首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The apparent deuterium isotope effects on Vmax/Km (D(V/K] of ethanol oxidation in two deermouse strains (one having and one lacking hepatic alcohol dehydrogenase (ADH] were used to calculate flux through the ADH, microsomal ethanol-oxidizing system (MEOS), and catalase pathways. In vitro, D(V/K) values were 3.22 for ADH, 1.13 for MEOS, and 1.83 for catalase under physiological conditions of pH, temperature, and ionic strength. In vivo, in deermice lacking ADH (ADH-), D(V/K) was 1.20 +/- 0.09 (mean +/- S.E.) at 7.0 +/- 0.5 mM blood ethanol and 1.08 +/- 0.10 at 57.8 +/- 10.2 mM blood ethanol, consistent with ethanol oxidation principally by MEOS. Pretreatment of ADH- animals with the catalase inhibitor 3-amino-1,2,4-triazole did not significantly change D(V/K). ADH+ deermice exhibited D(V/K) values of 1.87 +/- 0.06 (untreated), 1.71 +/- 0.13 (pretreated with 3-amino-1,2,4-triazole), and 1.24 +/- 0.13 (after the ADH inhibitor, 4-methylpyrazole) at 5-7 mM blood ethanol levels. At elevated blood ethanol concentrations (58.1 +/- 2.4 mM), a D(V/K) of 1.37 +/- 0.21 was measured in the ADH+ strain. For measured D(V/K) values to accurately reflect pathway contributions, initial reaction conditions are essential. These were shown to exist by the following criteria: negligible fractional conversion of substrate to product and no measurable back reaction in deermice having a reversible enzyme (ADH). Thus, calculations from D(V/K) indicate that, even when ADH is present, non-ADH pathways (mostly MEOS) participate significantly in ethanol metabolism at all concentrations tested and play a major role at high levels.  相似文献   

2.
Isozyme 3a of rabbit hepatic cytochrome P-450, also termed P-450ALC, was previously isolated and characterized and was shown to be induced 3- to 5-fold by exposure to ethanol. In the present study, antibody against rabbit P-450ALC was used to identify a homologous protein in alcohol dehydrogenase-negative (ADH-) and -positive (ADH+) deermice, Peromyscus maniculatus. The antibody reacts with a single protein having an apparent molecular weight of 52,000 on immunoblots of hepatic microsomes from untreated and ethanol-treated deermice from both strains. The level of the homologous protein was about 2-fold greater in microsomes from naive ADH- than from naive ADH+ animals. Ethanol treatment induced the protein about 3-fold in the ADH+ strain and about 4-fold in the ADH- strain. The antibody to rabbit P-450ALC inhibited the microsomal metabolism of ethanol and aniline. The homologous protein, termed deermouse P-450ALC, catalyzed from 70 to 80% of the oxidation of ethanol and about 90% of the hydroxylation of aniline by microsomes from both strains after ethanol treatment. The antibody-inhibited portion of the microsomal activities, which are attributable to the P-450ALC homolog, increased about 3-fold upon ethanol treatment in the ADH+ strain and about 4-fold in the ADH- strain, in excellent agreement with the results from immunoblots. The total microsomal P-450 content and the rate of ethanol oxidation were induced 1.4-fold and 2.2-fold, respectively, by ethanol in the ADH+ strain and 1.9-fold and 3.3-fold, respectively, in the ADH- strain. Thus, the total microsomal P-450 content and ethanol oxidation underestimate the induction of the P-450ALC homolog in both strains. A comparison of the rates of microsomal ethanol oxidation in vitro with rates of ethanol elimination in vivo indicates that deermouse P-450ALC could account optimally for 3 and 8% of total ethanol elimination in naive ADH+ and ADH- strains, respectively. After chronic ethanol treatment, P-450ALC could account maximally for 8% of the total ethanol elimination in the ADH+ strain and 22% in the ADH- strain. Further, cytochrome P-450ALC appears to be responsible for about one-half of the increase in the rate of ethanol elimination in vivo after chronic treatment with ethanol. These results indicate that the contribution of P-450ALC to ethanol oxidation in the deermouse is relatively small. Desferrioxamine had no effect on rates of ethanol uptake by perfused livers from ADH-negative deermice, indicating that ethanol oxidation by a hydroxyl radical-mediated mechanism was not involved in ethanol metabolism in this mutant.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The purpose of this work was to compare the roles of a newly described mitochondrial dehydrogenase and catalase in ethanol elimination in deer mice deficient in alcohol dehydrogenase (ADH-). Fructose was used because of its well-known ability to stimulate dehydrogenase-dependent ethanol metabolism. Rates of ethanol metabolism in vivo were decreased significantly by about 60% in a dose-dependent manner by fructose in deer mice fed an ethanol-containing or a corn oil control diet. In addition, rates of metabolism of methanol, a selective substrate for catalase in rodents, were similar to rates of ethanol elimination and were decreased from 6.9 +/- 1.0 to 1.7 +/- 0.5 mmol/kg/h by fructose, supporting the hypothesis that catalase and not a mitochondrial dehydrogenase predominates in ethanol oxidation in ADH-deer mice. Glycolate, a substrate for peroxisomal H2O2 generation, reversed the inhibition of alcohol metabolism by fructose completely, indicating that fructose did not inhibit catalase directly. As expected, the ATP/ADP ratio was decreased by fructose significantly from 4.2 +/- 0.4 to 2.4 +/- 0.4 in deer mouse livers. These data are consistent with the hypothesis that fructose decreases catalase-dependent ethanol metabolism in vivo by inhibiting hepatic H2O2 generation.  相似文献   

4.
B N Leichus  J S Blanchard 《Biochemistry》1992,31(12):3065-3072
Lipoamide dehydrogenase is a flavoprotein which catalyzes the reversible oxidation of dihydrolipoamide, Lip(SH)2, by NAD+. The ping-pong kinetic mechanism involves stable oxidized and two-electron-reduced forms. We have investigated the rate-limiting nature of proton transfer steps in both the forward and reverse reactions catalyzed by the pig heart enzyme by using a combination of alternate substrates and solvent kinetic isotope effect studies. With NAD+ as the variable substrate, and at a fixed, saturating concentration of either Lip(SH)2 or DTT, inverse solvent kinetic isotope effects of 0.68 +/- 0.05 and 0.71 +/- 0.05, respectively, were observed on V/K. Solvent kinetic isotope effects on V of 0.91 +/- 0.07 and 0.69 +/- 0.02 were determined when Lip(SH)2 or DTT, respectively, was used as reductant. When Lip(SH)2 or DTT was used as the variable substrate, at a fixed concentration of NAD+, solvent kinetic isotope effects of 0.74 +/- 0.06 and 0.51 +/- 0.04, respectively, were observed on V/K for these substrates. Plots of the kinetic parameters versus mole fraction D2O (proton inventories) were linear in all cases. Solvent kinetic isotope effect measurements performed in the reverse direction using NADH as the variable substrate showed equivalent, normal solvent kinetic isotope effects on V/KNADH when oxidized lipoamide, lipoic acid, or DTT were present at fixed, saturating concentrations. Solvent kinetic isotope effects on V were equal to 1.5-2.1. When solvent kinetic isotope effect measurements were performed using the disulfide substrates lipoamide, lipoic acid, or DTT as the variable substrates, normal kinetic isotope effects on V/K of 1.3-1.7 were observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Four naturally occurring variants of the alcohol dehydrogenase enzyme (ADH; EC 1.1.1.1) from Drosophila melanogaster and D. simulans, with different primary structures, have been subjected to kinetic studies of ethanol oxidation at five temperatures. Two amino acid replacements in the N-terminal region which distinguish the ADH of D. simulans from the three ADH allozymes of D. melanogaster generate a significantly different activation enthalpy and entropy, and Gibbs free energy change. The one or two amino acid replacements in the C-terminal region between the ADH allozymes of D. melanogaster do not have such clear-cut effects. All four ADH variants show highly negative activation entropies. Sarcosine oxidation by the ADH-71k variant of D. melanogaster has an activation energy barrier similar to that of ethanol oxidation. Three amino acid differences between the ADH of D. simulans and the ADH-F variant of D. melanogaster influence the kappa cat and kappa cat/Kethm constant by a maximum factor of about 2 and 2.5, respectively, over the whole temperature range. Product inhibition patterns suggest a 'rapid equilibrium random' mechanism of ethanol oxidation by the ADH-71k, and the ADH of D. simulans.  相似文献   

6.
Rat tissues contain three different isoenzymes of alcohol dehydrogenase (ADH) that we have named ADH-1, ADH-2 and ADH-3, ADH-1 is an anodic isoenzyme present in high amounts in the ocular tissues, stomach and lung. ADH-2 is also anodic and has been found in all the rat organs examined. ADH-3 is the group of cathodic ADH forms, mainly present in liver, that has been the subject of the majority of the previous studies on rat ADH. The three isoenzymes have been purified to homogeneity and characterized. All of them have similar physical characteristics: Mr 80,000, with two subunits of Mr 40,000; they contain four atoms of Zn per molecule, and prefer NAD+ as cofactor. Isoelectric points are, however, different: 5.1 for ADH-1, 5.95-6.3 for ADH-2 and 8.25-8.4 for ADH-3. ADH-3 exhibits a Km for ethanol of 1.4 mM, a broad substrate specificity and is strongly inhibited by pyrazole (Ki = 0.4 microM). ADH-2 shows substrate specificity toward long-chain alcohols and aldehydes, cannot be saturated by ethanol and is practically insensitive to pyrazole (Ki = 78.4 mM). ADH-1 has intermediate properties, with a Km for ethanol of 340 mM, a broad substrate specificity and Ki for pyrazole of 0.56 mM. Rat ADH-1, ADH-2 and ADH-3 exhibit many analogies with human ADH classes II, III and I respectively. The specific localization and kinetic properties of rat ADH isoenzymes suggest that ADH-1 and ADH-3 may act as metabolic barriers to external alcohols and aldehydes whereas ADH-2 may have a function in the metabolism of the endogenous long-chain alcohols and aldehydes.  相似文献   

7.
Deuterium isotope effects [D(V/K)] and stereoselectivity of ethanol oxidation in cytochrome P-450 containing systems and in the xanthine-xanthine oxidase system were compared with those of yeast alcohol dehydrogenase. The isotope effects were determined by using both a noncompetitive method, including incubation of unlabeled or [1,1-2H2]ethanol at various concentrations, and a competitive method, where 1:1 mixtures of [1-13C]- and [2H6]ethanol or [2,2,2-2H3]- and [1,1-2H2]ethanol were incubated and the acetaldehyde formed was analyzed by gas chromatography/mass spectrometry. The D(V/K) isotope effects of the cytochrome P-450 dependent ethanol oxidation were about 4 with liver microsomes from imidazole-, phenobarbital- or acetone-treated rabbits or with microsomes from acetone- or ethanol-treated rats. Similar isotope effects were reached with reconstituted membranes containing the rabbit ethanol-inducible cytochrome P-450 (LMeb), whereas control rat microsomes and membranes containing rabbit phenobarbital-inducible P-450 LM2 oxidized the alcohol with D(V/K) of about 2.8 and 1.8, respectively. Addition of FeIIIEDTA either to microsomes from phenobarbital-treated rabbits or to membranes containing P-450 LMeb significantly lowered the isotope effect, which approached that of the xanthine-xanthine oxidase system (1.4), whereas desferrioxamine had no significant effect. Incubations of all cytochrome P-450 containing systems or the xanthine-xanthine oxidase systems with (1R)- and (1S)-[1-2H]ethanol, revealed, taking the isotope effects into account, that 44-66% of the ethanol oxidized had lost the 1-pro-R hydrogen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
An NAD+-dependent alcohol dehydrogenase (ADH) was purified to homogeneity from an aerobic strain of Bacillus stearothermophilus, DSM 2334 (ADH 2334), and compared with the ADH from B. stearothermophilus NCA 1503 (ADH 1503). When an antibody raised against ADH 2334 was used, no cross-reactivity with ADH 1503 was observed on Western blots; by means of an enzyme-linked-immunoabsorbent-assay ('e.l.i.s.a.') procedure, it was found that ADH 1503 had less than 6% of the antigenic activity of ADH 2334. Amino acid analyses detected very small differences in composition, equivalent to about 40 sequence changes, between the two enzymes. The new enzyme has the same six-amino-acid N-terminal sequence as ADH 1503. ADH 2334, but not ADH 1503, is reactive towards methanol; both enzymes can oxidize ethanol, propan-1-ol, butan-1-ol and butan-2-ol. The new enzyme has a distinctive pH optimum at pH 5.5-6 and has significantly lower KEthanolm and kEthanolcat. values than those of ADH 1503. From steady-state kinetic parameters of the reaction with ethanol, propan-1-ol and butan-1-ol, it was shown that ADH 2334 has an ordered mechanism in both directions, with NAD+ being the compulsory first substrate in alcohol oxidation and NADH release being the rate-limiting step. ADH 1503 has an ordered addition of NAD+ and alcohol, but NADH release is not rate-limiting.  相似文献   

9.
The primary kinetic isotope effect of the reaction catalyzed by NAD+-dependent formate dehydrogenase (EC 1.2.1.2.) from the methylotrophic bacterium Pseudomonas sp. 101 has been studied. Analysis of the ratios HVm/DVm and H(Vm/KM)/D(Vm/KM) in the pH range 6.1-7.9 showed that the transfer of hydride ion in ternary enzyme-substrate complex is a limiting step of the reaction, and the formate binding to the binary complex (formate dehydrogenase + NAD+) reached equilibrium when the pH of the medium was increased. An approach has been developed to determine the elementary constants of substrate association (kon) and dissociation (koff) at the stages of the binary--ternary enzyme-substrate complexes for the random equilibrium 2-substrate kinetic mechanism. The kon and koff values obtained for the bacterial formate dehydrogenase by using the proposed approach for NAD+ were (4.8 +/- 0.8)*10(5)M-1s-1 and (90 +/- 10) s-1, and for formate (2.0 +/- 1.0)*10(4) M-1s-1 and (60 +/- 20) s-1, respectively.  相似文献   

10.
Drosophila alcohol dehydrogenase (ADH), an NAD(+)-dependent dehydrogenase, shares little sequence similarity with horse liver ADH. However, these two enzymes do have substantial similarity in their secondary structure at the NAD(+)-binding domain [Benyajati, C., Place, A. P., Powers, D. A. & Sofer, W. (1981) Proc. Natl Acad. Sci. USA 78, 2717-2721]. Asp38, a conserved residue between Drosophila and horse liver ADH, appears to interact with the hydroxyl groups of the ribose moiety in the AMP portion of NAD+. A secondary-structure comparison between the nucleotide-binding domain of NAD(+)-dependent enzymes and that of NADP(+)-dependent enzymes also suggests that Asp38 could play an important role in cofactor specificity. Mutating Asp38 of Drosophila ADH into Asn38 decreases Km(app)NADP 62-fold and increases kcat/Km(app)NADP 590-fold at pH 9.8, when compared with wild-type ADH. These results suggest that Asp38 is in the NAD(+)-binding domain and its substituent, Asn38, allows Drosophila ADH to use both NAD+ and NADP+ as its cofactor. The observations from the experiments of thermal denaturation and kinetic measurement with pH also confirm that the repulsion between the negative charges of Asp38 and 2'-phosphate of NADP+ is the major energy barrier for NADP+ to serve as a cofactor for Drosophila ADH.  相似文献   

11.
This study deals with biochemical and metabolic-physiological aspects of the relationship between variation in in vivo alcohol dehydrogenase activity and fitness in larvae homozygous for the alleles Adh71k, AdhF, AdhS, of Drosophila melanogaster, and for the common Adh allele of Drosophila simulans. The Adh genotypes differ in the maximum oxidation rates of propan-2-ol into acetone in vivo. There are smaller differences between the Adh genotypes in rates of ethanol elimination. Rates of accumulation of ethanol in vivo are negatively associated with larval-to-adult survival of the Adh genotypes. The rank order of the maximum rates of the ADHs in elimination of propan-2-ol, as well as ethanol, is ADH-71k greater than ADH-F greater than ADH-S greater than simulans-ADH. The ratio of this maximum rate to ADH quantity reveals the rank order of ADH-S greater than ADH-F greater than ADH-71k greater than simulans-ADH, suggesting a compensation for allozymic efficiency by the ADH quantity in D. melanogaster.Our findings show that natural selection may act on the Adh polymorphism in larvae via differences in rates of alcohol metabolism.  相似文献   

12.
L Liu  W P Huskey 《Biochemistry》1992,31(30):6898-6903
Primary hydrogen isotope effects and steady-state kinetics have been used to study the mechanism of glyceraldehyde-3-phosphate (GAP) dehydrogenase at pH 8.6. The isotope effect determined by using GAP-1d was unity and independent of arsenate (used as the acyl acceptor) and NAD+ concentrations when the aldehyde substrate was at saturating concentrations. At low GAP concentrations (apparent V/K conditions), the primary hydrogen isotope effect (H/D) was in the range of 1.40-1.52 and independent of arsenate and NAD+ concentrations. Apparent V/K for NAD+ was independent of GAP concentration, and apparent V/K for GAP was independent of NAD+ concentration. The dependence of apparent V/K for GAP on arsenate concentration was more complex but extrapolated to nonzero V/K at the zero-arsenate intercept. These observations are consistent with the general features of the Segal and Boyer (1953) mechanism for the reaction.  相似文献   

13.
1. ADH activity of Euglena grown with 50 mM ethanol decreased, but MEOS activity increased with a corresponding increase in the total amount of cytochrome P-450. 2. Phenobarbital treatment increased the total amount of cytochrome P-450. 3. CO and KCN, cytochrome P-450 ligands, diminished acetaldehyde formed from ethanol oxidation by MEOS. 4. The amounts of NAD(P)H cytochrome c reductases and cytochrome b5 type, components of microsomal monooxygenase reaction, have been spectrophotometrically measured. 5. NAD(P)H cytochrome c reductases activities were induced by phenobarbital. 6. DMSO, an inhibitor of rabbit MEOS, inhibited O2 consumption (11-20%) by Euglena grown with an ethanol, but not a lactate medium. 7. These studies indicate the presence of cytochrome P-450-dependent MEOS in Euglena similar to that in the mammalian hepatic cell.  相似文献   

14.
Co-ordination of catalytic Zn2+ in sorbitol/xylitol dehydrogenases of the medium-chain dehydrogenase/reductase superfamily involves direct or water-mediated interactions from a glutamic acid residue, which substitutes a homologous cysteine ligand in alcohol dehydrogenases of the yeast and liver type. Glu154 of xylitol dehydrogenase from the yeast Galactocandida mastotermitis (termed GmXDH) was mutated to a cysteine residue (E154C) to revert this replacement. In spite of their variable Zn2+ content (0.10-0.40 atom/subunit), purified preparations of E154C exhibited a constant catalytic Zn2+ centre activity (kcat) of 1.19+/-0.03 s(-1) and did not require exogenous Zn2+ for activity or stability. E154C retained 0.019+/-0.003% and 0.74+/-0.03% of wild-type catalytic efficiency (kcat/K(sorbitol)=7800+/-700 M(-1) x s(-1)) and kcat (=161+/-4 s(-1)) for NAD+-dependent oxidation of sorbitol at 25 degrees C respectively. The pH profile of kcat/K(sorbitol) for E154C decreased below an apparent pK of 9.1+/-0.3, reflecting a shift in pK by about +1.7-1.9 pH units compared with the corresponding pH profiles for GmXDH and sheep liver sorbitol dehydrogenase (termed slSDH). The difference in pK for profiles determined in 1H2O and 2H2O solvent was similar and unusually small for all three enzymes (approximately +0.2 log units), suggesting that the observed pK in the binary enzyme-NAD+ complexes could be due to Zn2+-bound water. Under conditions eliminating their different pH-dependences, wild-type and mutant GmXDH displayed similar primary and solvent deuterium kinetic isotope effects of 1.7+/-0.2 (E154C, 1.7+/-0.1) and 1.9+/-0.3 (E154C, 2.4+/-0.2) on kcat/K(sorbitol) respectively. Transient kinetic studies of NAD+ reduction and proton release during sorbitol oxidation by slSDH at pH 8.2 show that two protons are lost with a rate constant of 687+/-12 s(-1) in the pre-steady state, which features a turnover of 0.9+/-0.1 enzyme equivalents as NADH was produced with a rate constant of 409+/-3 s(-1). The results support an auxiliary participation of Glu154 in catalysis, and possible mechanisms of proton transfer in sorbitol/xylitol dehydrogenases are discussed.  相似文献   

15.
Summary Because natural populations ofDrosophila melanogaster are polymorphic for different allozymes of alcohol dehydrogenase (ADH) and becauseD. melanogaster is more tolerant to the toxic effects of ethanol than its sibling speciesD. simulans, information regarding the sensitivities of the different forms of ADH to the products of ethanol degradation are of ecological importance. ADH-F, ADH-S, ADH-71k ofD. melanogaster and the ADH ofD. simulans were inhibited by NADH, but the inhibition was relieved by NAD+. The order of sensitivity of NADH was ADH-F<ADH-71k, ADH-S<ADH-simulans with ADH-F being about four times less sensitive than theD. melanogaster enzymes and 12 times less sensitive than theD. simulans enzyme. Acetaldehyde inhibited the ethanolto-acetaldehyde activity of the ADHs, but at low acetaldehyde concentrations ethanol and NAD+ reduced the inhibition. ADH-71k and ADH-F were more subject to the inhibitory action of acetaldehyde than ADH-S and ADH-simulans, with ADH-71k being seven times more sensitive than ADH-S. The pattern of product inhibition of ADH-71k suggests a rapid equilibrium random mechanism for ethanol oxidation. Thus, although the ADH variants only differ by a few amino acids, these differences exert a far larger impact on their intrinsic properties than previously thought. How differences in product inhibition may be of significance in the evolution of the ADHs is discussed.  相似文献   

16.
Argyrou A  Washabaugh MW  Pickart CM 《Biochemistry》2000,39(34):10373-10384
Dihydroorotate dehydrogenase from Clostridium oroticum was purified to apparent homogeneity and found to be a heterotetramer consisting of two alpha (32 kDa) and two beta (28 kDa) polypeptides. This subunit composition, coupled with known cofactor requirements and the ability to transfer electrons from L-dihydroorotate to NAD(+), defines the C. oroticum enzyme as a family 1B dihydroorotate dehydrogenase. The results of steady-state kinetic analyses and isotope exchange studies suggest that this enzyme utilizes a ping-pong steady-state kinetic mechanism. The pH-k(cat) profile is bell-shaped with a pK(a) of 6.4 +/- 0.1 for the ascending limb and 8. 9 +/- 0.1 for the descending limb; the pH-k(cat)/K(m) profile is similar but somewhat more complex. The pK(a) values of 6.4 and 8.9 are likely to represent the ionizations of cysteine and lysine residues in the active site which act as a general base and an electrostatic catalyst, respectively. At saturating levels of NAD(+), the isotope effects on (D)V and (D)(V/K(DHO)), obtained upon deuteration at both the C(5)-proR and C(5)-proS positions of L-dihydroorotate, increase from a value of unity at pH >9.0 to sizable values at low pH due to a high commitment to catalysis at high pH. At pH = 6.5, the magnitude of the double isotope effects (D)V and (D)(V/K(DHO)), obtained upon additional deuteration at C(6), is consistent with a mechanism in which C(5)-proS proton transfer and C(6)-hydride transfer occur in a single, partially rate-limiting step.  相似文献   

17.
Quirk DJ  Northrop DB 《Biochemistry》2001,40(3):847-851
High pressure causes biphasic effects on the oxidation of formate by yeast formate dehydrogenase as expressed on the kinetic parameter V/K, which measures substrate capture. Moderate pressure increases capture by accelerating hydride transfer. The transition state for hydride transfer has a smaller volume than the free formate plus the capturing form of enzyme, with DeltaV(double dagger) = -9.7 +/- 1.0 mL/mol. Pressures above 1.5 kbar decrease capture, reminiscent of effects on the conformational change associated with the binding of nicotinamide adenine dinucleotide (NAD(+)) to yeast alcohol dehydrogenase [Northrop, D. B., and Y. K. Cho (2000) Biochemistry 39, 2406-2412]. The collision complex, E-NAD(+), has a smaller volume than the more tightly bound reactant-state complex, E-NAD(+), with DeltaV = +83.4 +/- 5.2 mL/mol. A comparison of the effects of pressure on the oxidation of normal and deuteroformate shows that the entire isotope effect on hydride transfer, 2.73 +/- 0.20, arises solely from transition-state phenomena, as was also observed previously with yeast alcohol dehydrogense. In contrast, normal primary isotope effects arise solely from different zero-point energies in reactant states, and those that express hydrogen tunneling arise from a mixture of both reactant-state and transition-state phenomena. Moreover, pressure increases the primary intrinsic deuterium isotope effect, the opposite of what was observed with yeast alcohol dehydrogense. The lack of a decrease in the isotope effect is also contrary to empirical precedents from chemical reactions suspected of tunneling and to theoretical constructs of vibrationally enhanced tunneling in enzymatic reactions. Hence, this new experimental design penetrates transition states of enzymatic catalysis as never before, reveals the presence of phenomena foreign to chemical kinetics, and calls for explanations of how enzymes work beyond the tenants of physical organic chemistry.  相似文献   

18.
The effect of isotopic substitution of the 8-H of xanthine (with 2H and 3H) on the rate of oxidation by bovine xanthine oxidase and by chicken xanthine dehydrogenase has been measured. V/K isotope effects were determined from competition experiments. No difference in H/T(V/K) values was observed between xanthine oxidase (3.59 +/- 0.1) and xanthine dehydrogenase (3.60 +/- 0.09). Xanthine dehydrogenase exhibited a larger T/D(V/K) value (0.616 +/- 0.028) than that observed for xanthine oxidase (0.551 +/- 0.016). Observed H/T(V/K) values for either enzyme are less than those H/T(V/K) values calculated with D/T(V/K) data. These discrepancies are suggested to arise from the presence of a rate-limiting step(s) prior to the irreversible C-H bond cleavage step in the mechanistic pathways of both enzymes. These kinetic complexities preclude examination of whether tunneling contributes to the reaction coordinate for the H-transfer step in each enzyme. No observable exchange of tritium with solvent is observed during the anaerobic incubation of [8-3H]xanthine with either enzyme, which suggests the reverse commitment to catalysis (Cr) is essentially zero. With the assumption of adherence to reduced mass relationships, the intrinsic deuterium isotope effect (Dk) for xanthine oxidation is calculated to be 7.4 +/- 0.7 for xanthine oxidase and 4.2 +/- 0.2 for xanthine dehydrogenase. By use of these values and steady-state kinetic data, the minimal rate for the hydrogen-transfer step is calculated to be approximately 75-fold faster than kcat for xanthine oxidase and approximately 10-fold faster than kcat for xanthine dehydrogenase. This calculated rate is consistent with data obtained by rapid-quench experiments with XO. A stoichiometry of 1.0 +/- 0.3 mol of uric acid/mol of functional enzyme is formed within the mixing time of the instrument (5-10 ms). The kinetic isotope effect data also permitted the calculation of the Kd values [Klinman, J. P., & Mathews, R. G. (1985) J. Am. Chem. Soc. 107, 1058-1060] for substrate dissociation, including all reversible steps prior to C-H bond cleavage. Values calculated for each enzyme (Kd = 120 microM) were found to be identical within experimental uncertainty.  相似文献   

19.
Dihydrofolate reductase from Mycobacterium tuberculosis (MtDHFR) catalyzes the NAD(P)-dependent reduction of dihydrofolate, yielding NAD(P)(+) and tetrahydrofolate, the primary one-carbon unit carrier in biology. Tetrahydrofolate needs to be recycled so that reactions involved in dTMP synthesis and purine metabolism are maintained. In this work, we report the kinetic characterization of the MtDHFR. This enzyme has a sequential steady-state random kinetic mechanism, probably with a preferred pathway with NADPH binding first. A pK(a) value for an enzymic acid of approximately 7.0 was identified from the pH dependence of V, and the analysis of the primary kinetic isotope effects revealed that the hydride transfer step is at least partly rate-limiting throughout the pH range analyzed. Additionally, solvent and multiple kinetic isotope effects were determined and analyzed, and equilibrium isotope effects were measured on the equilibrium constant. (D(2)O)V and (D(2)O)V/K([4R-4-(2)H]NADH) were slightly inverse at pH 6.0, and inverse values for (D(2)O)V([4R-4-(2)H]NADH) and (D(2)O)V/K([4R-4-(2)H]NADH) suggested that a pre-equilibrium protonation is occurring before the hydride transfer step, indicating a stepwise mechanism for proton and hydride transfer. The same value was obtained for (D)k(H) at pH 5.5 and 7.5, reaffirming the rate-limiting nature of the hydride transfer step. A chemical mechanism is proposed on the basis of the results obtained here.  相似文献   

20.
Drosophila alcohol dehydrogenase (ADH) is an NAD(H)-dependent oxidoreductase that catalyzes the oxidation of alcohols and aldehydes. Structurally and biochemically distinct from all the reported ADHs (typically, the mammalian medium-chain dehydrogenase/reductase-ethanol-metabolizing enzyme), it stands as the only small-alcohol transforming system that has originated from a short-chain dehydrogenase/reductase (SDR) ancestor. The crystal structures of the apo, binary (E.NAD(+)) and three ternary (E.NAD(+).acetone, E.NAD(+).3-pentanone and E.NAD(+).cyclohexanone) forms of Drosophila lebanonensis ADH have allowed us to infer the structural and kinetic features accounting for the generation of the ADH activity within the SDR lineage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号