首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
多糖在藻类富集微量元素中的作用及机理   总被引:15,自引:0,他引:15  
多糖在藻类富集微量元素中的作用及机理李志勇郭祀远李琳(华南理工大学轻工食品学院,广州510641)关键词藻类多糖微量元素生物富集生物吸附生物富集(bioenrichment)又叫生物浓缩(bioconcentration)或生物积聚(bioaccu-...  相似文献   

2.
植物生物节律性研究进展   总被引:5,自引:0,他引:5  
植物的生物节律是植物在亿万年适应环境的过程中经自然选择被保存下来的一种生物内在的、复杂而精细的生理调节系统,是目前植物学领域的一个新的研究热点。就植物近日节律、近年节律等生物节律当前研究成果进行了综述及展望。  相似文献   

3.
淋球菌的生物诊断法李新玉,邹碧珍,韩美丽,敬德仲,王淑华,曲杰(黑龙江省科学院应用微生物研究所,哈尔滨)淋球菌(Gonocacus)是引起淋球菌性尿道炎的病原菌,淋病是一种性传括性疾病,据报导,淋病的发病率占性传播性疾病的80%。建国后淋病在我国基本...  相似文献   

4.
细胞非正常生长的分子机制   总被引:2,自引:0,他引:2  
细胞非正常生长的分子机制吴家睿(中国科学院上海生物化学研究所,上海20003关键词细胞增殖细胞凋亡细胞衰老所有高等生物都是多细胞生物。从一个细胞(受精卵)生长为由成千上万个细胞构成的个体,其主要依靠的机制是通过细胞周期(celcycle)实现的细胞增...  相似文献   

5.
植物生殖生态学研究进展   总被引:53,自引:2,他引:51  
苏智先  钟章成 《生态学杂志》1998,17(1):39-46,44
植物生殖生态学研究进展苏智先张素兰(四川师范学院生物多样性研究中心,南充637002)钟章成(西南师范大学生物地理研究所,重庆630715)AdvancesinPlantReproductiveEcology.SuZhixian,ZhangSulan...  相似文献   

6.
昆虫分子生物学的一些研究进展:生物钟的基因   总被引:3,自引:0,他引:3  
翟启慧 《昆虫学报》1996,39(3):321-329
昆虫分子生物学的一些研究进展:生物钟的基因翟启慧(中国科学院动物研究所北京100080)生物的许多行为和生理现象有周期性波动,称为生物节律或生物钟。长期以来,这是一个十分吸引人却又难以理解的问题。虽然有大量文献描述生物钟的现象,但对其机理却一无所知。...  相似文献   

7.
生物节律和生物钟   总被引:1,自引:0,他引:1  
从众多的生物节律现象可看出,动物、植物的生理机能和生活习性好象受体内某种内在的时钟控制,这种神秘的时钟称为“生物钟”,即生物感知时间的能力。而生物节律实际上是由生物钟控制的,是生物钟的外在表现。生物节律和生物钟的研究经历了3个主要阶段:50年代及以前的生物节律现象的描述阶段;60年代的模型建造阶段;70年代以来利用生物化学和分子  相似文献   

8.
正生物节律(biological rhythm)指机体活动呈现的周期性变化;可分为日节律(circadian rhythm)、月节律(circamensual rhythm)、年节律(circannual rhythm)等;机体每昼夜间规律发生的节律性变化,被认为由"生物钟"调控;而"生物钟"则有其基因、分子与神经基础。生物节律具有自身调节性,以适应外界变化,增强生物的环境适应性。光照,摄食,温度等,均为重要的外界因素。摄食后,机体会发生一系列适应性变化,包括糖代谢水平上调、糖原合成增加等;然而,摄食影响机体生物节律的  相似文献   

9.
殷康俊 《生物学通报》1996,31(11):26-26
伴性遗传、限性遗传与从性遗传殷康俊(安徽省铜陵有色铜山矿中学247127)伴性遗传(sex-linkedinheritance)是指性染色体上的基因所控制的性状在遗传方式上与性别相联系。在生物的性状中,还有限性性状和从性性状,这两类性状的遗传分别叫限...  相似文献   

10.
海藻糖的生物学功能简介   总被引:24,自引:0,他引:24  
海藻糖(Trehalose,α-D-glucopyranosyl-α-D-glucopyranoside)是一种非还原性二糖,广泛存在于海藻、酵母、霉菌、食用菌、虾、昆虫、高等植物等生物体内,是一种贮藏性碳水化合物。它具有保护生物细胞和生物活动性物质...  相似文献   

11.
12.
13.
In temperate zones duration of daylight, i.e. photoperiod, changes with the seasons. The changing photoperiod affects animal as well as human physiology. All mammals exhibit circadian rhythms and a circadian clock controlling the rhythms is located in the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN consists of two parts differing morphologically and functionally, namely of the ventrolateral (VL) and the dorsomedial (DM). Many aspects of SCN-driven rhythmicity are affected by the photoperiod. The aim of the present overview is to summarize data about the effect of the photoperiod on the molecular timekeeping mechanism in the rat SCN, especially the effect on core clock genes, clock-controlled genes and clock-related genes expression. The summarized data indicate that the photoperiod affects i) clock-driven rhythm in photoinduction of c-fos gene and its protein product within the VL SCN, ii) clock-driven spontaneous rhythms in clock-controlled, i.e. arginine-vasopressin, and in clock-related, i.e. c-fos, gene expression within the DM SCN, and iii) the core clockwork mechanism within the rat SCN. Hence, the whole central timekeeping mechanism within the rat circadian clock measures not only the daytime but also the time of the year, i.e. the actual season.  相似文献   

14.
A recently reported circadian rhythm in the spontaneous c-Fos immunoreactivity in the rat suprachiasmatic nucleus (SCN) is expressed mostly in the dorsomedial (dm) SCN, where vasopressinergic cells are located. The aim of the present study is to find out whether day length, i.e., photoperiod, affects the dm-SCN rhythm and, if so, how the rhythm adjusts to a change from a long to a short photoperiod. In addition, a question of whether the spontaneous c-Fos production is localized in vasopressin- producing cells or in other cells is also studied to characterize further the dm-SCN rhythmicity. Combined immunostaining for c-Fos and arginine vasopressin (AVP) revealed that most of c-Fos immunopositive cells were devoid of AVP; the results suggest that c-Fos-producing cells in the dm-SCN are mostly not identical with those producing AVP. In rats maintained under a long photoperiod with 16:8-h light-dark cycle (LD 16:8) daily and then released into darkness, the time of the afternoon and evening decline of the spontaneous c-Fos immunoreactivity in the dm-SCN differed just slightly from the time in rats maintained originally under a short LD 8:16 photoperiod; however, the morning c-Fos rise occurred about 4 h earlier under the long than under the short photoperiod. After a change from a long to a short photoperiod, a rough but not yet a fine adjustment of the morning c-Fos rise to the change was accomplished within 3-6 days. The results show that similar to the recently reported ventrolateral SCN rhythmicity, the intrinsic dm-SCN rhythmicity is also affected by the photoperiod and suggest that the whole SCN state is photoperiod dependent.  相似文献   

15.
Rhythmicity of the rat suprachiasmatic nucleus (SCN), a site of the circadian pacemaker, is affected by daylength; that is, by the photoperiod. Whereas various markers of rhythmicity have been followed, so far there have been no studies on the effect of the photoperiod on the expression of the clock genes in the rat SCN. To fill the gap and to better understand the photoperiodic modulation of the SCN state, rats were maintained either under a long photoperiod with 16 h of light and 8 h of darkness per day (LD16:8) or under a short LD8:16 photoperiod, and daily profiles of Per1, Cry1, Bmal1 and Clock mRNA in darkness were assessed by in situ hybridization method. The photoperiod affected phase, waveform, and amplitude of the rhythmic gene expression as well as phase relationship between their profiles. Under the long period, the interval of elevated Per1 mRNA lasted for a longer and that of elevated Bmal1 mRNA for a shorter time than under the short photoperiod. Under both photoperiods, the morning and the daytime Per1 and Cry1 mRNA rise as well as the morning Bmal1 mRNA decline were closely linked to the morning light onset. Amplitude of Per1, Cry1, and Bmal1 mRNA rhythms was larger under the short than under the long photoperiod. Also, under the short photoperiod, the daily Clock mRNA profile exhibited a significant rhythm. Altogether, the data indicate that the whole complex molecular clockwork in the rat SCN is photoperiod dependent and hence may differ according to the season of the year.  相似文献   

16.
Recent studies have shown that the waveform of the rhythm of c-Fos photoinduction in the ventrolateral (vl) part of the suprachiasmatic nucleus (SCN) and that of the rhythm in the spontaneous c-Fos production in the dorsomedial (dm) part of the SCN in rats released into constant darkness depend on the photoperiod under which the animals were previously maintained. The aim of the present study was to find out how the rhythms of c-Fos immunoreactivity in both SCN subdivisions are affected by actual light-dark (LD) cycles with various photoperiods, either artificial or natural ones, that animals may usually experience. Rats were maintained under artificial LD cycles, with either a long (16-h photoperiod) or a short (8-h photoperiod) or under natural daylight. In the latter case, c-Fos rhythms were followed in the summer when the photoperiod lasted about 16 h or in winter when it lasted only 8 h. The rhythms of c-Fos immunoreactivity under natural daylight did not differ significantly from those under corresponding artificial photoperiods. Under a long photoperiod, the morning c-Fos rise in the dm- as well as in the vl-SCN occurred about 4 h earlier than under a short one. In both SCN subdivisions, the interval when the nighttime c-Fos immunoreactivity was low, was shorter under a long than under a short photoperiod by roughly 6 h. The morning c-Fos rise in the dm-SCN always preceded that in the vl-SCN. Whereas in the former one the rise was due to the endogenous dm-SCN rhythmicity, in the latter one the rise was induced by the morning light onset. The results show that whereas c-Fos rhythmicity under actual LD cycles is affected by the photoperiod in both SCN subdivisions, mechanism of c-Fos induction in the dm-SCN differs from that in the vl-SCN.  相似文献   

17.
18.
In many seasonally breeding rodents, reproduction and metabolism are activated by long summer days (LD) and inhibited by short winter days (SD). After several months of SD, animals become refractory to this inhibitory photoperiod and spontaneously revert to LD-like physiology. The suprachiasmatic nuclei (SCN) house the primary circadian oscillator in mammals. Seasonal changes in photic input to this structure control many annual physiological rhythms via SCN-regulated pineal melatonin secretion, which provides an internal endocrine signal representing photoperiod. We compared LD- and SD-housed animals and show that the waveform of SCN expression for three circadian clock genes (Per1, Per2, and Cry2) is modified by photoperiod. In SD-refractory (SD-R) animals, SCN and melatonin rhythms remain locked to SD, reflecting ambient photoperiod, despite LD-like physiology. In peripheral oscillators, Per1 and Dbp rhythms are also modified by photoperiod but, in contrast to the SCN, revert to LD-like, high-amplitude rhythms in SD-R animals. Our data suggest that circadian oscillators in peripheral organs participate in photoperiodic time measurement in seasonal mammals; however, circadian oscillators operate differently in the SCN. The clear dissociation between SCN and peripheral oscillators in refractory animals implicates intermediate factor(s), not directly driven by the SCN or melatonin, in entrainment of peripheral clocks.  相似文献   

19.
20.
In mammals, the suprachiasmatic nucleus (SCN), the circadian pacemaker, receives light information via the retina and functions in the entrainment of circadian rhythms and in phasing the seasonal responses of behavioral and physiological functions. To better understand photoperiod-related alterations in the SCN physiology, we analyzed the clock gene expression in the mouse SCN by performing in situ hybridization and real-time monitoring of the mPer1::luc bioluminescence. Under long photoperiod (LP) conditions, the expression rhythms of mPer1 and Bmal1 in the caudal SCN phase-led those in the rostral SCN; further, within the middle SCN, the rhythms in the ventrolateral (VL)-like subdivision advanced compared with those in the dorsomedial (DM)-like subdivision. The mPer1::luc rhythms in the entire coronal slice obtained from the middle SCN exhibited 2 peaks with a wide peak width under LP conditions. Imaging analysis of the mPer1::luc rhythms in several subdivisions of the rostral, middle, caudal, and horizontal SCN revealed wide regional variations in the peak time in the rostral half of the SCN under LP conditions. These variations were not due to alterations in the waveform of a single SCN neuronal rhythm. Our results indicate that LP conditions induce phase changes in the rhythms in multiple regions in the rostral half of the SCN; this leads to different circadian waveforms in the entire SCN, coding for day length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号