首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Receptors for three lectins with restricted specificities, namely fucose-binding protein of Lotus tetragonolobus (FBP), peanut agglutinin (PNA) and Dolichos biflorus agglutinin (DBA), were distinctively located in 6- and 7-day mouse embryos and in embryoid bodies of teratocarcinoraa OTT6050 grown in vivo. Thus, FBP reacted mainly with the inner cells (embryonic ectoderm and teratocarcinoma stem cells), DBA reacted with the outer cells (endoderm) and PNA reacted with all the germ layers including mesoderm. Upon in vitro culture of the embryoid bodies, the exposed stem cells express DBA receptors. Since the receptors for the three lectins in teratocarcinomas are known to be carried by the large carbohydrate chains characteristic of early embryonic cells, the present result suggests that terminal structure of the large carbohydrates is altered according to the direction of the differentiation or to the position of the cells in embryos and in teratocarcinomas.  相似文献   

3.
Embryoid bodies, which are similar to post-implantation egg-cylinder stage embryos, provide a model for the study of embryo development and stem cell differentiation. We describe here a novel method for generating embryoid bodies from murine embryonic stem (ES) cells cultured on the STO feeder layer. The ES cells grew into compact aggregates in the first 3 days of coculture, then became simple embryoid bodies (EBs) possessing primitive endoderm on the outer layer. They finally turned into cystic embryoid bodies after being transferred to Petri dishes for 1-3 days. Evaluation of the EBs in terms of morphology and differentiating potential indicates that they were typical in structure and could generate cells derived from the three germ layers. The results show that embryoid bodies can form not only in suspension culture but also directly from ES cells cultured on the STO feeder layer.  相似文献   

4.
Spontaneous formation of embryoid bodies and subsequent differentiation of some cells into cardiomyocytes were demonstrated on murine embryonic stem cells of R1 line. The lines of embryonic stem cells were obtained that had been transfected with genetic constructs carrying expressing regulatory genes of the human immunodeficiency virus tat and nef and green protein gene (GFP). The transfection of embryonic stem cells with the gene tat stimulated their proliferative activity, while this activity decreased in the cells transfected with the gene nef. The time necessary for the formation of embryoid bodies by all lines of transfected cells was similar to that in the control cells. In the cultures of cells transfected with nef and tat, the number of embryoid bodies and the percentage of embryoid bodies with contracting cardiomyocytes were higher and lower than in the control, respectively. Thus, an inverse correlation was observed between the effects of regulatory genes of the human immunodeficiency virus on proliferation and differentiation embryonic stem cells.  相似文献   

5.
Non-specific alkaline phosphatase and Mg2+-dependent adenosine triphosphatase activities were ultracytochemically investigated on embryoid bodies of murine teratocarcinomas, in order to find markers of endodermal cell differentiation of early embryonic cells. The former was localized mainly on the cell surface of inner embryonal carcinoma cells, as already shown by other workers, and weakly on the bound surface of outer endodermal cells of embryoid bodies. The latter, however, was found only on the outer free surface of endodermal cells and never on the surface of embryonal carcinoma cells. It suggests that Mg2+-dependent ATP activity might become the marker for early differentiation of embryonal carcinoma cells.  相似文献   

6.
The initial stages of in vitro differentiation of embryonic stem cells are considered as unique three-dimensional models of early development of mammals for basic, pharmacological, and toxicological studies. It has been previously shown (Gordeeva, 2012) that the assessment of embryotoxicity in the model of undifferentiated embryonic stem cells can be insufficiently accurate in predicting toxic effects on mammalian embryos. In view of this, we performed a comparative study of the damaging effects of the cytostatic etoposide in undifferentiated embryonic stem cells and embryoid bodies of different stages of differentiation that have similar three-dimensional structures with early embryos. The analysis of growth, cell death, and dynamics of differentiation of embryonic stem cells and embryoid bodies exposed to etoposide showed that the cytostatic and cytotoxic effects of etoposide are stage-specific. The damaging effects of etoposide were maximum in the undifferentiated embryonic stem cells and decreased with growth and differentiation of embryoid bodies. We suggest that the increase of embryoid body volume and overgrowth of extraembryonic endoderm layer lead to a decrease in the diffusion, transport and metabolism of chemical and bioactive substances and prevent the damaging effects.  相似文献   

7.
8.
With significant potential as a robust source to produce specific somatic cells for regenerative medicine, stem cells have attracted increasing attention from both academia and government. In vivo, stem cell differentiation is a process under complicated regulations to precisely build tissue with unique spatial structures. Since multicellular spheroidal aggregates of stem cells, commonly called as embryoid bodies (EBs), are considered to be capable of recapitulating the events in early stage of embryonic development, a variety of methods have been developed to form EBs in vitro for studying differentiation of embryonic stem cells. The regulation of stem cell differentiation is crucial in directing stem cells to build tissue with the correct spatial architecture for specific functions. However, stem cells within the three-dimensional multicellular aggregates undergo differentiation in a less unpredictable and spatially controlled manner in vitro than in vivo. Recently, various microengineering technologies have been developed to manipulate stem cells in vitro in a spatially controlled manner. Herein, we take the spotlight on these technologies and researches that bring us the new potential for manipulation of stem cells for specific purposes.  相似文献   

9.
We studied the behavior and differentiation of pluripotent embryonic stem cells of R1 mice in vivo. Undifferentiated embryonic stem cells and differentiating embryoid bodies implanted in the abdominal cavity of irradiated mice were shown to form tumors containing the derivatives of all germ layers. Cells of the embryoid bodies form tumors two weeks after implantation, while undifferentiated embryonic stem cells form tumors only by week three.  相似文献   

10.
This study was conducted to isolate, to culture, and to characterize embryonic cell lines from in vitro produced vitrified sheep blastocysts. Embryos were produced and vitrified at the expanded blastocyst stage. Ten inner cell masses arising from day 6-7 blastocysts were isolated by immunosurgery, disaggregated, and cultured onto mitomocin-C-inactivated mouse STO fibroblasts (MIF). After 5 or 6 days of culture the primary cell colonies were disaggregated, seeded in a new MIF, and cultured for 3 or 4 days to form new colonies called Passage 1. These cells were then disaggregated and cultured for other two passages. The primary cell colonies and Passage 2 colonies expressed stage specific embryonic markers SSEA-1, SSEA-3, and SSEA-4, and were alkaline phosphatase positive. In the absence of feeder layer and human leukemia inhibitory factor (LIF), these cells differentiated into variety of cell types and formed embryoid bodies. When cultured for an extended period of time, embryoid bodies differentiated into derivatives of three embryonic germ (EG) layers. These were characterized by detection of specific markers for differentiation such early mesoderm (FE-C6), embryonic myosin (F1-652), neural precursor (FORSE-1), and endoderm (anti-cytokeratin 18). To our knowledge, this is the first time that embryonic cell lines from in vitro produced and vitrified ovine blastocysts have been isolated and examined for detection of SSEA markers, and embryoid bodies have been cultured and examined for specific cell surface markers for differentiation.  相似文献   

11.
Studies were conducted to determine if the expression of the gene for retinol-binding protein (RBP) and/or transthyretin (TTR) could be induced upon differentiation of F9 teratocarcinoma cells to either visceral endoderm or parietal endoderm. Both TTR mRNA and RBP mRNA were undetectable in the undifferentiated F9 stem cells and in F9 cells differentiated to parietal endoderm. However, TTR mRNA and RBP mRNA were both detected in F9 cell aggregates differentiated to embryoid bodies (which contain visceral endoderm-like cells) by treatment of the aggregates in suspension with retinoic acid. TTR mRNA was observed at 3 days, and RBP mRNA at 5 days, after treatment of the F9 cell aggregates with retinoic acid. Both TTR mRNA and RBP mRNA were found to be specifically localized by in situ hybridization in the outer layer of cells (the visceral endoderm-like cells) of the embryoid bodies. Finally, synthesis and secretion of both RBP and TTR by F9 cell embryoid bodies was demonstrated by specific immunoprecipitation of each newly synthesized protein from the culture medium. These data thus demonstrate the production and presence of RBP mRNA and TTR mRNA, and the synthesis and secretion of RBP and TTR, by F9 cell embryoid bodies (specifically by visceral endoderm-like cells). This finding suggests that these two proteins may be synthesized by rodent embryos extremely early in embryonic development.  相似文献   

12.
Cell surface carbohydrates present on BG01 human embryonic stem cells after 28 days of differentiation were examined using two classes of carbohydrate binding proteins: lectins and antibodies specific for carbohydrate epitopes. Specificity of lectin staining was verified using carbohydrate ligands to block lectin interaction, glycohydrolases to cleave specific sugar residues that are receptors for these proteins, and periodate oxidation to destroy susceptible sugar residues. Specific antibodies were used to identify various tissue types and germ layers present in the 12- and 28-day differentiating embryoid bodies. Results from 12 and 28-day differentiated embryoid bodies were compared to determine changes over time. A slight increase in the sialylation of α-GalNAc was seen between 12 and 28 days of differentiation due to the presence of sialyl Tn and/or other sialylated α-GalNAc residues. Increases were also observed in GalNAc, the T antigen (Gal β1,3 GalNAc), and difucosylated LacNAc residues during this time interval. Additionally, some distinct differences in the pattern of lectin staining between 12 and 28 days were observed. Not unexpectedly, the presence of most differentiated cell-types increased during this time period with the exception of neural progenitors, which decreased. Undifferentiated cells, which were prevalent in the 12-day EBs, were undetectable after 28 days. We conclude that several changes in glycosylation occurred during the differentiation of embryonic stem cells, and that these changes may play a role in embryonic development. Lectin abbreviations can be found in Table 1.  相似文献   

13.
The primitive endoderm arises from the inner cell mass during mammalian pre-implantation development. It faces the blastocoel cavity and later gives rise to the extraembryonic parietal and visceral endoderm. Here, we investigate a key step in primitive endoderm development, the acquisition of apico-basolateral polarity and epithelial characteristics by the non-epithelial inner cell mass cells. Embryoid bodies, formed from mouse embryonic stem cells, were used as a model to study this transition. The outer cells of these embryoid bodies were found to gradually acquire the hallmarks of polarised epithelial cells and express markers of primitive endoderm cell fate. Fgf receptor/Erk signalling is known to be required for specification of the primitive endoderm, but its role in polarisation of this tissue is less well understood. To investigate the function of this pathway in the primitive endoderm, embryoid bodies were cultured in the presence of a small molecule inhibitor of Mek. This inhibitor caused a loss of expression of markers of primitive endoderm cell fate and maintenance of the pluripotency marker Nanog. In addition, a mislocalisation of apico-basolateral markers and disruption of the epithelial barrier, which normally blocks free diffusion across the epithelial cell layer, occurred. Two inhibitors of the Fgf receptor elicited similar phenotypes, suggesting that Fgf receptor signalling promotes Erk-mediated polarisation. This data shows that primitive endoderm cells of the outer layer of embryoid bodies gradually polarise, and formation of a polarised primitive endoderm layer requires the Fgf receptor/Erk signalling pathway.  相似文献   

14.
We previously demonstrated that a member of the Hedgehog gene family, Indian hedgehog (Ihh), is expressed in the visceral endoderm of EC and ES cell embryoid bodies and mouse embryos. Overexpression studies suggested that Ihh was involved in visceral endoderm differentiation. We now provide evidence for a Hh response in the embryoid body core and in the mesothelial layer of the visceral yolk sac. We also demonstrate that treatment of ES embryoid bodies with the Hh antagonists cAMP and forskolin results in downregulation of the Hh response and altered embryoid body differentiation. The outer endoderm layer undergoes a transition to parietal endoderm while formation of an embryonic ectoderm layer surrounding a cavity is inhibited. These treatments also result in a decrease in the expression of markers for the mesoderm derivatives, blood and endothelial cells. We present a model to explain how Ihh and BMP signaling may regulate extraembryonic endoderm and embryonic ectoderm differentiation.  相似文献   

15.
Embryonic stem (ES) cells are typically derived from the inner cell mass of the preimplantation blastocyst and can both self-renew and differentiate into all the cells and tissues of the embryo. Because they are pluripotent, ES cells have been used extensively to analyze gene function in development via gene targeting. The embryonic stem cell is also an unsurpassed starting material to begin to understand a critical, largely inaccessible period of development. If their differentiation could be controlled, they would also be an important source of cells for transplantation to replace cells lost through disease or injury or to replace missing hormones or genes. Traditionally, ES cells have been differentiated in suspension culture as embryoid bodies, named because of their similarity to the early postimplantation-staged embryo. Unlike the pristine organization of the early embryo, differentiation in embryoid bodies appears to be largely unpatterned, although multiple cell types form. It has recently been possible to separate the desired cell types from differentiating ES cells in embryoid bodies by using cell-type-restricted promoters driving expression of either antibiotic resistance genes or fluorophores such as EGFP. In combination with growth factor exposure, highly differentiated cell types have successfully been derived from ES cells. Recent technological advances such as RNA interference to knock down gene expression in ES cells are also producing enriched populations of cells and elucidating gene function in early development.  相似文献   

16.
Embryonic stem cells display the ability to differentiate in vitro into a variety of cell types. This process is induced by embryoid body formation, addition of several soluble growth factors to the culture medium and other strategies. However, none of the used factors is capable to drive differentiation to only one specific celltype. The use of gating technology has allowed to partially overcome this problem. The rational behind this technique is based on the transfection of stem cells with a transgene carrying expression cassettes for a cell type specific promoter, regulating expression ofa selectable marker to select one cell lineage from other cell lineages.Using this system, we have obtained insulin-secreting cells by transfecting mouse embryonic stem cells with a DNA construct providing resistance to neomycin under the control of the regulatory regions of the human insulin gene. Furthermore, gating technology has been successfully used to isolate other cell types such as cardiomyocytes and neural precursors from undifferentiated embryonic stem cells. This review focuses on the possibilities offered by this technology in embryonic stem cell bioengineering, mainly to obtain insulin-secreting cells. Advantages and considerations of this selection system will be also discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Genetic studies in fish, amphibia, and mice have shown that deficiency of Nodal signaling blocks differentiation into mesoderm and endoderm. Thus, Nodal is considered as a major inducer of mesendoderm during gastrulation. On this basis, Nodal is a candidate for controlling differentiation of pluripotent human embryonic stem cells (hESCs) into tissue lineages with potential clinical value. We have investigated the effect of Nodal, both as a recombinant protein and as a constitutively expressed transgene, on differentiation of hESCs. When control hESCs were grown in chemically defined medium, their expression of markers of pluripotency progressively decreased, while expression of neuroectoderm markers was strongly upregulated, thus revealing a neuroectodermal default mechanism for differentiation in this system. hESCs cultured in recombinant Nodal, by contrast, showed prolonged expression of pluripotency marker genes and reduced induction of neuroectoderm markers. These Nodal effects were accentuated in hESCs expressing a Nodal transgene, with striking morphogenetic consequences. Nodal-expressing hESCs developing as embryoid bodies contained an outer layer of visceral endoderm-like cells surrounding an inner layer of epiblast-like cells, each layer having distinct gene expression patterns. Markers of neuroectoderm were not upregulated during development of Nodal-expressing embryoid bodies, nor was there induction of markers for definitive mesoderm or endoderm differentiation. Moreover, the inner layer expressed markers of pluripotency, characteristic of undifferentiated hESCs and of epiblast in mouse embryos. These results could be accounted for by an inhibitory effect of Nodal-induced visceral endoderm on pluripotent cell differentiation into mesoderm and endoderm, with a concomitant inhibition of neuroectoderm differentiation by Nodal itself. There could also be a direct effect of Nodal in the maintenance of pluripotency. In summary, analysis of the Nodal-expressing phenotype suggests a function for the transforming growth factor-beta (TGF-beta) growth factor superfamily in pluripotency and in early cell fate decisions leading to primary tissue layers during in vitro development of pluripotent human stem cells. The effects of Nodal on early differentiation illustrate how hESCs can augment mouse embryos as a model for analyzing mechanisms of early mammalian development.  相似文献   

18.
E Linney  B B Levinson 《Cell》1977,10(2):297-304
Changes in plasminogen activator activity have been examined as a clonal line of mouse embryonal carcinoma cells aggregate and differentiate to form cystic embryoid bodies in vitro. Within the first 10 days of study, the pluripotent embryonal carcinoma cells aggregate; a layer of endodermal cells appears on the outside of the aggregate forming an embryoid body; a basement membrane forms between the outer layer of endodermal cells and the internal cells; a cyst forms within the embryoid body; and the internal cells assume a columnar appearance along the inner portion of the basement membrane. After the formation of the endodermal layer, there is a rise in intracellular plasminogen activator activity. This rise continues for up to 25 days in culture, providing that the three-dimensional integrity of the embryoid bodies is maintained by culturing them on bacterial petri dishes. Selective removal of the outer endodermal layer of cells reduces the plasminogen activatory activity of the resulting embryoid body cores. Intracellular and secreted plasminogen activator activity of simple embryoid bodies composed of only two cell types can be increased by culturing the embryoid bodies in dbcAMP, theophylline, or cholera toxin. These results suggest that the embryoid body endodermal cells are the source of a cAMP-inducible plasminogen activator activity.  相似文献   

19.
The differentiation and formation of the primitive endoderm in early embryos can be mimicked in vitro by the aggregation of embryonic stem cells to form embryoid bodies. We present morphological evidence that primitive endoderm cells often first locate in the interior of embryoid bodies and subsequently migrate to the surface. Cell mixing experiments indicate that surface positioning is an intrinsic property of endoderm epithelial cells. Moreover, Disabled-2 (Dab2) is required for surface sorting and positioning of the endoderm cells: when Dab2 expression was eliminated, the differentiated endoderm epithelial cells distributed throughout the interior of the embryoid bodies. Surprisingly, E-cadherin is dispensable for primitive endoderm differentiation and surface sorting in embryoid bodies. These results support the model that primitive endoderm cells first emerge in the interior of the inner cell mass and are subsequently sorted to the surface to form the primitive endoderm.  相似文献   

20.
Mouse P19 embryonic carcinoma (EC) stem cells were xenotransplanted into the emptied chorion, the transparent envelope of a fertilized zebrafish egg (rather than mouse native zona pellucida) combined with a microfluidic device to study P19 EC cell differentiation in the chorion biomaterial. A distilled-water jet was used to remove the innate yolk and perivitelline inner mass from the chorion. P19 EC cells were injected into the emptied chorion using a micropipette, and they were subsequently cultured until the inner space of the chorion became completely occupied by cells. A simple microfluidic device was used for handling convenience and effective experiment. At d15, we found neural cells in the outer layer of the cell mass and beating cardiomyocytes in the inner layer of the large embryoid body. We propose that even though the species are different, the external innate membranes developed for embryo protection represent a useful type of ECM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号