首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The aim of this work was to study, in a rhizobox experiment, the phytoextraction of metals by the hyperaccumulator plant Thlaspi caerulescens in relation to the heterogeneity of metal pollution. Six treatments were designed with soils containing various levels of metals. Homogeneous soils and inclusions of soils in other soil matrices were prepared in order to vary metal concentration and localization. Growth parameters of the plant (rosette diameter and shoot biomass) and localization of roots and shoot uptake of Zn, Cd, Ca, and Mg were determined after 10 weeks of growth. The plants grown on the polluted industrial soils provided a larger biomass and had lower mortality rates than those grown on the agricultural soil. Moreover, these plants accumulated more Zn and Cd (up to 17,516 and 375 mg kg(-1) DM, respectively) than plants grown on the agricultural soil (up to 7300 mg Zn kg(-1) and 83 mg Cd kg(-1) DM). The roots preferentially explored metal-contaminated areas. The exploration of polluted soil inclusions by the roots was associated with a higher extraction of metals. Zinc and Cd in the shoots of Thlaspi caerulescens were negatively correlated with Ca and Mg concentrations; however, the soil supply for these two elements was identical. This suggests that there is competition for the uptake of these elements and that Zn is preferentially accumulated.  相似文献   

2.
Soil microorganisms drive critical functions in plant-soil systems. As such, various microbial properties have been proposed as indicators of soil functioning, making them potentially useful in evaluating the recovery of polluted soils via phytoremediation strategies. To evaluate microbial responses to metal phytoextraction using hyperaccumulators, a microcosm experiment was carried out to study the impacts of Zn and/or Cd pollution and Thlaspi caerulescens growth on key soil microbial properties: basal respiration; substrate-induced respiration (SIR); bacterial community structure as assessed by PCR-denaturing gradient gel electrophoresis (DGGE); community sizes of total bacteria, ammonia-oxidizing bacteria, and chitin-degrading bacteria as assessed by quantitative PCR (Q-PCR); and functional gene distributions as determined by functional gene arrays (GeoChip). T. caerulescens proved to be suitable for Zn and Cd phytoextraction: shoots accumulated up to 8,211 and 1,763 mg kg(-1) (dry weight [DW]) of Zn and Cd, respectively. In general, Zn pollution led to decreased levels of basal respiration and ammonia-oxidizing bacteria, while T. caerulescens growth increased the values of substrate-induced respiration (SIR) and total bacteria. In soils polluted with 1,000 mg Zn kg(-1) and 250 mg Cd kg(-1) (DW), soil bacterial community profiles and the distribution of microbial functional genes were most affected by the presence of metals. Metal-polluted and planted soils had the highest percentage of unique genes detected via the GeoChip (35%). It was possible to track microbial responses to planting with T. caerulescens and to gain insight into the effects of metal pollution on soilborne microbial communities.  相似文献   

3.
Using hyperaccumulator plants to phytoextract soil Ni and Cd   总被引:2,自引:0,他引:2  
Two strategies of phytoextraction have been shown to have promise for practical soil remediation: domestication of natural hyperaccumulators and bioengineering plants with the genes that allow natural hyperaccumulators to achieve useful phytoextraction. Because different elements have different value, some can be phytomined for profit and others can be phytoremediated at lower cost than soil removal and replacement. Ni phytoextraction from contaminated or mineralized soils offers economic return greater than producing most crops, especially when considering the low fertility or phytotoxicity of Ni rich soils. Only soils that require remediation based on risk assessment will comprise the market for phytoremediation. Improved risk assessment has indicated that most Zn + Cd contaminated soils will not require Cd phytoextraction because the Zn limits practical risk from soil Cd. But rice and tobacco, and foods grown on soils with Cd contamination without corresponding 100-fold greater Zn contamination, allow Cd to readily enter food plants and diets. Clear evidence of human renal tubular dysfunction from soil Cd has only been obtained for subsistence rice farm families in Asia. Because of historic metal mining and smelting, Zn + Cd contaminated rice soils have been found in Japan, China, Korea, Vietnam and Thailand. Phytoextraction using southern France populations of Thlaspi caerulescens appears to be the only practical method to alleviate Cd risk without soil removal and replacement. The southern France plants accumulate 10-20-fold higher Cd in shoots than most T. caerulescens populations such as those from Belgium and the UK. Addition of fertilizers to maximize yield does not reduce Cd concentration in shoots; and soil management promotes annual Cd removal. The value of Cd in the plants is low, so the remediation service must pay the costs of Cd phytoextraction plus profits to the parties who conduct phytoextraction. Some other plants have been studied for Cd phytoextraction, but annual removals are much lower than the best T. caerulescens. Improved cultivars with higher yields and retaining this remarkable Cd phytoextraction potential are being bred using normal plant breeding techniques.  相似文献   

4.
In a greenhouse pot experiment, we assessed the phytoextraction potential for Cd of three amaranth cultivars (Amaranthus hypochondriacus L. Cvs. K112, R104, and K472) and the effect of application of N, NP, and NPK fertilizer on Cd uptake of the three cultivars from soil contaminated with 5 mg kg(-1) Cd. All three amaranth cultivars had high levels of Cd concentration in their tissues, which ranged from 95.1 to 179.1 mg kg(-1) in leaves, 58.9 to 95.4 mg kg(-1) in stems, and 62.4 to 107.2 mg kg(-1) in roots, resulting in average bioaccumulation factors ranging from 17.7 to 29.7. Application of N, NP, or NPK fertilizers usually increased Cd content in leaves but decreased Cd content in stem and root. Fertilizers of N or NP combined did not substantially increase dry biomass of the 3 cultivars, leading to a limited increment of Cd accumulation. NPK fertilizer greatly increased dry biomass, by a factor of 2.7-3.8, resulting in a large increment of Cd accumulation. Amaranth cultivars (K112, R104, and K472) have great potential in phytoextraction of Cd contaminated soil. They have the merits of high Cd content in tissues, high biomass, easy cultivation and little effect on Cd uptake by fertilization.  相似文献   

5.
Forty-seven populations of Thlaspi caerulescens in Luxembourg were characterised for population size, soil mineral element composition and other habitat characteristics. Foliar concentrations of eight elements were assessed in 15 populations in the field and in eight populations cultivated in zinc (Zn)-cadmium (Cd)-nickel (Ni)-enriched soil. T. caerulescens favoured stony soil developed on steep, south-facing Emsian shale outcrops. All soil samples were nonmetalliferous. Soil pH ranged from 4.2 to 6.9. Field-growing plants had very high concentrations of heavy metals in the leaves (Zn, 3000-13 000 mg kg(-1); Cd, 11-44 mg kg(-1); Ni, 38-473 mg kg(-1)). Positive soil-plant correlations existed for Zn and Mn. In cultivation, significant genetic variation was found for biomass and six of eight mineral elements. For Cd and Zn, variation range among 48 half-sib families was two-fold (Cd, 183-334 mg kg(-1); Zn, 8030-16 295 mg kg(-1)). Most of the variation occurred among populations, consistent with the selfing mating system of those populations. There was a tight Zn-Cd genetic correlation (r = +0.83, P < 0.0001). The significance of the results to the conservation of T. caerulescens in Luxembourg is briefly discussed.  相似文献   

6.
N、P、K肥对香根草修复土壤镉、锌污染效率的影响   总被引:6,自引:0,他引:6  
通过盆栽试验研究在30 mg/kg镉(Cd)污染土壤条件下N[CO(NH2)2:100、200、300 mg/kg土]、P(P2O5:50、100、200 mg/kg土)和K(KCl:100、200、300 mg/kg土)处理对香根草修复土壤Cd和锌(Zn)污染效率的影响。结果表明:3种N处理能促进香根草地上部生长,而且显著提高地上部特别是叶的Cd和Zn含量,导致其修复效率成倍显著增加;200 mg/kg K处理显著提高Zn修复效率,但300 mg/kg K和50、200 mg/kg P处理却显著降低Cd、Zn修复效率。因此,为改善香根草对较贫瘠土壤中Cd、Zn污染的修复效率,应对香根草适施N肥,并控制或者不施P、K肥为佳。  相似文献   

7.
为探究不同改良剂对酸性土壤铝(Al)胁迫条件下镉(Cd)锌(Zn)超积累植物伴矿景天Sedum plumbizincicola生长以及镉和锌吸取修复效率的影响,分别添加不同种类改良剂(钙镁磷肥(CMP)、MgCO3、KH2PO4)和不同浓度CMP进行温室盆栽试验。结果表明,CMP能够一定程度上提高土壤pH值并降低土壤交换性Al的浓度,MgCO3能够显著提高土壤pH值和降低土壤交换性Al的浓度,KH2PO4能够降低土壤中交换性Al浓度但未改变土壤pH值。施用适量的CMP(9.39 mg/kg)能够提高伴矿景天生物量和Cd、Zn吸取修复效率,用量过高会抑制伴矿景天生长和Cd、Zn修复效率;施用MgCO3可增大伴矿景天生物量和Cd、Zn修复效率,施用KH2PO4反而抑制了伴矿景天生长。酸性土壤上施用适量的CMP和MgCO3能够缓解伴矿景天的铝毒作用,维持较高的重金属吸收效率。  相似文献   

8.
A series of field trials were conducted to investigate the potential of Noccaea caerulescens F.K. Mey [syn. Thlaspi caerulescens J &C Presl. (see Koch and Al-Shehbaz 2004)] populations (genotypes) derived from southern France to phytoextract localized Cd/Zn contamination in Thailand. Soil treatments included pH variation and fertilization level and application of fungicide. N. caerulescens populations were transplanted to the field plots three months after germination and harvested in May, prior to the onset of seasonal rains. During this period growth was rapid with shoot biomass ranging from 0.93–2.2 g plant–1 (280–650 kg ha–1) DW. Shoot Cd and Zn concentrations for the four populations evaluated ranged from 460–600 and 2600–2900 mg kg–1 DW respectively. Cadmium and Zn Translocation Factors (shoot/root) for the populations tested ranged from 0.91–1.0 and 1.7–2.1 and Bioaccumulation Factors ranged from 12–15 and 1.2–1.3. We conclude that optimizing the use of fungicidal sprays, acidic soil pH, planting density and increasing the effective cropping period will increase rates of Cd and Zn removal enough to facilitate practical Cd phytoextraction from rice paddy soils in Thailand.  相似文献   

9.
In two long-term field experiments the zinc (Zn)/cadmium (Cd) hyperaccumulator Sedum plumbizincicola (S. plumbizincicola) was examined to optimize the phytoextraction of metal contaminated soil by two agronomic strategies of intercropping with maize (Zea mays) and plant densities. Soil total Zn and Cd concentrations decreased markedly after long-term phytoextraction. But shoot biomass and Cd and Zn concentrations showed no significant difference with increasing remediation time. In the intercropping experiment the phytoremediation efficiency in the treatment “S. plumbizincicola intercropped with maize” was higher than in S. plumbizincicola monocropping, and Cd concentrations of corn were below the maximum national limit. In the plant density experiment the phytoremediation efficiency increased with increasing plant density and 440,000 plants ha?1 gave the maximum rate. These results indicated that S. plumbizincicola at an appropriate planting density and intercropped with maize can achieve high remediation efficiency to contaminated soil without affecting the cereal crop productivity. This cropping system combines adequate agricultural production with soil heavy metal phytoextraction.  相似文献   

10.
施肥对两种苋菜吸收积累镉的影响   总被引:8,自引:0,他引:8  
李凝玉  李志安  庄萍  傅庆林  郭彬 《生态学报》2012,32(18):5937-5942
通过盆栽试验,研究了生长在5 mg/kg镉(Cd)污染土壤中的两种苋菜(红苋(Amaranthus Paniculatus L.)和绿苋(Amaranthus Paniculatus L.))在3种施肥处理下(N、NP和NPK)的生长状况和对Cd的吸收积累情况。结果表明,两种苋菜能够在污染土壤中正常生长,各器官中叶Cd含量最高,范围为124.1—225.9 mg/kg;根中次之,范围为57.1—100.6 mg/kg;茎中最低,范围为56.2—87.6 mg/kg;富集系数高达22.4—40.2。施加N,NP,NPK肥对两种苋菜器官中的Cd含量和生物量有显著影响。其中,施加NPK肥使红苋和绿苋的生物量分别达到不施肥(对照)处理的3.5和3.2倍,单株提取Cd的总量是对照3.2和5.0倍。综上表明,两种苋菜(红苋和绿苋)具有生物量大、易栽培、施加NPK肥能够大幅增加生物量的同时不减少器官对Cd的吸收等优点,作为Cd污染土壤的修复植物有巨大应用前景。  相似文献   

11.
Penetration into and exploitation of contaminated soils by roots of hyperaccumulator plants is a prerequisite for efficient removal of heavy metals, i.e. efficacy of phytoextraction. This work was undertaken to study the development of roots of the Zn-hyperaccumulator Thlaspi caerulescens under various conditions of soil contamination. Rhizoboxes were constructed with a removable plastic front cover, and filled with soils containing different amounts and forms of metals (Zn, Cd and Pb). Treatments were: homogeneous soil profile, superposition of three layers, inclusion of contaminated soil into uncontaminated soil, or inclusion of uncontaminated soil into uniformly contaminated soil. Four seedlings were transplanted into each rhizobox, and development of the root system was periodically recorded for 133 days. At harvest, the biomass and size of the rosette of aerial parts were determined. The aerial biomass/root length fraction as well as the kinetics of root development varied according to the presence and localization of Zn. The distribution and morphology of roots at harvest were strongly dependent upon the metal content and form in soil. Roots exhibited a high affinity for the Zn-contaminated patches and showed two distinct morphologies according to the concentration of Zn in soil. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Thlaspi caerulescens is known to hyperaccumulate high quantities of Cd with Cd concentrations up to 3000 mg kg(-1) in some populations from south of France. However, within these populations, the Cd concentrations can vary widely from plant to plant in a way that appears to be not entirely due to variations in soil Cd. The aim of this work was to investigate the variability in the Cd uptake ability of individual plants within a population and among seedlings grown from seeds from a single plant. Ten populations of T. caerulescens plants were selected from four locations (V: Viviez; SF: Saint Félix-de-Pallières; LB: Le Bleymard; CMA: Col du Mas de l'Air) depending of the extent and soil homogeneity of the site. One population from CMA consisted of the progeny of a single maternal plant. Hundred plants of each population were grown for three months in the same homogeneous and lightly Cd-polluted soil (about 20 mg total Cd kg(-1) dry soil). Cadmium uptake behavior of the plants was monitored by labeling the soil with 109Cd. To allow partial plant destruction, radioanalysis was performed on the largest leaf of each plant as an indicator of the total Cd concentration in plant shoots. Results showed significant differences in biomass production and Cd uptake by T. caerulescens between sites and between populations within sites. We observed a wide intra-population variation in biomass, Cd concentration and total Cd uptake. For these properties, 1 to 5 percents of the plants in each population varied by more than a factor of two from the mean values. The mean Cd uptake by the single-plant population from CMA was more than 40% higher than for the population at large. T. caerulescens would respond to traditional selection methods, which would significantly improve the phytoextraction of Cd.  相似文献   

13.

The hyperaccumulator Sedum alfredii Hance (S. alfredii) may be employed for zinc (Zn) and cadmium (Cd)-polluted soil remediation. However, the low phytoremediation efficiency, related to the low biomass production, limits its use with that purpose. In this experiment, nitrogen (N), phosphorus (P), and potassium (K) fertilizers, and organic manure were applied to investigate the phytoremediation ability of S. alfredii. Hydroponic and pot experiments were conducted using Zn-Cd polluted soil. The hydroponic experiment indicated that appropriate fertilizer application could increase (p < 0.05) the amount of accumulated Zn and Cd in S. alfredii. When N supply ranged from 0.5 to 2.5 mmol L−1, it could improve growth and accumulation of Zn and Cd in whole plants of S. alfredii. The 1 mmol L-1 N was an optimal N dosage for shoot biomass production and Cd accumulation in shoots, while the 2.5 mmol L-1 was an optimal N dosage for Zn accumulation in shoots. Both low (<0.05 mmol L-1) and high (>0.8 mmol L-1) P supply decreased growth, and Zn/Cd accumulation in whole plants of the studied species. The 0.1 mmol L-1 P was an optimal dosage for S. alfredii biomass production and Zn/Cd accumulation in shoots. The supply levels within the range from 0.3 to 1 mmol L-1 K could significantly improve the biomass production of S. alfredii and its capability to accumulate Zn and Cd in the biomass. The 0.5 mmol L-1 K was an optimal dosage for the whole biomass production and Zn accumulation in shoots, while the 1 mmol L-1 was an optimal K dosage for Zn accumulation in shoots, which was 17.2% higher than the control. Moreover, the soil pot experiment showed that the combination of organic (fermented manure) and inorganic fertilizers made significant effects on the Zn and Cd-polluted soil remediation by S. alfredii. These effects varied, however, with the application of different proportions of N, P, K and organic matter. The Zn accumulation by S. alfredii reached the highest efficiency ability under the highest fertilizer mixing rate (N: 50 mg kg-1, P: 40 mg kg-1, K: 100 mg kg-1, organic matter: 1%). Even more, S. alfredii showed the strongest ability to accumulate Cd with a lower fertilizer mixing rate (N: 25mg kg-1, P: 20mg kg-1, K: 50 mg kg-1, organic matter: 0.5%).

  相似文献   

14.
The study deals with phytoextraction of Zn and Cd by Leucaena leucocephala grown on effluent fed and low nitrogen soils collected from S1, S2, and S3 sites, representing decreasing metal content with increasing distance from the effluent drain. Plant nitrogen fixation potential and soil micro-biochemical attributes against metal stress were also assessed. Increasing soil metal content and plant growth enhanced metal accumulation. Relatively greater amount of Zn than Cd was accumulated by L. leucocephala, which exceeded in roots with that of other parts. Remediation factor for Cd was maximum (3.6%) in S2 grown plant. Nodule numbers, their biomass, nitrogenase activity, and leghaemoglobin content were maximum in plants grown in S3 and minimum in S1 soil having maximum metals. Maximum soil organic C, total N, C(mic), and N(mic), respiration rate, ATP content, and enzymatic activities in response to phytoremediation was recorded in S3 followed by S2 and S1. Phytoremediation for a year enhanced extractable Zn and Cd by 36% and 45%, and their total removal by 20% and 30%, respectively from S2, which suggests the possible application of L. leucocephala for the remediation of metal contaminated sites and their fertility restoration by improving microbial functionalities and N-pool.  相似文献   

15.
Three Cd and Zn hyperaccumulating plant species Noccaea caerulescens Noccaea praecox and Arabidopsis halleri (Brassicacceae) were cultivated in seven subsequent vegetation seasons in both pot and field conditions in soil highly contaminated with Cd, Pb, and Zn. The results confirmed the hyperaccumulation ability of both plant species, although A. halleri showed lower Cd uptake compared to N. caerulescens. Conversely, Pb phytoextraction was negligible for both species in this case. Because of the high variability in plant yield and element contents in the aboveground biomass of plants, great variation in Cd and Zn accumulation was observed during the experiment. The extraction ability in field conditions varied in the case of Cd from 0.2 to 2.9 kg ha?1 (N. caerulescens) and up to 0.15 kg ha?1 (A. halleri), and in the case of Zn from 0.2 to 6.4 kg ha?1 (N. caerulescens) and up to 13.8 kg.ha?1 (A. halleri). Taking into account the 20 cm root zone of the soil, the plants were able to extract up to 4.1% Cd and 0.2% Zn in one season. However, cropping measures should be optimized to improve and stabilize the long-term phytoextraction potential of these plants.  相似文献   

16.
Abstract

A three-crop repeated phytoextraction experiment was conducted using four soils (S1–S4) highly polluted with cadmium (Cd) and two enhanced phytoextraction pot experiments using the most polluted soil (S4) to investigate the feasibility of Cd removal from highly polluted soils using the Cd/zinc (Zn)-hyperaccumulator Sedum plumbizincicola. Shoot biomass showed no significant difference during the repeated phytoextraction experiment on the four test soils and shoot Cd content showed a decreasing trend with the three consecutive crops in soils S1, S2, and S3 but not in soil S4. The Cd removal rates in soils S1, S2, S3, and S4 were 84.5, 81.6, 45.3, and 32.4%, respectively. Rice straw application increased Cd extraction efficiency by 42.6% but the addition of ethylenediaminedisuccinic acid, biochar or nitrogen had no effect on Cd remediation. Shoot Cd content increased significantly (1.57 and 1.71 times, respectively) at low (S0-1) and high (S0-2) sulfur addition rates. Soil extractable-Cd in S0-1 after the experiment showed no significant difference from the control but was 2.43 times higher in S0-2 than in the control. These results indicate that S. plumbizincicola shows good prospects for the phytoextraction of Cd from highly polluted soils and that the process can be enhanced by adding straw and/or sulfur to the soil.  相似文献   

17.
The study was conducted at three locations in the Savinjska region of Slovenia, where soil is contaminated with heavy metals due to the zinc industry (Cinkarna Celje). In Ponikva the soil to a depth of 30 cm contains 0.8 mg kg(-1) Cd, 32.2 mg kg(-1) Pb, and 86 mg Zn kg(-1), in Medlog 1.4 mg kg(-1) Cd, 37.4 mg kg(-1) Pb, and 115 mg kg(-1) Zn and in Skofja vas 10.9 mg kg(-1) Cd, 239.7 mg kg(-1) Pb, and 1356 mg kg(-1) Zn. The pH at the selected sites was between 7.3 and 7.6. In the beginning of September 2006 two hybrids of Brassica napus L. var. napus, PR45 D01 and PR46 W31 suitable for production of biodiesel obtained from Pioneer Seeds Holding GmbH, were sown. After 96 days juvenile and after 277 days mature plants were collected. Parts of plants (root, shoot and seed) were separated and Cd, Pb, Zn, Mo, and S determined by ultra-trace ICP-MS. We compared the uptake of Cd, Pb, Zn, Mo and S in different parts of juvenile and mature plants of the two different hybrids, TF (translocation factor), BAF (bioaccumulation factor), and PP (phytoextraction potential) were calculated. The mature hybrid PR46 W31 had higher shoot/root ratio and higher PP for metals (Cd, Pb, and Zn) and lower PP for the micronutrient (Mo) and macronutrient (S) on the polluted site. The study demonstrated the potential use of oilseed rape on multiply polluted soils for production of 1st and 2nd generation biofuels. The potential restoration of degraded land could also disburden the use of agricultural land.  相似文献   

18.
Uptake of Cd, Zn, Pb and Mn by the hyperaccumulator Thlaspi caerulescens was studied by pot trials in plant growth units and in populations of wild plants growing over Pb/Zn base-metal mine wastes at Les Malines in the south of France. The pot trials utilised metal-contaminated soils from Auby in the Lille area. Zinc and Cd concentrations in wild plants averaged 1.16% and 0.16% (dry weight) respectively. The unfertilised biomass of the plants was 2.6 t/ha. A single fertilised crop with the above metal content could remove 60 kg of Zn and 8.4 kg Cd per hectare. Experiments with pot-grown and wild plants showed that metal concentrations (dry weight basis) were up to 1% Zn (4% Zn in the soil) and just over 0.1% Cd (0.02% Cd in the soil). The metal content of the plants was correlated strongly with the plant-available fraction in the soils as measured by extraction with ammonium acetate and was inversely correlated with pH. Bioaccumulation coefficients (plant/soil metal concentration quotients) were in general higher for Cd than for Zn except at low metal concentrations in the soil. There was a tendency for these coefficients to increase with decreasing metal concentrations in the soil. It is proposed that phytoremediation using Thlaspi caerulescens would be entirely feasible for low levels of Cd where only a single crop would be needed to halve a Cd content of 10 g/g in the soil. It will never be possible to remediate elevated Zn concentrations within an economic time frame (<10 yr) because of the lower bioaccumulation coefficient for this element coupled with the much higher Zn content of the soils.  相似文献   

19.
Knight  B.  Zhao  F.J.  McGrath  S.P.  Shen  Z.G. 《Plant and Soil》1997,197(1):71-78
The hyperaccumulator Thlaspi caerulescens J & C Presl. was grown in seven different soils collected from around Europe that had been contaminated with heavy metals by industrial activity or the disposal of sewage sludge to land. Zinc accumulation factors (shoot concentration/initial soil solution concentration) ranged from 3500–85 000 with a mean value of around 36 000. This compares with mean accumulation factors of 636, 66 and 122 for Cd, Ca and Mg, respectively. The concentration of Zn in the shoots was much greater than in the roots. The total removal of Zn and Cd ranged from 8 to 30 and from 0.02 to 0.5 mg kg-1 soil, respectively. The Zn concentration in shoots of T. caerulescens correlated, using a curvilinear relationship, with the initial Zn concentration in soil solution (R2 = total Zn 0.78; Zn2+ 0.80). There was no relationship between the uptake of Zn and the total Zn concentration in the soil. In most soils, solution pH increased only slightly after growth of T. caerulescens, indicating that acidification was not the mechanism used to mobilise Zn in the soil. Dissolved organic carbon concentrations generally increased but characterisation of the component organic compounds was not attempted. The concentrations of Zn and Cd in soil solution decreased considerably after growth of T. caerulescens. The percentages of Zn and Cd in soil solution present as free ions also decreased. However, the decrease of Zn in soil solution after growth accounted for only about 1% of the total Zn uptake by T. caerulescens. This was much lower than for Cd, Ca and Mg. The results suggest that either T. caerulescens was highly efficient at mobilising Zn which was not soluble initially, or the soils used had large buffering capacities to replenish soil solution Zn within a short time. This work highlights the need to investigate the role of root exudates on the mobilisation of Zn and Cd in soils by the hyperaccumulator T. caerulescens.  相似文献   

20.
Phytoextraction of Risk Elements by Willow and Poplar Trees   总被引:1,自引:0,他引:1  
To characterize the phytoextraction efficiency of two clones of willow trees (Salix x smithiana Willd., Salix rubens) and two clones of poplar trees (Populus nigra x maximowiczii, Populus nigra Wolterson) were planted in contaminated soil (0.4–2.0 mg Cd.kg?1, 78–313 mg Zn.kg?1, 21.3–118 mg Cu.kg?1). Field experiment was carried out in Czech Republic. The study investigated their ability to accumulate heavy metals (Cd, Zn, and Cu) in harvestable plant parts. The poplars produced higher amount of biomass than willows. Both Salix clones accumulated higher amount of Cd, Zn and Cu in their biomass (maximum 6.8 mg Cd.kg?1, 909 mg Zn.kg?1, and 17.7 mg Cu.kg?1) compared to Populus clones (maximum 2.06 mg Cd.kg?1, 463 mg Zn.kg?1, and 11.8 mg Cu.kg?1). There were no significant differences between clones of individual species. BCs for Cd and Zn were greater than 1 (the highest in willow leaves). BCs values of Cu were very low. These results indicate that Salix is more suitable plant for phytoextraction of Cd and Zn than Populus. The Cu phytoextraction potential of Salix and Populus trees was not confirmed in this experiment due to low soil availability of this element.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号