首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Why should the hosts of brood parasites accept and raise parasitic offspring that differ dramatically in appearance from their own? There are two solutions to this evolutionary enigma. (1) Hosts may not yet have evolved the capability to discriminate against the parasite, or (2) parasite-host systems have reached an evolutionary equilibrium. Avian brood parasites may either gain renesting opportunities or force their hosts to raise parasitic offspring by destroying or preying upon host eggs or nestlings following host ejection of parasite offspring. These hypotheses may explain why hosts do not remove parasite offspring because only then will hosts avoid clutch destruction by the cuckoo. Here we show experimentally that if the egg of the parasitic great spotted cuckoo Clamator glandarius is removed from nests of its magpie Pica pica host, nests suffer significantly higher predation rates than control nests in which parasite eggs have not been removed. Using plasticine model eggs resembling those of magpies and observations of parasites, we also confirm that great spotted cuckoos that have laid an ejected egg are indeed responsible for destruction of magpie nests with experimentally ejected parasite eggs. Cuckoos benefit from destroying host offspring because they thereby induce some magpies to renest and subsequently accept a cuckoo egg.  相似文献   

2.
Hosts either tolerate avian brood parasitism or reject it by ejecting parasitic eggs, as seen in most rejecter hosts of common cuckoos, Cuculus canorus, or by abandoning parasitized clutches, as seen in most rejecter hosts of brown‐headed cowbirds, Molothrus ater. What explains consistent variation between alternative rejection behaviours of hosts within the same species and across species when exposed to different types of parasites? Life history theory predicts that when parasites decrease the fitness of host offspring, but not the future reproductive success of host adults, optimal clutch size should decrease. Consistent with this prediction, evolutionarily old cowbird hosts, but not cuckoo hosts, have lower clutch sizes than related rarely‐ or newly parasitized species. We constructed a mathematical model to calculate the fitness payoffs of egg ejector vs. nest abandoner hosts to determine if various aspects of host life history traits and brood parasites’ virulence on adult and young host fitness differentially influence the payoffs of alternative host defences. These calculations showed that in general egg ejection was a superior anti‐parasite strategy to nest abandonment. Yet, increasing parasitism rates and increasing fitness values of hosts’ eggs in both currently parasitized and future replacement nests led to switch points in fitness payoffs in favour of nest abandonment. Nonetheless, nest abandonment became selectively more favourable only at lower clutch sizes and only when hosts faced parasitism by a cowbird‐ rather than a cuckoo‐type brood parasite. We suggest that, in addition to evolutionary lag and gape‐size limitation, our estimated fitness differences based on life history trait variation provide new insights for the consistent differences observed in the anti‐parasite rejection strategies between many cuckoo‐ and cowbird‐hosts.  相似文献   

3.
Coevolution is often invoked as an engine of biological diversity. Avian brood parasites and their hosts provide one of the best-known examples of coevolution. Brood parasites lay their eggs in the nests of other species, selecting for host defences and reciprocal counteradaptations in parasites. In theory, this arms race should promote increased rates of speciation and phenotypic evolution. Here, we use recently developed methods to test whether the three largest avian brood parasitic lineages show changes in rates of phenotypic diversity and speciation relative to non-parasitic lineages. Our results challenge the accepted paradigm, and show that there is little consistent evidence that lineages of brood parasites have higher speciation or extinction rates than non-parasitic species. However, we provide the first evidence that the evolution of brood parasitic behaviour may affect rates of evolution in morphological traits associated with parasitism. Specifically, egg size and the colour and pattern of plumage have evolved up to nine times faster in parasitic than in non-parasitic cuckoos. Moreover, cuckoo clades of parasitic species that are sympatric (and share similar host genera) exhibit higher rates of phenotypic evolution. This supports the idea that competition for hosts may be linked to the high phenotypic diversity found in parasitic cuckoos.  相似文献   

4.
In the continuing arms race between hosts and brood parasites, hosts are expected to reduce variation in the appearance of their own eggs within clutches, as it facilitates recognition of parasitic eggs. At the same time, by increasing interclutch variation, hosts should make it more difficult for parasites to evolve perfectly mimetic eggs. In this study, we experimentally manipulated intraclutch variation in the great reed warbler, Acrocephalus arundinaceus, in Hungary, where this species is heavily (c. 64%) parasitized by the common cuckoo, Cuculus canorus. We placed artificial cuckoo eggs, which appeared moderately mimetic to humans, in two groups of nests; in one group we increased variability of egg appearance within clutches by exchanging host eggs among nests. These clutches showed a significantly higher intraclutch variability than natural clutches, which we used as a control group. Our results indicate that it has no effect on rejection behaviour in this species, neither when variation was increased experimentally, nor within the natural range of variation displayed by our population. We suggest that when parasitism is high, selection for reduced intraclutch variation may be less important than frequency‐dependent selection for increased variation between individuals within a host population.  相似文献   

5.
Reproductive success of brood parasites largely depends on appropriate host selection and, although the use of inadvertent social information emitted by hosts may be of selective advantage for cuckoos, this possibility has rarely been experimentally tested. Here, we manipulated nest size and clutch colouration of magpies (Pica pica), the main host of great spotted cuckoos (Clamator glandarius). These phenotypic traits may potentially reveal information about magpie territory and/or parental quality and could hence influence the cuckoo’s choice of host nests. Experimentally reduced magpie nests suffered higher predation rate, and prevalence of cuckoo parasitism was higher in magpie nests with the densest roofs, which suggests a direct advantage for great spotted cuckoos choosing this type of magpie nest. Colouration of magpie clutches was manipulated by adding one artificial egg (blue or cream colouration) at the beginning of the egg-laying period. We found that host nests holding an experimental cream egg experienced a higher prevalence of cuckoo parasitism than those holding a blue-coloured egg. Results from these two experiments suggest that great spotted cuckoos cue on magpie nest characteristics and the appearance of eggs to decide parasitism, and confirm, for the first time, the ability of cuckoos to distinguish between eggs of different colours within the nest of their hosts. Several hypothetical scenarios explaining these results are discussed.  相似文献   

6.
The common cuckoo Cuculus canorus is a brood parasite that utilizes many host species. These have evolved defense against parasitism to reject cuckoo eggs that look unlike their own and some cuckoos have evolved egg mimicry to counter this defense. Egg phenotype indeed plays a key role for both the cuckoo and its hosts to successfully reproduce. It has been argued that cuckoos should parasitize host nests where egg phenotype matches because this makes parasitism more successful. Details of the cuckoo’s parasitic behavior, however, largely remains unknown if they really parasitize hosts depending on “egg matching”. In this paper, we model a time sequence of parasitic events in which a cuckoo finds host nests and decides to parasitize them or not in the presence of egg polymorphism. We evaluate which strategy is optimal: (1) opportunistic parasitism where cuckoos parasitize hosts irrespective of the phenotype, or (2) non-opportunistic parasitism where cuckoos parasitize hosts where egg phenotype matches. The analysis showed that either of the two strategies can be optimal. Factors not considered in the model, e.g., ecological and evolutionary changes both in the cuckoo and the host side, are discussed to explain apparent contrasts observed in some cuckoo–host interactions.  相似文献   

7.
The evolution of brood parasitism has long attracted considerable attention among behavioural ecologists, especially in the common cuckoo system. Common cuckoos (Cuculus canorus) are obligatory brood parasites, laying eggs in nests of passerines and specializing on specific host species. Specialized races of cuckoos are genetically distinct. Often in a given area, cuckoos encounter multiple hosts showing substantial variation in egg morphology. Exploiting different hosts should lead to egg-phenotype specialization in cuckoos to match egg phenotypes of the hosts. Here we test this assumption using a wild population of two sympatrically occurring host species: the great reed warbler (Acrocephalus arundinaceus) and reed warbler (A. scirpaceus). Using colour spectrophotometry, egg shell dynamometry and egg size measurements, we studied egg morphologies of cuckoos parasitizing these two hosts. In spite of observing clear differences between host egg phenotypes, we found no clear differences in cuckoo egg morphologies. Interestingly, although chromatically cuckoo eggs were more similar to reed warbler eggs, after taking into account achromatic differences, cuckoo eggs seemed to be equally similar to both host species. We hypothesize that such pattern may represent an initial stage of an averaging strategy of cuckoos, that – instead of specializing for specific hosts or exploiting only one host – adapt to multiple hosts.  相似文献   

8.
Avian hosts of brood parasites can evolve anti‐parasitic defenses to recognize and reject foreign eggs from their nests. Theory predicts that higher inter‐clutch and lower intra‐clutch variation in egg appearance facilitates hosts to detect parasitic eggs as egg‐rejection mainly depends on the appearance of the egg. Therefore, we predict that egg patterns and rejection rates will differ when hosts face different intensity of cuckoo parasitism. We tested this prediction in two populations of the plain prinia Prinia inornata: Guangxi in mainland China with high diversity and density of cuckoo species, and Taiwan where there is only one breeding cuckoo species, the oriental cuckoo Cuculus optatus. As expected, egg patterns were similar within clutches but different among clutches (polymorphic eggs) in the mainland population, while the island population produced more uniform egg morphs. Furthermore, the mainland population showed a high rate of egg rejection, while the island population exhibited dramatically reduced egg grasp‐rejection ability in the absence of parasitism by the common cuckoo Cuculus canorus. Our study suggests that prinias show lower intra‐clutch consistency in egg colour and lose egg‐rejecting ability under relaxed selection pressure from brood parasitism.  相似文献   

9.
Passerine hosts of parasitic cuckoos usually vary in their abilityto discriminate and reject cuckoo eggs. Costs of discriminationand rejection errors have been invoked to explain the maintenanceof this within-population variability. Recently, enforcementof acceptance by parasites has been identified as a rejectioncost in the magpie (Pica pica) and its brood parasite, the greatspotted cuckoo (Clamator glandarius). Previous experimentalwork has shown that rejecter magpies suffer from increased nestpredation by the great spotted cuckoo. Cuckoo predatory behavioris supposed to confer a selective advantage to the parasitebecause magpies experiencing a reproductive failure may providea second opportunity for the cuckoo to parasitize a replacementclutch. This hypothesis implicitly assumes that magpies modulatetheir propensity to reject parasite eggs as a function of previousexperience. We tested this hypothesis in a magpie populationbreeding in study plots varying in parasitism rate. Magpie pairs thatwere experimentally parasitized and had their nests depredated,after their rejection behavior had been assessed, changed theirbehavior from rejection to acceptance. The change in host behaviorwas prominent in study plots with high levels of parasitism,but not in plots with rare or no cuckoo parasitism. We discussthree possible explanations for these differences, concludingthat in study plots with a high density of cuckoos, the probability fora rejecter magpie nest of being revisited and depredated bya cuckoo is high, particularly for replacement clutches, and,therefore, the cost for magpies of rejecting a cuckoo egg ina replacement clutch is increased. Moreover, in areas with highlevels of host defense (low parasitism rate), the probabilityof parasitism and predation of rejecter-magpie nests by thecuckoo is reduced in both first and replacement clutches. Therefore,rejecter magpies in such areas should not change their rejectionbehavior in replacement clutches.  相似文献   

10.
Many bird species can reject foreign eggs from their nests. This behaviour is thought to have evolved in response to brood parasites, birds that lay their eggs in the nest of other species. However, not all hosts of brood parasites evict parasitic eggs. In this study, we collate data from egg rejection experiments on 198 species, and perform comparative analyses to understand the conditions under which egg rejection evolves. We found evidence, we believe for the first time in a large-scale comparative analysis, that (i) non-current host species have rejection rates as high as current hosts, (ii) egg rejection is more likely to evolve when the parasite is relatively large compared with its host and (iii) egg rejection is more likely to evolve when the parasite chick evicts all the host eggs from the nest, such as in cuckoos. Our results suggest that the interactions between brood parasites and their hosts have driven the evolution of egg rejection and that variation in the costs inflicted by parasites is fundamental to explaining why only some host species evolve egg rejection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号