首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Relations for competition for light are developed and used ina plant growth model applicable to the isolated plant, to plantsin even-aged monoculture and to plants in mixed-aged monoculture.In an isolated plant, it is assumed that a leaf area, proportionalto the plant mass, is contained within a crown whose projectedzone area is proportional to plant mass to the 2/3 power. Self-shadingprogressively reduces the specific growth rate. If light werethe sole limiting resource and were constant, one can derivea growth equation, dw/dt = rw[1 - exp (-KW1/3)]KW1/3, which,integrated, gives w1/3 = K-1 ln {1 + [exp (KW1/30)-1] exp (rt/3)}.It approximates, initially, to a particular case of the Richards(1959) empirical growth equation. In even-aged evenly-spaced monocrops competing only for light,it is assumed that the zone areas merge at canopy closure, andgrowth then follows the expolinear equation of Goudriaan andMonteith (1990), giving a continuous function based on groundcover. For mixed-aged monocrops, we assume a phase of canopyclosure that affects the younger plants earlier than the olderones. Under varying environmental conditions in the field, plant growthmay be affected by other factors in addition, e.g. temperature.In the growth conductance model of Aikman and Scaife (1993),the shading expressions are applied to the light-dependence. Data from two sowings of cabbage and carrot in even-aged andmixed-aged monocrops were used to test the model. The parametervalues derived from the even-aged monocultures predict the growthrates in the mixed-aged monocultures better than models whichassume uniform canopies.Copyright 1994, 1999 Academic Press Growth, model, monocrop, even-aged, mixed-aged, PAR, density, competition, light, shading, zone area, ground cover, temperature, carbon dioxide, expolinear, carrot, Daucus carota L., cabbage, Brassica oleracea L  相似文献   

2.
A dynamic model for growth and mortality of individual plantsin a stand was developed, based on the process of canopy photosynthesis,and assuming an allometric relationship between plant heightand weight, i.e. allocation growth pattern of plant height andstem diameter. Functions G(t, x), for the mean growth rate ofindividuals of size x at time t, and M(t,x), for the mortalityrate of individuals of size x at time t, were developed fromthis model and used in simulations. The dynamics of size structurewere simulated, combining the continuity equation model, a simpleversion of the diffusion model, with these functions. Simulationsreproduced several well-documented phenomena: (1) size variabilityin terms of coefficient of variation and skewness of plant weightincreases at first with stand development and then stabilisesor decreases with an onset of intensive self-thinning; (2) duringthe course of self-thinning, there is a power relationship betweendensity and biomass per unit ground area, irrespective of theinitial density and of the allocation-growth pattern in termsof the allometric parameter relating plant height and weight.The following were further shown by simulation: (a) competitionbetween individuals in a crowded stand is never completely one-sidedbut always asymmetrically two-sided, even though competitionis only for light; (b) plants of ‘height-growth’type exhibit a greater asymmetry in competition than plantsof ‘diameter-growth’ type, (c) the effect of competitionon the growth of individuals in a crowded stand converges toa stationary state, even when the stand structure still changesgreatly. All of these theoretical results can explain recentempirical results obtained from several natural plant communities.Finally, a new, general functional form for G(t, x) in a crowdedstand is proposed based on these theoretical results, insteadof a priori or empirical growth and competition functions. Canopy photosynthesis, competition mode, continuity equation, self-thinning, simulation, size distribution  相似文献   

3.
As yet there is no comprehensive theory in plant populationecology to explain relationships between mean plant size, sizedistribution and self-thinning. In this paper, a new synthesisof plant monocultures is proposed. If the reciprocal relationshipbetween plant biomass and plant population density among variousstands of even-aged plant populations holds, the same reciprocalrelationship must exist between cumulative mass and cumulativenumber of plants from the largest individual within a population,assuming strict one-sided competition (which is an extreme conditionfor competition for light among plants). The two parametersof the relationship between cumulative mass and cumulative numberwithin a stand both correlate with maximum plant height in thestand. One parameter equals the reciprocal of the potentialmaximum plant mass per area, which is expressed by the productof maximum plant height and dry-matter density. The other parametercorrelates with the potential maximum individual plant mass,which is allometrically related to maximum plant height. Asa stand develops, the growth rate of the smallest individualswill become zero due to suppression from larger individuals,and they will die; i.e. self-thinning will occur. The slopeof the self-thinning line is expressed through the coefficientsof allometry between height and mass and between dry matterdensity and height. When the former coefficient is 3 and thelatter is 0, the gradient exactly corresponds to the value expectedfrom the 3/2 power rule, but it can take various values dependingon the values of the two coefficients. Competition among individualsdetermines size-density relationships among stands, which inturn determine the size structure of the stand. The size structureconstrains the growth of individuals and results in self-thinningwithin the stand.Copyright 1999 Annals of Botany Company. Monoculture, plant population, self-thinning, competition, hierarchy, size-structure.  相似文献   

4.
When plant monocultures are sown over a wide range of densities for a given period of time, the total biomass yield increases with density at low densities and then levels off at high densities, a phenomenon called constant final yield (CFY). There are several reported cases, however, where the total yield decreases at very high densities, but the reasons for such exceptions are not known. We used a spatially explicit, individual-based “field of neighborhood” simulation model to investigate the potential roles of spatial pattern, individual variation, and competitive stress tolerance for CFY. In the model, individual plants compete asymmetrically for light when their fields overlap, and this competition decreases growth and increases mortality. We varied (1) the initial size variation, (2) the spatial pattern, and (3) ability to survive intense competition and examined the effects on the density-biomass relationship. CFY was always observed when there was high variability among individuals, but not always when variability was low. This high size variation could be the result of high initial size variability or variation in the degree of local crowding. For very different reasons, very high and very low tolerance for competition resulted in decreasing total biomass at very high densities. Our results emphasize the importance of individual variation for population processes and suggest that we should look for exceptions to CFY in homogeneous, even-aged, regularly spaced populations such as plantations.  相似文献   

5.
Positive interactions can increase size inequality in plant populations   总被引:1,自引:0,他引:1  
1.  Large variation in the size of individuals is a ubiquitous feature of natural plant populations. While the role of competition in generating this variation has been studied extensively, the potential effects of positive interactions among plants, which are common in high-stress environments, have not been investigated.
2.  Using an individual-based 'zone-of-influence' model, we investigate the effects of competition, abiotic stress and facilitation on size inequality in plant monocultures. In the model, stress reduces the growth rate of plants, and facilitation ameliorates the effects of stress. Both facilitation and competition occur in overlapping zones of influence. We tested some of the model's predictions with a field experiment using the clonal grass Elymus nutans in an alpine meadow.
3.  Facilitation increased the size inequality of model populations when there was no density-dependent mortality. This effect decreased with density as competition overwhelmed facilitation. The lowest size inequality was found at intermediate densities both with the model and in the field.
4.  When density-dependent mortality was included in the model, stress delayed its onset and reduced its rate by reducing growth rates, so the number of survivors at any point in time was higher under harsh than under more benign conditions. Facilitation increased size inequality during self-thinning.
5.   Synthesis . Our results demonstrate that facilitation interacts with abiotic stress and competition to influence the degree of size inequality in plant populations. Facilitation increased size inequality at low to intermediate densities and during self-thinning.  相似文献   

6.
Thomas W. Jurik 《Oecologia》1991,87(4):539-550
Summary Plots in a naturally occurring population of giant ragweed (Ambrosia trifida L.) near Ames, Iowa, USA were left unthinned (high density,=693 plants/m2) or were thinned in early June 1989 to create low and medium densities of 10 and 50 plants/m2. Size and light environment of individual plants were measured at monthly intervals from June to September. By September, low density plants had 15 times greater biomass/plant and 30 times greater leaf area/plant than high density plants, although biomass and leaf area per unit land area decreased with decreasing density. Plants at high density allocated more biomass to stem growth, but plants at medium and low density had successively higher leaf area ratios, higher potential photosynthetic rates, higher allocation to leaves, and higher growth rates. Average light on leaves decreased with increasing density and also decreased over the growing season in the low and medium densities. The distribution of light environments of individual plants was non-normal and skewed to the left in most months, in contrast to the rightwards skew of distributions of plant size parameters. Inequality in the distributions, as measured by coefficient of variation and Gini coefficients, increased over most of the growing season. There was little effect of density on inequality of stem diameter, height, or estimated dry weight, but inequality in reproductive output greatly increased with density. There was greater inequality in number of staminate flowers produced than in number of pistillate flowers and seeds produced. Path analysis indicated that early plant size was the most important predictor of final plant size and reproductive output; photosynthesis, conductance, and light environment were also significantly correlated with size and reproduction but usually were of minor importance. Variation in growth rate apparently increased inequality in plant size at low density, whereas belowground competition and death of smaller plants may have limited increases in inequality at high density.  相似文献   

7.
KOHYAMA  T.; HARA  T.; TADAKI  Y. 《Annals of botany》1990,65(5):567-574
The size structure of trees in crowded, even-aged Abies (fir)stands of ‘Shimagare’ or ‘wave-regenerated’sub-alpine forests is analyzed. Tree-height distributions showconsistently smaller variation and less positive skewness thanthe distributions of trunk diameter and crown depth (tree heightminus height of the lowest branch). This difference is associatedwith changes in the relationships between trunk diameter, treeheight and crown depth as stands age. These, in turn, resultfrom self-pruning of the lower foliage crown due to competitionfor light in crowded stands. Abies, diameter-height curve, competition, size distribution, stand development, tree geometry, wave-regeneration  相似文献   

8.
Forage maize (Zea mays L.) was grown in monocultures at populationdensities ranging from 4·9 to 11·1 plants m–2.Data for plant growth analysis were obtained from six harvestscarried out from 21 to 115 d after planting. Conventional plantgrowth analysis indicated that improvements in forage productivityper unit land area by high population density resulted directlyfrom increased plant presence. Reduction in dry weight per shootat high population density was associated with reduced unitleaf rate. Leaf area ratio was little affected, which may implythat competition for soil nutrients or oxygen was the chiefcause of plant interference. Yield component analysis demonstratedthe increasing importance of population density treatments asa source of variation as growth progressed. Direct relationshipsbetween variation in yield per plant and variation in two yieldcomponents, stem diameter and the inverse of leaf area ratio,were demonstrated. Both conventional plant growth analysis andyield component analysis indicated complex physiological andmorphological adjustments to species population density. Plant growth analysis, yield component analysis, Zea mays L  相似文献   

9.
Shoot Growth and Mortality Patterns of Urtica dioica, a Clonal Forb   总被引:1,自引:0,他引:1  
The growth and mortality patterns of the clonal forb Urticadioica were investigated at the level of the individual shootin two growing seasons, 1991 and 1992, in a natural stand. Shootheight and diameter at ground level of each shoot tagged inspring were measured repeatedly five times during the growingseason. Dry weights of these repeatedly measured shoots wereestimated using an allometric relationship between dry weight,height and diameter of harvested shoots. A large decrease inshoot density occurred with stand development from the beginningof the growing season in both the years: (1) shoot survivalrate was about 30% at the end of the growing season; (2) shootmortality rate per 10 x 10 cm subplot between censuses was positivelydependent on shoot density per subplot; (3) the mortality rateof individual shoots was negatively dependent on shoot size(height, diameter and weight) at each growing stage, suggestingone-sided competition between living and dying shoots; (4) shootsize (height, diameter and weight) variability in terms of thecoefficient of variation and skewness decreased in accordancewith shoot mortality. Symmetric competition between living shootswas detected by regression analysis based on a model for individualshoot growth considering the degree of competitive asymmetry.However, the competitive effect on individual shoot growth wasvery small (nearly absent). The mortality pattern of Urticadioica indicates that shoot self-thinning occurred from theearly growing stage as in non-clonal crowded monospecific stands,and contrasts with many clonal plants where shoot self-thinningrarely occurs or, if any, is confined only to a short periodof the later growing stage. The pattern of growth and competitionbetween living shoots of Urtica dioica contrasts with non-clonalcrowded plants undergoing intense competition (usually asymmetric)between individuals, but is a common feature of many clonalplants where shoot competition is supposed to be reduced by'physiological integration' between shoots. These form a newpattern not reported yet for clonal plants. It is pointed outthat clonal plants show a wider spectrum of the growth, competitionand mortality patterns of shoots than non-clonals. Some possiblemechanisms for the pattern of Urtica dioica are discussed.Copyright1995, 1999 Academic Press Shoot competition, diffusion model, individual shoot growth, shoot self-thinning, shoot size variability, Urtica dioica L  相似文献   

10.
A Model for Mortality in a Self-thinning Plant Population   总被引:3,自引:0,他引:3  
HARA  TOSHIHIKO 《Annals of botany》1985,55(5):667-674
A model for mortality process in a self-thinning plant populationis proposed. It considers the spacial process but does not requirepositional information of each individual plant due to the assumptionsthat plants with interacting neighbours all greater than themselvesare the first to die and neighbours' sizes are mutually independentat each growth stage. Mortality of plants of size x at age t,M(t, x), is given as M(t, x) = m{P(t, x)}n where P(t, x) isthe proportion of plants of size greater than x at age t, andm and n are parameters. This model fits data from an experimentalplantation of Abies sachalinensis and will be useful for furtherdevelopment of the theoretical study of plant population growth. Abies sachalinensis Fr. Schm., self-thinning, mortality, size distribution, neighbourhood effect, spacial process model  相似文献   

11.
A growth model for pure, even-aged stands of plants is asymptoticallybounded above by the self-thinning rule that relates maximumplant size to stand density. The model characterizes accretionin mean size as a deviation from the limiting size. It consistsof a function relating mean size to time and density and a companionsurvival model. The growth model is obtained by substitutingthe survival model for density in the mean size relationship.Model flexibility is demonstrated by fitting it to annual remeasurementsof mean size and number of plants per unit area in a stand ofPinus taeda L. 3/2-power rule, mortality, survival, stand dynamics, plant growth model, loblolly pine  相似文献   

12.
Abstract. Both size structure and variability (spatial heterogeneity, disturbance, stochasticity, variation in species attributes, etc.) are regarded as regulatory mechanisms of species coexistence. However, none of the models so far proposed consider both size structure and variability simultaneously. A size-structured variation model for plant-community dynamics is proposed, which is based on the diffusion model for growth dynamics of plant populations. This model has four functions: (1) mean growth rate of individuals of size x at time t, G(t, x) (species-specific mean traits, e.g. competitive ability); (2) variance in growth rate of individuals of size x at time t, D(t, x) (stochastic factors due to genetic variation, environmental heterogeneity, spatial variation of individuals, etc.); (3) mortality rate of individuals of size x at time t, M(t, x); and (4) recruitment rate at time t, R(t), as a boundary condition. The interference function for individuals of size x at time t, C(t, x), is introduced, which expresses the degree of interactions between individuals and hence averaged effects of local neighbourhood competition; the G(t, x), D(t, x), M(t, x) and R(t) functions are given in terms of C(t, x). These four functions describe the growth dynamics of individuals of each species in the plant community. Effects of the G(t, x), D(t, x), M(t, x) and R(t) functions on species coexistence in plant communities were evaluated by simulation and the relative importance of the D(t, x) function as well as size structure was shown for species coexistence especially in plant communities where competition among species is non-transitive or niche limitation does not work.  相似文献   

13.
Patterns of size inequality in crowded plant populations are often taken to be indicative of the degree of size asymmetry of competition, but recent research suggests that some of the patterns attributed to size-asymmetric competition could be due to spatial structure. To investigate the theoretical relationships between plant density, spatial pattern, and competitive size asymmetry in determining size variation in crowded plant populations, we developed a spatially explicit, individual-based plant competition model based on overlapping zones of influence. The zone of influence of each plant is modeled as a circle, growing in two dimensions, and is allometrically related to plant biomass. The area of the circle represents resources potentially available to the plant, and plants compete for resources in areas in which they overlap. The size asymmetry of competition is reflected in the rules for dividing up the overlapping areas. Theoretical plant populations were grown in random and in perfectly uniform spatial patterns at four densities under size-asymmetric and size-symmetric competition. Both spatial pattern and size asymmetry contributed to size variation, but their relative importance varied greatly over density and over time. Early in stand development, spatial pattern was more important than the symmetry of competition in determining the degree of size variation within the population, but after plants grew and competition intensified, the size asymmetry of competition became a much more important source of size variation. Size variability was slightly higher at higher densities when competition was symmetric and plants were distributed nonuniformly in space. In a uniform spatial pattern, size variation increased with density only when competition was size asymmetric. Our results suggest that when competition is size asymmetric and intense, it will be more important in generating size variation than is local variation in density. Our results and the available data are consistent with the hypothesis that high levels of size inequality commonly observed within crowded plant populations are largely due to size-asymmetric competition, not to variation in local density.  相似文献   

14.
There is little published information on the physiological behaviourof carrots at the crop level. Here we derive and test a simplemodel for the potential yield of carrot crops. The model calculatesgreen leaf area index (L) using a daily time step. Dry matterproduction is related linearly to light interception, calculatedfromL and canopy light extinction coefficient (k). Two stagesof growth are distinguished. In stage 1, leaf expansion on eachplant is unaffected by neighbouring plants. Stage 2 commenceswhen L reaches a critical value and the plants start to interact.Compared to stage 1, stage 2 has slower leaf expansion and ak which varies with plant density. Dry matter partitioning betweenshoots and the storage root depends on L. We calibrated themodel for two processing cultivars, ‘Chantenay Red Core’and ‘Red Hot’, using data from a 1997–98 plantdensity experiment in Hawke's Bay, New Zealand. The model accountedfor 72% of the observed variation in root size and 79% of thevariation in yield. We tested the model against results fromtwo experiments in 1995–96 and 1996–97. In bothexperiments the same two cultivars were sown at three differentsowing times. Overall, the model accounted for 72% of the observedvariation in root size and 66% of the variation in yield, showingthat it is portable to other environments. Finally, we appliedthe model to interpret the effects of sowing date in these twoexperiments. Previous attempts were confounded by variationin plants m-2with sowing date. The model allowed us to separatethe effects of these factors, and indicated that early sowingsubstantially benefited yield. Copyright 2000 Annals of BotanyCompany Carrot, Daucus carota L., day-degrees, genetic algorithm, growth modelling, plant density, potential yield, thermal time  相似文献   

15.
Decomposition Analysis of Competitive Symmetry and Size Structure Dynamics   总被引:4,自引:1,他引:3  
An analysis is introduced, based on the decomposition of relativegrowth rates, to examine the mode of competition (i.e. whethercompetition is symmetric or asymmetric), the size-dependenceof growth, and their interdependence. In particular, the basisfor two commonly held views is examined: (1) that the type ofresource limitation determines the mode of competition, and(2) that asymmetric competition always leads to size-divergencebetween unequal competitors. It is shown that in field-grownmillet plants, competition for light was symmetric at low densityand asymmetric at high density. However, size variation at lowdensity decreased during growth, because small plants had greaterrelative growth rates than larger plants. Size variation stayedconstant at high density, since plants of all sizes had equalaverage relative growth rates. Based on these results and ageneral discussion, it is proposed that the type of resourcelimitation does not determine the mode of competition. Competitionfor light can be symmetric, and foraging for heterogeneouslydistributed soil resources can produce asymmetric competitionbelow-ground. Furthermore, the mode of competition alone doesnot determine size structure dynamics. Size-dependence of resourceconversion efficiency and allocation can modify the effectsof resource uptake on growth. Pennisetum americanum‘Custer ’; mode of competition; size structure dynamics; plant growth analysis  相似文献   

16.
Competition and Allometry in Kochia scoparia   总被引:7,自引:0,他引:7  
Comparisons between crowded and uncrowded Kochia scoparia individualsdemonstrate pronounced effects of competition on plant allometryas well as on the distributions of different aspects of size.Non-destructive measurements of height and stem diameter and,for a subset of the populations, the number and length of leavesand branches, were taken at three times, and the plants wereharvested after the third measurement. The sequential measurementsafforded the opportunity to obtain information of the effectsof competition on allometric growth trajectories of individuals,as well as on static inter-individual allometric relationships. The distributions of most size measures appeared to be normalfor the uncrowded population. Crowded populations developeda negatively-skewed height distribution and a high-inequalitymass distribution, whereas the diameter distributions remainednormal. Plants grown without neighbours showed simple allometricrelationships between height, diameter and weight. For isolatedplants, the 'static' allometric relationship between plantsof different sizes and the allometric growth trajectory of individualswere similar. Crowded populations showed complex allometry;the static inter-individual relationships between height, diameterand weight were curvilinear (on log-log scale). There were largedifferences in the allometric growth slopes of uncrowded vs.crowded plants. Allometric relationships between stem diameterand plant mass, and between total length of leaves and totallength of branches, did not seem to be altered by competition. The data suggest that height was the most important aspect ofsize influencing future growth of individuals in the crowdedpopulation. Only plants above a certain height were able tocontinue to grow from the second to third measurement in thecrowded population. This supports the hypothesis that asymmetriccompetition for light is the cause of the allometric changesand of the increase in size variability due to competition.Copyright1994, 1999 Academic Press Allometric growth, allometry, competition, growth, Kochia  相似文献   

17.
This paper reviews studies on growth and size-structure dynamics of shoots and clones in clonal plants in comparison with those in non-clonal plants, and discusses the characteristics of clonal plants. The mode of competition between individuals (symmetric versus asymmetric, degree of competitive asymmetry), growth dynamics of individuals, allocation pattern between organs and spatial pattern of individuals are closely correlated with each other in non-clonal plant populations. Theoretical and field studies based on the diffusion model revealed that plants of “height-growth” type (mostly early-successional tree species) and plants of “diameter-growth” type (mostly late-successional tree species) tend to exhibit asymmetric competition and symmetric competition respectively. Moreover, asymmetrically competing plants show smaller effects of variation in individual growth rate and spatial pattern on the size-structure dynamics of the population than symmetrically competing plants. Thefefore, the spatial pattern of inviduals should be considered especially for plants undergoing symmetric competition. These results for non-clonal plants should have a significant implication also for the growth dynamics and competition in clonal plants. The mean growth rate of shoots [G(t,x) function] and hence the mode of competition between shoots differs among clonal plant species as in non-clonal plants. However, a large magnitude and size-independence (or slightly negative size-dependence) of the variation in growth rate of shoots [D(t,x) function], especially at the early stage in a growing season is a common characteristic of many clonal plant species, in contrast to the positively size-dependent variation in individual growth rate in non-clonal plants. This type of variation in shoot growth rate leads to the persistence of stable shoot populations even when the mean growth rate function is changed, and also in cases where the shoot population structure would be unstable in the absence of variation in growth rate. It is suggested that competition between clones is symmetric in most clonal plant species, which brings about small-scale spatio-temporal changes in species abundance and hence species diversity.  相似文献   

18.
Growth of Individuals in Plant Populations   总被引:2,自引:1,他引:1  
Relationships between individual plant weight and net photosynthesisper day (G(t, x) function of plant weight) in plant populationsof various stand structures were simulated based on a canopyphotosynthesis model. The G(t, x) functions of plant weightare determined mainly by LAI (leaf area index), the relationshipbetween individual plant weight and leaf area, canopy structureand extinction coefficient. The concave relationship betweenindividual plant weight and leaf area at small LAI (<2),at small extinction coefficient (< 0.5), or at the canopystructure having the maximum leaf area density at the bottomproduces a concave G(t, x) function, which generates negativeskewness of plant weight. The linear relationship between individualplant weight and leaf area at large LAI (> 2) produces aconvex G(t, x) function, which generates positive skewness ofplant weight. These simulation results coincide with G(t, x)functions obtained experimentally and with the well-known phenomenonof stand dynamics in which skewness of plant weight becomesnegative in the early growth stage and then increases to a positivevalue as a stand grows and becomes crowded. Helianthus annuus L., individual plant size, mean growth rate, canopy photosynthesis model, skewness, stand structure  相似文献   

19.
Abstract: Plant competition for light is a commonly occurring phenomenon in natural and agricultural vegetations. It is typically size-asymmetric, meaning that slightly larger individuals receive a disproportionate share of the light, leaving a limited amount of light for the initially smaller individuals. As a result, size inequalities of such stands increase with competition intensity. A plant's ability to respond morphologically to the presence of neighbour plants with enhanced shoot elongation, the so-called shade avoidance response, acts against the development of size inequalities. This has been shown experimentally with transgenic plants that cannot sense neighbours and, therefore, show no shade avoidance responses. Stands of such transgenic plants showed a much stronger development of size inequalities at high plant densities than did wild type (WT) stands. However, the transgenic plants used in these experiments displayed severely hampered growth rates and virtually no response to neighbours. In order to more precisely study the impact of this phenotypic plasticity on size inequality development, experiments required plants that have normal growth rates and reduced, but not absent, shade avoidance responses. We made use of an ethylene-insensitive, transgenic tobacco genotype (Tetr) that has wild type growth rates and moderately reduced shade avoidance responses to neighbours. Here, we show that the development of size inequalities in monocultures of these plants is not affected unambiguously different from wild type monocultures. Plots of Tetr plants developed higher inequalities for stem length than did WT, but monocultures of the two genotypes had identical CV (Coefficient of Variance) values for shoot biomass that increased with plant density. Therefore, even though reduced shade avoidance capacities led to the expected higher size inequalities for stem length, this does not necessarily lead to increased size inequalities for shoot biomass.  相似文献   

20.
Competitive ability in plants has been previously measured almost exclusively in terms of traits related to growth (biomass) or plant size. In this study, however, we used a multi‐species competition experiment with six annuals to measure relative competitive ability in terms of reproductive output, i.e. the number of offspring produced for the next generation. Under greenhouse conditions, plants of each species were started in pots from germinating seeds and were grown singly (free of competition) and at high density in both monocultures and in mixtures with all study species. Several traits traditionally regarded as determinants of competitive ability in plants were recorded for each species grown singly, including: seed mass, germination time, early growth rate and potential plant size (biomass and height). Under competition, several traits were recorded as indicators of relative performance in both monocultures and mixtures, including: biomass of survivors, total number of survivors, number of reproductive survivors, and reproductive output (total seed production) of the survivors. As expected, species that grew to a larger biomass in isolation had higher seed production in isolation. However, none of the traditional plant growth/size‐related traits, measured either in isolation or under competition, could predict between species variation in reproductive output under competition in either monocultures or mixtures. In mixtures, 97% of this variation in reproductive output could be explained by between‐species variation in the number of reproductive survivors. The results indicate that traits measured on plants grown singly may be poor predictors of reproductive output under competition, and that species’ rank order of competitive ability in terms of the biomass of survivors may bear no relationship to their rank order in terms of the number of offspring produced by these survivors. This has important implications for the interpretation of mechanisms of species coexistence and community assembly within vegetation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号