p < .001; mtDNA FST =  0.183, p < .001; ΦST = 0.385, p < .001) and much lower genetic diversity in the coastal than the offshore ecotype, supporting patterns found in previous studies elsewhere. Despite the opportunity for gene flow in potential “contact zones”, we found minimal current and historical connectivity between ecotypes, suggesting they are following discrete evolutionary trajectories. Based on our molecular findings, which seem to be consistent with morphological differentiations recently described for bottlenose dolphins in our study area, we recommend recognizing the offshore bottlenose dolphin ecotype as an additional Evolutionarily Significant Unit (ESU) in the SWA. Implications of these results for the conservation of bottlenose dolphins in SWA are also discussed.  相似文献   

3.
Highly mobile marine species in areas with no obvious geographic barriers are expected to show low levels of genetic differentiation. However, small‐scale variation in habitat may lead to resource polymorphisms and drive local differentiation by adaptive divergence. Using nuclear microsatellite genotyping at 20 loci, and mitochondrial control region sequencing, we investigated fine‐scale population structuring of inshore bottlenose dolphins (Tursiops aduncus) inhabiting a range of habitats in and around Moreton Bay, Australia. Bayesian structure analysis identified two genetic clusters within Moreton Bay, with evidence of admixture between them (FST = 0.05, P = 0.001). There was only weak isolation by distance but one cluster of dolphins was more likely to be found in shallow southern areas and the other in the deeper waters of the central northern bay. In further analysis removing admixed individuals, southern dolphins appeared genetically restricted with lower levels of variation (AR = 3.252, π = 0.003) and high mean relatedness (= 0.239) between individuals. In contrast, northern dolphins were more diverse (AR = 4.850, π = 0.009) and were mixing with a group of dolphins outside the bay (microsatellite‐based STRUCTURE analysis), which appears to have historically been distinct from the bay dolphins (mtDNA ΦST = 0.272, < 0.001). This study demonstrates the ability of genetic techniques to expose fine‐scale patterns of population structure and explore their origins and mechanisms. A complex variety of inter‐related factors including local habitat variation, differential resource use, social behaviour and learning, and anthropogenic disturbances are likely to have played a role in driving fine‐scale population structure among bottlenose dolphins in Moreton Bay.  相似文献   

4.
Quantifying the vocal repertoire of a species is critical for subsequent analysis of signal functionality, geographic variation, and social relevance. However, the vocalizations of free‐ranging common dolphins (Delphinus sp.) have not previously been described from New Zealand waters. We present the first quantitative analysis of whistle characteristics to be undertaken on the New Zealand population. Acoustic data were collected in the Hauraki Gulf, North Island from 28 independent dolphin group encounters. A total of 11,715 whistles were collected from 105.1 min of recordings. Seven whistle contours were identified containing 29 subtypes. Vocalizations spanned from 3.2 to 23 kHz, with most whistles occurring between 11 and 13 kHz. Whistle duration ranged from 0.01 to 4.00 s (mean ± SD; 0.27 ± 0.32). Of the 2,663 whistles analyzed, 82% have previously been identified within U.K. populations. An additional six contours, apparently unique to New Zealand Delphinus were also identified. Data presented here offer a first insight into the whistle characteristics of New Zealand Delphinus. Comparisons with previously studied populations reveal marked differences in the whistle frequency and modulation of the New Zealand population. Interpopulation differences suggest behavior and the local environment likely play a role in shaping the vocal repertoire of this species.  相似文献   

5.
We used mitochondrial and nuclear genetic markers to investigate population structure of common bottlenose dolphins, Tursiops truncatus, around the main Hawaiian Islands. Though broadly distributed throughout the world's oceans, bottlenose dolphins are known to form small populations in coastal waters. Recent photo‐identification data suggest the same is true in Hawaiian waters. We found genetic differentiation among (mtDNA ΦST= 0.014–0.141, microsatellite FST= 0.019–0.050) and low dispersal rates between (0.17–5.77 dispersers per generation) the main Hawaiian Island groups. Our results are consistent with movement rates estimated from photo‐identification data and suggest that each island group supports a demographically independent population. Inclusion in our analyses of samples collected near Palmyra Atoll provided evidence that the Hawaiian Islands are also occasionally visited by members of a genetically distinct, pelagic population. Two of our samples exhibited evidence of partial ancestry from Indo‐Pacific bottlenose dolphins (T. aduncus), a species not known to inhabit the Hawaiian Archipelago. Our findings have important implications for the management of Hawaiian bottlenose dolphins and raise concerns about the vulnerability to human impacts of pelagic species in island ecosystems.  相似文献   

6.
The taxonomic status of many dolphin populations remains uncertain in poorly studied regions of the world's ocean. Here we attempt to clarify the phylogenetic identity of two distinct forms of bottlenose dolphins (Tursiops spp.) described in the Melanesian region of the Pacific Ocean. Mitochondrial DNA control region sequences from samples collected in New Caledonia (= 88) and the Solomon Islands (= 19) were compared to previously published sequences of Tursiops spp., representing four phylogenetic units currently recognized within the genus. Phylogenetic reconstructions confirm that the smaller coastal form in Melanesia belongs to the same phylogenetic unit as T. aduncus populations in the Pacific, but differs from T. aduncus in Africa, and that the larger more oceanic form belongs to the species T. truncatus. Analyses of population diversity reveal high levels of regional population structuring among the two forms, with contrasting levels of diversity. From a conservation perspective, genetic isolation of T. aduncus in the Solomon Islands raises further concern about recent impacts of the commercial, live‐capture export industry. Furthermore, the low level of mtDNA diversity in T. aduncus of New Caledonia suggests a recent population bottleneck or founder effect and isolation. This raises concerns for the conservation status of these local populations.  相似文献   

7.
An increasing body of studies of widely distributed, high latitude species shows a variety of refugial locations and population genetic patterns. We examined the effects of glaciations and dispersal barriers on the population genetic patterns of a widely distributed, high latitude, resident corvid, the gray jay (Perisoreus canadensis), using the highly variable mitochondrial DNA (mtDNA) control region and microsatellite markers combined with species distribution modeling. We sequenced 914 bp of mtDNA control region for 375 individuals from 37 populations and screened seven loci for 402 individuals from 27 populations across the gray jay range. We used species distribution modeling and a range of phylogeographic analyses (haplotype diversity, ΦST, SAMOVA, FST, Bayesian clustering analyses) to examine evolutionary history and population genetic structure. MtDNA and microsatellite markers revealed significant genetic differentiation among populations with high concordance between markers. Paleodistribution models supported at least five potential areas of suitable gray jay habitat during the last glacial maximum and revealed distributions similar to the gray jay's contemporary during the last interglacial. Colonization from and prolonged isolation in multiple refugia is evident. Historical climatic fluctuations, the presence of multiple dispersal barriers, and highly restricted gene flow appear to be responsible for strong genetic diversification and differentiation in gray jays.  相似文献   

8.
Dispersal and migratory behavior are influential factors in determining how genetic diversity is distributed across the landscape. In migratory species, genetic structure can be promoted via several mechanisms including fidelity to distinct migratory routes. Particularly within North America, waterfowl management units have been delineated according to distinct longitudinal migratory flyways supported by banding data and other direct evidence. The greater white‐fronted goose (Anser albifrons) is a migratory waterfowl species with a largely circumpolar distribution consisting of up to six subspecies roughly corresponding to phenotypic variation. We examined the rangewide population genetic structure of greater white‐fronted geese using mtDNA control region sequence data and microsatellite loci from 23 locales across North America and Eurasia. We found significant differentiation in mtDNA between sampling locales with flyway delineation explaining a significant portion of the observed genetic variation (~12%). This is concordant with band recovery data which shows little interflyway or intercontinental movements. However, microsatellite loci revealed little genetic structure suggesting a panmictic population across most of the Arctic. As with many high‐latitude species, Beringia appears to have played a role in the diversification of this species. A common Beringian origin of North America and Asian populations and a recent divergence could at least partly explain the general lack of structure at nuclear markers. Further, our results do not provide strong support for the various taxonomic proposals for this species except for supporting the distinctness of two isolated breeding populations within Cook Inlet, Alaska (A. a. elgasi) and Greenland (A. a. flavirostris), consistent with their subspecies status.  相似文献   

9.
The biological and genetic structure of common bottlenose dolphins (Tursiops truncatus) that migrate seasonally near Japan remains largely unknown. We investigated the genetic and family structure in a group of 165 common bottlenose dolphins caught off the coast of Japan using mitochondrial DNA (mtDNA) and 20 microsatellite DNA markers. Phylogenetic analysis of the mtDNA control region sequences suggested that the dolphins were related more closely to oceanic types from Chinese waters than other geographic regions. The information on sex, sexual maturation and age together with the genetic markers revealed a strong likelihood for 37 familial relationships related mostly to maternity and an under‐representation of juvenile female offspring. The maternal dolphins had a similar offspring‐birth interval as the coastal types from North Atlantic Ocean, but a slightly younger first‐progeny age. The sex bias in the captured group was particularly marked towards an over‐representation of males among the young and immature dolphins, whereas the mature adults had an equal number of males and females. These results should be useful for future comparative biological, genetic and evolutionary investigations of bottlenose dolphins from the North Pacific Ocean with those from other regions.  相似文献   

10.
Spinner dolphins (Stenella longirostris) exhibit different social behaviours at two regions in the Hawaiian Archipelago: off the high volcanic islands in the SE archipelago they form dynamic groups with ever‐changing membership, but in the low carbonate atolls in the NW archipelago they form long‐term stable groups. To determine whether these environmental and social differences influence population genetic structure, we surveyed spinner dolphins throughout the Hawaiian Archipelago with mtDNA control region sequences and 10 microsatellite loci (n = 505). F‐statistics, Bayesian cluster analyses, and assignment tests revealed population genetic separations between most islands, with less genetic structuring among the NW atolls than among the SE high islands. The populations with the most stable social structure (Midway and Kure Atolls) have the highest gene flow between populations (mtDNA ΦST < 0.001, P = 0.357; microsatellite FST = ?0.001; P = 0.597), and a population with dynamic groups and fluid social structure (the Kona Coast of the island of Hawai’i) has the lowest gene flow (mtDNA 0.042 < ΦST < 0.236, P < 0.05; microsatellite 0.016 < FST < 0.040, P < 0.001). We suggest that gene flow, dispersal, and social structure are influenced by the availability of habitat and resources at each island. Genetic comparisons to a South Pacific location (n = 16) indicate that Hawaiian populations are genetically depauperate and isolated from other Pacific locations (mtDNA 0.216 < FST < 0.643, P < 0.001; microsatellite 0.058 < FST < 0.090, P < 0.001); this isolation may also influence social and genetic structure within Hawai’i. Our results illustrate that genetic and social structure are flexible traits that can vary between even closely‐related populations.  相似文献   

11.
The European pond turtle (Emys orbicularis) is threatened and in decline in several regions of its natural range, due to habitat loss combined with population fragmentation. In this work, we have focused our efforts on studying the genetic diversity and structure of Iberian populations with a fine-scale sampling (254 turtles in 10 populations) and a representation from North Africa and Balearic island populations. Using both nuclear and mitochondrial markers (seven microsatellites, ∼1048 bp nDNA and ∼1500 bp mtDNA) we have carried out phylogenetic and demographic analyses. Our results show low values of genetic diversity at the mitochondrial level although our microsatellite dataset revealed relatively high levels of genetic variability with a latitudinal genetic trend decreasing from southern to northern populations. A moderate degree of genetic differentiation was estimated for Iberian populations (genetic distances, F ST values and clusters in the Bayesian analysis). The results in this study combining mtDNA and nDNA, provide the most comprehensive population genetic data for E. orbicularis in the Iberian Peninsula. Our results suggest that Iberian populations within the Iberian–Moroccan lineage should be considered as a single subspecies with five management units, and emphasize the importance of habitat management rather than population reinforcement (i.e. captive breeding and reintroduction) in this long-lived species.  相似文献   

12.
Here we report the development and characterization of 17 anonymous nuclear markers for cetacean species. These markers were isolated from a genomic library built from a common dolphin (genus Delphinus), and tested across several families within Cetacea. An average of 1 SNP per 272 bp was found in 10 anonymous markers screened for polymorphism within the genus Delphinus (total of 6,537 bp sequenced). These markers represent a significant addition to the set of tools used in genetic studies of cetaceans where population and species boundaries have to be inferred in order to implement proper conservation strategies.  相似文献   

13.
Coastal and offshore ecotypes of common bottlenose dolphins have been recognized in the western South Atlantic, and it is possible that trophic niche divergence associated with social interactions is leading them to genetic and phenotypic differentiation. The significant morphological differentiation observed between these ecotypes suggests they represent two different subspecies. However, there is still a need to investigate whether there is congruence between morphological and genetic data to rule out the possibility of ecophenotypic variation accompanied by gene flow. Mitochondrial DNA (mtDNA) control region sequence data and 10 microsatellite loci collected from stranded and biopsied dolphins sampled in coastal and offshore waters of Brazil as well as 106 skulls for morphological analyses were used to determine whether the morphological differentiation was supported by genetic differentiation. There was congruence among the data sets, reinforcing the presence of two distinct ecotypes. The divergence may be relatively recent, however, given the moderate values of mtDNA nucleotide divergence (dA = 0.008), presence of one shared mtDNA haplotype and possibly low levels of gene flow (around 1% of migrants per generation). Results suggest the ecotypes may be in the process of speciation and reinforce they are best described as two different subspecies until the degree of nuclear genetic divergence is thoroughly evaluated: Tursiops truncatus gephyreus (coastal ecotype) and T. t. truncatus (offshore ecotype). The endemic distribution of T. t. gephyreus in the western South Atlantic and number of anthropogenic threats in the area reinforces the importance of protecting this ecotype and its habitat.  相似文献   

14.
The Australian sheep blowfly, Lucilia cuprina, was first identified in New Zealand in 1988 and is now found to have spread throughout many sheep-farming regions. L. cuprina is estimated to have been present in New Zealand < 20 years, while in Australia L. cuprina has been estimated present > 100 years. The aim of this study was to determine the genetic effects of colonization of L. cuprina and to compare populations of L. cuprina from these two countries in terms of genetic variability and differentiation. Allozyme electrophoresis was used which revealed variability at six loci. 1680 blowflies were examined from 56 sites throughout L. cuprina's range in both countries. Genetic variability at each locus in terms of allele composition was found to be high and genetic differentiation varied considerably in New Zealand in comparison to Australia. Temporal sampling in New Zealand suggests seasonal fluctuations of population size in the recently colonized region of the South Island.  相似文献   

15.
Mitochondrial DNA (mtDNA) control region sequences and microsatellite loci length polymorphisms were used to investigate genetic differentiation in spotted dolphins (Stenella attenuata) in the Eastern Tropical Pacific and to examine the intraspecific structure of the coastal subspecies (Stenella attenuata graffmani). One-hundred and thirty-five animals from several coastal areas and 90 offshore animals were sequenced for 455 bp of the mitochondrial control region, resulting in 112 mtDNA haplotypes. Phylogenetic analyses and the existence of shared haplotypes between the two subspecies suggest recent and/or current gene flow. Analyses using χ2, F ST (based on haplotype frequencies) and ΦST values (based on frequencies and genetic distances between haplotypes) yielded statistically significant separation (randomized permutation values P<0.05) among four different coastal populations and between all but one of these and the offshore subspecies (overall F ST=0.0691). Ninety-one coastal animals from these four geographic populations and 50 offshore animals were genotyped for seven nuclear microsatellite loci. Analysis using F ST values (based on allelic frequencies) yielded statistically significant separation between most coastal populations and offshore animals, although no coastal populations were distinguished. These results argue for the existence of some genetic isolation between offshore and inshore populations and among some inshore populations, suggesting that these should be treated as separate units for management purposes.  相似文献   

16.
The identification of species and population boundaries is important in both evolutionary and conservation biology. In recent years, new population genetic and computational methods for estimating population parameters and testing hypotheses in a quantitative manner have emerged. Using a Bayesian framework and a quantitative model‐testing approach, we evaluated the species status and genetic connectedness of bottlenose dolphin (Tursiops spp.) populations off remote northwestern Australia, with a focus on pelagic ‘offshore’ dolphins subject to incidental capture in a trawl fishery. We analysed 71 dolphin samples from three sites beyond the 50 m depth contour (the inshore boundary of the fishery) and up to 170 km offshore, including incidentally caught and free‐ranging individuals associating with trawl vessels, and 273 dolphins sampled at 12 coastal sites inshore of the 50 m depth contour and within 10 km of the coast. Results from 19 nuclear microsatellite markers showed significant population structure between dolphins from within the fishery and coastal sites, but also among dolphins from coastal sites, identifying three coastal populations. Moreover, we found no current or historic gene flow into the offshore population in the region of the fishery, indicating a complete lack of recruitment from coastal sites. Mitochondrial DNA corroborated our findings of genetic isolation between dolphins from the offshore population and coastal sites. Most offshore individuals formed a monophyletic clade with common bottlenose dolphins (T. truncatus), while all 273 individuals sampled coastally formed a well‐supported clade of Indo‐Pacific bottlenose dolphins (T. aduncus). By including a quantitative modelling approach, our study explicitly took evolutionary processes into account for informing the conservation and management of protected species. As such, it may serve as a template for other, similarly inaccessible study populations.  相似文献   

17.
Gene flow among small fragmented populations is critical for maintaining genetic diversity, and therefore the evolutionary potential of a species. Concern for two New Zealand endemic subspecies, the Hector’s (Cephalorhynchus hectori hectori) and Maui’s (C. h. maui) dolphins, arises from their low abundance, slow rate of reproduction, and susceptibility to fisheries-related mortality. Our work examined genetic differentiation and migration between the subspecies and among regional and local Hector’s dolphin populations using mitochondrial (mt) DNA and microsatellite genotypes from 438 samples. Results confirmed earlier reports of a single unique mtDNA control region haplotype fixed in the Maui’s dolphin, and provided new evidence of reproductive isolation from Hector’s dolphins (9-locus microsatellite F ST?=?0.167, P?<?0.001). Independent evolutionary trajectories were also supported for Hector’s dolphin populations of the East Coast, West Coast, Te Waewae Bay and Toetoe Bay. Low asymmetrical migration rates were found among several Hector’s dolphin populations and assignment tests identified five Hector’s dolphins likely to have a migrant father from another regional population. There appears to be sufficient step-wise gene flow to maintain genetic diversity within the East and West Coasts; however, the two local South Coast populations exhibited a high degree of differentiation given their close proximity (~100?km). To maintain the evolutionary potential and long-term survival of both subspecies, genetic monitoring and conservation management must focus on maintaining corridors to preserve gene flow and prevent further population fragmentation and loss of genetic diversity, in addition to maintaining local population abundances.  相似文献   

18.
Fine‐scale spatial genetic structure of populations results from social and spatial behaviors of individuals such as sex‐biased dispersal and philopatry. However, the demographic history of a given population can override such socio‐spatial factors in shaping genetic variability when bottlenecks or founder events occurred in the population. Here, we investigated whether socio‐spatial organization determines the fine‐scale genetic structure for both sexes in a Mediterranean mouflon (Ovis gmelini musimon × Ovis sp.) population in southern France 60 years after its introduction. Based on multilocus genotypes at 16 loci of microsatellite DNA (n = 230 individuals), we identified three genetic groups for females and two for males, and concurrently defined the same number of socio‐spatial units using both GPS‐collared individuals (n = 121) and visual resightings of marked individuals (n = 378). The socio‐spatial and genetic structures did not match, indicating that the former was not the main driver of the latter for both sexes. Beyond this structural mismatch, we found significant, yet low, genetic differentiation among female socio‐spatial groups, and no genetic differentiation in males, with this suggesting female philopatry and male‐biased gene flow, respectively. Despite spatial disconnection, females from the north of the study area were genetically closer to females from the south, as indicated by the spatial analysis of the genetic variability, and this pattern was in accordance with the common genetic origin of their founders. To conclude, more than 14 generations later, genetic signatures of first introduction are not only still detectable among females, but they also represent the main factor shaping their present‐time genetic structure.  相似文献   

19.
The population genetic structure of the Anopheles gambiae in western Kenya was studied using length variation at five microsatellite loci and sequence variation in a 648-nt mtDNA fragment. Mosquitoes were collected from houses in villages spanning up to 50 km distance, The following questions were answered, (i) Are mosquitoes in a house more related genetically to each other than mosquitoes between houses? (ii) What degree of genetic differentiation occurs on these geographical scales? (iii) How consistent are the results obtained with both types of genetic markers? At the house level, no differentiation was detected by FST and RST, and the band sharing index test revealed no significant associations of alleles across loci. Likewise, indices of kinship based on mtDNA haplotypes in houses were even lower than in the pooled sample. Therefore, the hypothesis that mosquitoes in a house are more related genetically was rejected. At increasing geographical scales, microsatellite allele distributions were similar among all population samples and no subdivision of the gene pool was detected by FST or RST. Likewise, estimates of haplotype divergence of mtDNA between populations were not higher than the within population estimates, and mtDNA-based FST values were not significantly different from zero. That sequence variation in mtDNA provided matching results with microsatellite loci (while high genetic variation was observed in all loci), suggested that this pattern represents the whole genome. The minimum area associated with a deme of A. gambiae in western Kenya is therefore larger than 50 km in diameter.  相似文献   

20.
The genetic structure of the earth bumblebee (Bombus terrestris L.) was examined across 22 wild populations and two commercially reared populations using eight microsatellite loci and two mitochondrial genes. Our study included wild bumblebee samples from six populations in Ireland, one from the Isle of Man, four from Britain and 11 from mainland Europe. A further sample was acquired from New Zealand. Observed levels of genetic variability and heterozygosity were low in Ireland and the Isle of Man, but relatively high in continental Europe and among commercial populations. Estimates of Fst revealed significant genetic differentiation among populations. Bayesian cluster analysis indicated that Irish populations were highly differentiated from British and continental populations, the latter two showing higher levels of admixture. The data suggest that the Irish Sea and prevailing south westerly winds act as a considerable geographical barrier to gene flow between populations in Ireland and Britain; however, some immigration from the Isle of Man to Ireland was detected. The results are discussed in the context of the recent commercialization of bumblebees for the European horticultural industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号