首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
We analyzed the cytotoxicity and characterized the phenotype of oncolytic bone marrow (BM) lymphocyte subsets generated in vitro by interleukin-2 (IL-2) and stimulator cells (SC). Two irradiated B-lymphoblastoid cell lines (Daudi and EBV-transformed BSM) and fresh human acute myelogenous leukemia (AML) were used as SC. Stimulation with Daudi and IL-2 resulted in a substantial increase in cytotoxic activity (100- to 1000-fold) against a broad range of tumor targets, and total cellular expansion was higher compared to stimulation with IL-2 alone. The most prominent increase was observed in the CD16+ and CD56+/CD3- natural killer (NK) cell subset; however, a significant increase was also observed in CD56+/CD3+ T cells. Functional analysis of Daudi- and IL-2-generated subsets using fluorescence-activated cell sorting (FACS) revealed that most of the lytic activity was mediated by NK cells. Significant potentiation of oncolytic activity and cell growth was also seen in the cultures stimulated with BSM or fresh AML and IL-2. The highest oncolytic activity in the latter cultures was mediated primarily by CD8+, CD3+, and CD56- T cells, although NK cells also participated in cytotoxic activity. The T cell-mediated cytotoxicity was restricted by the major histocompatibility complex (MHC), since most cytotoxicity could be blocked by HLA I antibodies. Additionally, we observed that optimum stimulation of cytotoxicity required effector cell-stimulator cell contact. These data indicate that depending on the tumor used for stimulation, different lymphocyte subsets may be generated in IL-2 cultures. These different approaches may be useful in both specific and nonspecific immunotherapy.  相似文献   

2.
We studied the mononuclear cells obtained from 2 patients with CD16+ lymphoproliferative disorders. In both subjects, over 80% of the circulating peripheral blood mononuclear cells were CD16+, CD2+, CD7+, CD3-, CD4-, and CD8-. In 1 patient, greater than 60% of the cells expressed HLA-DR and HLA-DQ gene products. Functional analysis of the natural killer (NK) cell activity of cells from this patient demonstrated 76% killing of K562 targets at ratios as low as 1:1 effector:targets. Karyotype analysis demonstrated a deletion on the long arm of chromosome 6, supporting the contention that the lymphocytosis in this patient was due to a clonally expanded population of cells. In additional studies, Southern blot analysis of DNA extracted from cells of this patient revealed that the beta-chain of the T cell receptor was of germ line configuration. This information supports the hypothesis that the clonally expanded NK population in this patient is of a lineage distinct from T cells and represents a true NK leukemia.  相似文献   

3.
Both CD3- and CD3+ CD56+ effector cells can mediate non-MHC-restricted lysis in the absence of activation. Previous studies have shown that both of these subsets can be augmented with IL-2. In the present study, we have examined further the phenotypic markers expressed on these cells as well as the functional capacities of these subsets, including LAK activity, cytokine expression, and pore-forming protein (PFP) production. In addition, these populations were analyzed for clonality by Southern blot analysis of the T cell receptor beta chain gene constant region. The CD3-, CD56+ and CD3+, CD56+ lymphocytes were quite similar in their phenotypic markers, although the CD3+, CD56+ lymphocytes lacked high levels of IL-2 receptor beta chain and did not express CD16. The CD3+, CD56+ lymphocytes mediated non-MHC-restricted lysis, but failed to express LAK activity or be induced by IL-2 to secrete IFN gamma, a characteristic of the CD3-, CD56+ lymphocytes. The T cell receptor beta chain gene pattern of the CD3+, CD56+ lymphocytes was characteristic of a polyclonal cell population. Of interest, both populations of cells appeared morphologically to be large granular lymphocytes that contain PFP in their cytoplasmic granules. Therefore these CD56+ subsets provide a new model to study several questions related to non-MHC-restricted target cell lysis, including the identification of novel receptors involved in target cell recognition and/or triggering as well as the biochemical pathways implicated in cellular lysis.  相似文献   

4.
Human natural killer (NK) cells are one major component of lymphocytes that mediate early protection against viruses and tumor cells, and play an important role in immune regulatory functions. In this study, we demonstrated that human NK cells could be divided into four subsets, CD56hi CD16(-), CD56lo CD16(-), CD56+CD16+ and CD56(-)CD16+, based on the expression of cell surface CD56 and CD16 molecules. Phenotypic analysis of NK cell subsets indicated that the expression of activation markers, adhesion molecules, memory cell markers, inhibitory and activating receptors, and intracellular proteins (granzyme B and perforin) were heterogeneous. Following interleukin (IL)-2 stimulation, interferon-gamma was preferentially produced by CD56+CD16(-) NK cells and this subset showed more proliferative capacity. The cytolytic activity of both CD56+CD16(-) and CD56+/-CD16+ subsets could be augmented in response to IL-2. The data provided a new definition for NK cell subsets demonstrating their phenotypic and functional diversity and possible stage of NK cell differentiation in peripheral blood.  相似文献   

5.
In vitro culture of human peripheral blood mononuclear cells (PBMC) with interleukin 2 (IL-2) results in the expansion of lymphocytes including lymphokine-activated killer (LAK) cells. Using flow cytometry, studies were undertaken to determine the phenotype and LAK activity of each subset of lymphocytes expanded in vitro as a result of incubation for 2 weeks with 2500 U/ml of recombinant IL-2. Such expanded PBMC, when examined by two-color staining with various combinations of anti-CD3, 4, 8, 16, and NKH-1 monoclonal antibodies, consisted of the following six subgroups of cells: (1) CD3+4+8-, (2) CD3+4-8+, (3) CD3+4-8-, (4) CD3-16+NKH-1+, (5) CD3-16-NKH-1+, and (6) CD3-16-NKH-1-. Of the six subgroups, all five subgroups that could be tested, i.e., CD3+ T cells (CD3+4+8-, CD3+4-8+, CD3+4-8-), CD16+ natural killer (NK) cells (CD3-16+NKH-1+), and CD3-16-NKH-1- non-T non-NK cells, possessed LAK activity. Both NKH-1- as well as NKH-1+ T and non-T cells possessed LAK activity.  相似文献   

6.
Interleukin-2 (IL-2) activates extracellular signal-regulated protein kinase (ERK) within immune cells. To examine the profile of phosphorylated ERK (p-ERK) in IL-2 stimulated immune cells of normal donors and patients receiving IL-2 therapy, we developed a dual parameter flow-cytometric assay. An analysis of PBMCs stimulated with IL-2 indicated that IL-2 exposure induced p-ERK in CD56bright NK cells and CD14+ monocytes, but not in CD3+ T cells or CD21+ B cells. CD3+ T cells that were induced to express functional high-affinity IL-2R did not exhibit enhanced p-ERK following IL-2 treatment. Measurement of p-ERK within PBMCs from cancer patients 1 h following their first dose of IL-2 revealed a complete absence of circulating NK cells, consistent with earlier observations. However, the total number of circulating CD14+ monocytes increased in these samples and 97% of these cells exhibited ERK activation. p-ERK was not observed in T cells post-IL-2 therapy. Analysis of PBMCs obtained 3 weeks post-IL-2 therapy revealed high-p-ERK levels in CD56bright NK cells in a subset of patients, while levels of p-ERK returned to baseline in monocytes. These studies reveal an effective method to detect ERK activation in immune cells and demonstrate that IL-2 activates ERK in a subset of NK cells and monocytes but not T cells.  相似文献   

7.
Human T-cell leukemia virus type I (HTLV-I) can infect a variety of human cell types, but only T lymphocytes are efficiently immortalized after HTLV-I infection. This study reports an attempt to infect and to immortalize NK cells with HTLV-I. Co-cultivation of freshly isolated NK cells with a HTLV-I-producing T cell line did not result in NK cell infection. However, NK cells activated with an anti-CD16 mAb and co-cultivated with a HTLV-I-producing T cell line were reproducibly infected by HTLV-I. HTLV-I infection was documented in NK cell lines and clones by the detection of defective integrated provirus by both Southern blot and polymerase chain reaction analysis. Although HTLV-I-infected NK cells produced viral proteins, they did not produce infectious viral particles. HTLV-I-infected NK cells were phenotypically indistinguishable from their uninfected counterparts (CD16+, CD2+, CD56+, CD3-). They also retained the ability to mediate both natural and antibody-dependent cell cytotoxicity. The IL-2-dependent proliferation of HTLV-I-infected NK cells was significantly greater than that of uninfected NK cells. The doubling time of this infected population was reduced from 9 days to 3 days, and the overall survival of the culture in the absence of restimulation was extended from 5 wk to 18 wk. Unlike T lymphocytes, HTLV-I-infected NK cells were not immortal, implying a fundamental difference between these two lymphocyte populations.  相似文献   

8.
The relationship between NK cell and T cell progenitors was investigated by using mice with severe combined immune deficiency (scid). Scid mice are devoid of mature T and B cells because they cannot rearrange their Ig and TCR genes. However, they have normal splenic NK cells. Thymus of scid mice, although markedly hypocellular, contains cells that lyse YAC-1, an NK-sensitive tumor cell. By flow cytometry, two populations of cells were identified in the scid thymus. Eighty percent of the cells were Thy-1+, IL-2R(7D4)+, J11d+, CD3-, CD4-, CD8- whereas the remaining were IL-2R-, J11d-, CD3-, CD4-, and CD8-. By cell sorting, all NK activity was found in the latter population, which is phenotypically similar to splenic NK cells. To determine if the thymus contains a bipotential NK/T progenitor cell, J11d+, IL-2R+ cells were cultured and analyzed for the generation of NK cells in vitro. These cells were used because they resemble 15-day fetal and adult CD4- CD8- thymocytes that are capable of giving rise to mature T cells. Cultured J11d+ thymocytes acquired non-MHC-restricted cytotoxicity, but in contrast to mature NK cells, the resulting cells contained mRNA for the gamma, delta, and epsilon-chains of CD3. This suggests that J11d+ cells are early T cells that can acquire the ability to kill in a non-MHC-restricted manner, but which do not give rise to NK cells in vitro. The differentiative potential of scid thymocytes was also tested in vivo. Unlike bone marrow cells, scid thymocytes containing 80% J11d+ cells failed to give rise to NK cells when transferred into irradiated recipients. Together these results suggest that mature NK cells reside in the thymus of scid mice but are not derived from a common NK/T progenitor.  相似文献   

9.
Previous studies from Multhoff and colleagues reported that plasma membrane Hsp70 acts as a tumour-specific recognition structure for activated NK cells, and that the incubation of NK cells with Hsp70 and/or a 14-mer peptide derived from the N-terminal sequence of Hsp70 (TKDNNLLGRFELSG, TKD, aa 450–463) plus a low dose of IL-2 triggers NK cell proliferation and migration, and their capacity to kill cancer cells expressing membrane Hsp70. Herein, we have used flow cytometry to determine the influence of in vitro stimulation of peripheral blood mononuclear cells from healthy individuals with IL-2 or IL-15, either alone or in combination with TKD peptide on the cell surface expression of CD94, NK cell activatory receptors (CD16, NK2D, NKG2C, NKp30, NKp44, NKp46, NKp80, KIR2DL4, DNAM-1 and LAMP1) and NK cell inhibitory receptors (NKG2A, KIR2DL2/L3, LIR1/ILT-2 and NKR-P1A) by CD3+CD56+ (NKT), CD3+CD4+, CD3+CD8+ and CD19+ populations. NKG2D, DNAM-1, LAMP1 and NKR-P1A expression was upregulated after the stimulation with IL-2 or IL-15 alone or in combination with TKD in NKT, CD8+ T cells and B cells. CD94 was upregulated in NKT and CD8+ T cells. Concurrently, an increase in a number of CD8+ T cells expressing LIR1/ILT-2 and CD4+ T cells positive for NKR-P1A was observed. The proportion of CD8+ T cells that expressed NKG2D was higher after IL-2/TKD treatment, when compared with IL-2 treatment alone. In comparison with IL-15 alone, IL-15/TKD treatment increased the proportion of NKT cells that were positive for CD94, LAMP1 and NKRP-1A. The more potent effect of IL-15/TKD on cell surface expression of NKG2D, LIR1/ILT-2 and NKRP-1A was observed in B cells compared with IL-15 alone. However, this increase was not of statistical significance. IL-2/TKD induced significant upregulation of LAMP1 in CD8+ T cells compared with IL-2 alone. Besides NK cells, other immunocompetent cells present within the fraction of peripheral blood mononuclear cells were influenced by the treatment with low-dose interleukins themselves or in combination with hsp70 derived (TKD) peptide.  相似文献   

10.
Cell adhesion molecules (CAM) participate in interactions between lymphocytes, accessory cells, and target cells that are critical in the generation of effective immune responses. To characterize the involvement of CAM in NK and lymphokine activated killer (LAK) activities, we examined the expression of several CAM by freshly isolated human NK cells and by NK cells activated in vitro with IL-2, and compared this to CAM expression by T lymphocytes under similar conditions. Freshly isolated human NK cells were uniformly LFA-3 (CD58)+ and expressed two to three-fold higher surface levels of LFA-1 (CD11a/CD18) than resting T lymphocytes. More NK cells than T cells also expressed phenotypically detectable levels of intercellular adhesion molecule-1 (CD54). After in vitro incubation with IL-2, human NK cells demonstrated four- to sixfold increases in surface levels of CD11a/CD18, CD2, CD54, CD58, and the NK cell-associated Ag NKH-1 (CD56). Furthermore, essentially all NK cells became CD54+ within 3 days of exposure to IL-2. T cells did not demonstrate comparable up-regulation of CAM after incubation with IL-2. Increases in NK cell CAM expression were associated with enhanced formation of E:T cell conjugates, enhanced killing of NK-sensitive targets, and the induction of cytotoxicity for previously NK-resistant targets (LAK activity). The LAK activity induced by exogenous IL-2 could be partially inhibited by anti-CD2, anti-CD11a, or anti-CD54 antibodies and almost completely abrogated by anti-CD2 and anti-CD11a in combination. These studies suggest that CAM play a central role in the regulation of NK cytolysis, and that changes in CAM expression may alter the target cell specificity of activated NK effectors.  相似文献   

11.
The human liver contains significant numbers of T cells, NK cells, and lymphocytes that coexpress T and NK cell receptors. To evaluate their functional activities, we have compared the cytotoxic activities and cytokines produced by normal adult hepatic CD3+CD56- (T) cells, CD3-CD56+ (NK) cells, and CD3+CD56+ (natural T (NT)) cells. In cytotoxicity assays using immunomagnetic bead-purified NK cell, T cell, and NT cell subpopulations as effectors, fresh hepatic NK cells lysed K562 targets, while NT cells could be induced to do so by culturing with IL-2. Both NT and T cells were capable of redirected cytolysis of P815 cells using Abs to CD3. Flow cytometric analysis of cytokine production by fresh hepatic lymphocyte subsets activated by CD3 cross-linking or PMA and ionomycin stimulation indicated that NT cells and T cells could produce IFN-gamma, TNF-alpha, IL-2, and/or IL-4, but little or no IL-5, while NK cells produced IFN-gamma and/or TNF-alpha only. The majority of NT cells produced inflammatory (Th1) cytokines only; however, approximately 6% of all hepatic T cells, which included 5% of Valpha24 TCR-bearing NT cells and 2% of gammadeltaTCR+ cells, simultaneously produced IFN-gamma and IL-4. The existence of such large numbers of cytotoxic lymphocytes with multiple effector functions suggests that the liver is an important site of innate immune responses, early regulation of adaptive immunity, and possibly peripheral deletion of autologous cells.  相似文献   

12.
The differential expression of the alpha and beta chains of the CD8 glycoprotein was examined in three functionally distinct cytolytic effector cell populations: (i) T cells (CD3+ CD56-), (ii) NK cells (CD56+ CD3-), and (iii) non-MHC-restricted T cells (CD56+ CD3+). Twenty-four percent of T cells were CD8+, and they consistently coexpressed both CD8 alpha and CD8 beta. Moreover, CD8+ T cells uniformly expressed high-density CD8 alpha. Forty percent of NK cells were CD8+ but the vast majority (approximately 75%) expressed only CD8 alpha without CD8 beta. In addition, CD8+ NK cells uniformly expressed low-density CD8 alpha. In comparison, 75% of non-MHC-restricted T lymphocytes were CD8+ but they displayed an intermediate phenotype: 60% coexpressed CD8 alpha and CD8 beta while 40% expressed only CD8 alpha. Within this population, CD8 alpha was expressed at high density, similar to that of T cells. Following IL-2 activation, enhancement of non-MHC-restricted cytotoxicity was not associated with any changes in either the quantitative or qualitative pattern of expression of CD8 alpha or CD8 beta by these cells. Addition of either anti-CD8 alpha or anti-CD8 beta mAb did not alter non-MHC-restricted cytotoxicity of either CD56+ CD3- or CD56+ CD3+ effector cells. However, within the CD56+ cell population, non-MHC-restricted cytotoxicity was almost entirely found within the CD8- and CD8 alpha + beta- populations, and both subsets displayed a similar level of killing. In contrast, CD8 alpha+ beta+ cells exhibited very little non-MHC-restricted cytotoxicity. Thus, the coexpression of CD8 alpha and CD8 beta in conjunction with the TCR/CD3 complex appears to characterize MHC restricted cells while the expression of CD8 alpha alone is associated with non-MHC-restricted cytotoxicity. Taken together, these findings suggest that neither CD8 alpha nor CD8 beta is involved in the initial phases of target cell binding or recognition during NK cell-mediated lysis. However, the selective expression of CD8 alpha by a large fraction of non-MHC-restricted effector cells suggests that this antigen may play a different functional role in this unique subset of cytolytic lymphocytes.  相似文献   

13.
The immune system may mediate anti-tumor responses in chronic lymphocytic leukemia (CLL) which may affect disease progression and survival. In this study, we analyzed the immune characteristics of 99 consecutive previously diagnosed CLL patients and 50 healthy controls. The distribution of lymphocyte subsets at diagnosis was retrospectively analyzed. Compared with controls, leukemia patients showed an expansion of NK and CD8 T cells at diagnosis. The relative number of CD8 T cells at diagnosis was associated with time to treatment, suggesting that CD8 T cells may modify disease progression. The distribution of lymphocyte subsets was analyzed again when patients were enrolled in this study. The median time since these patients were diagnosed was 277 weeks. Compared with diagnosis, the absolute number of CD8 T cells significantly decreased in these patients, reaching similar values to healthy controls; however NK cells kept significantly elevated overtime. Nevertheless, NK cells showed an impaired expression of NKG2D receptor and a defective cytotoxic activity. This down-regulation of NKG2D expression was further enhanced in patients with advanced and progressive disease. Additionally, membrane NKG2D levels significantly decreased on CD8 T cells, but a significant increase of NKG2D+CD4+ T cells was observed in CLL patients. The cytotoxic activity of NK cells was diminished in CLL patients; however the treatments with IL-2, IL-15, IL-21 and lenalidomide were able to restore their activity. The effect of IL-2 and IL-15 was associated with the increase of NKG2D expression on immune cells, but the effect of IL-21 and lenalidomide was not due to NKG2D up-regulation. The expansion of NK cells and the reversibility of NK cell defects provide new opportunities for the immunotherapeutic intervention in CLL.  相似文献   

14.
Engagement of CD40 on antigen presenting cells (APC) is central to the initiation of cell-mediated immune response. Here, we investigated the ability of CD40 ligation on APC to induce NK cell-mediated cytotoxicity in the human system and the mechanism(s) underlying this process. We showed that APC (consisting in adherent peripheral blood mononuclear cells) (PBMC), pre-stimulated with anti-CD40 monoclonal antibodies and co-cultured with autologous non-adherent PBMC for 5-9 days, induced CD3-/CD56+ NK cell-mediated cytotoxicity as well as CD3+/CD56+ T cell-mediated unrestricted cytotoxic activity. The generation of NK cell-mediated cytotoxicity was independent on cell-to-cell contact between CD40-triggered APC and NK cells. Moreover, we found that IL-12 did not play a role in NK cells induction by anti-CD40 priming, while IL-2 and IL-15 did play a role. Our results provide an insight into the mechanism by which NK cells are activated in peripheral blood and useful informations for therapeutic application of anti-CD40 antibodies.  相似文献   

15.
Tuberculous pleuritis is a good model for the study of specific cells at the site of active Mycobacterium tuberculosis (Mtb) infection. We investigated the frequency and phenotype of NK cells in paired samples of peripheral blood and pleural fluid (PF) from patients with tuberculosis (TB) or parapneumonic infection. We demonstrated for the first time a reduction of NK cells in PF from TB with an enrichment in the CD56brightCD16- subset. In agreement, in PF NK cells we observed an increased expression of CD94, NKG2A, CD62L, and CCR7 molecules and lower expression of Bcl-2 and perforin. The activation markers CD69 and HLA-DR were also increased. The enrichment in the CD56bright subset was due to an increased susceptibility to apoptosis of CD56+CD16+ NK cells mediated by heat-labile and stable soluble factors present in tuberculous effusions and not in PF from other etiologies. Furthermore, in TB patients, Mtb-induced IFN-gamma production by PF NK cells was not dependent on the presence of CD3+, CD19+, and CD14+ cells, suggesting a direct interaction of CD56bright cells with Mtb and/or the involvement of other accessory cells present at the site of Mtb infection.  相似文献   

16.
The levels of c-myc mRNA and interleukin-2 receptors (IL-2 Rec) were studied in human peripheral blood lymphocytes (PBL); mature CD2+,CD3+ T cell clones and CD2+,CD3- natural killer (NK) cell clones, and CD2+,CD3+ and CD2-,CD3- T lymphoma cell lines. A transient induction of the expression of c-myc and IL-2 Rec was observed in PBL after activation with phytohemagglutinin (PHA). Expression of c-myc and IL-2 Rec was also found in the CD2+,CD3+ and CD2+,CD3- clones. The CD2+,CD3+ showed higher levels of c-myc mRNA and IL-2 Rec than the CD2+,CD3- clones. In three T lymphoma cell lines constitutively high levels of c-myc mRNA but no IL-2 Rec were found. Only in JURKAT (CD2+,CD3+), c-myc mRNA levels could be further enhanced by PHA. These results suggest that in the presence of PHA, expression of c-myc and IL-2 Rec is induced via the CD3 receptor, and in the absence of PHA and/or the CD3 receptor alternative routes of induction are involved.  相似文献   

17.
The low affinity IgG receptor, CD16 (Fc gamma RIII), is expressed on almost all peripheral blood natural killer (NK) cells. A small subset of CD3- CD16- CD56+ NK cells, representing less than 1% of peripheral blood lymphocytes, expands during in vivo IL-2 treatment. To analyze this CD16- NK cell subset in more detail, NK clones have been generated. One of them (TNK2) has been used to study the function of these cells in more detail. It is demonstrated that TNK2 exerts normal NK activity and displays large granular lymphocyte morphology. Since this clone lacks CD16 expression, antibody-dependent cellular cytotoxicity cannot be exerted. CD16 monoclonal antibodies fail to induce cytotoxic activity against NK-resistant target cells. These studies reveal that the lack of CD16 detection is not due to the modulation or the stage of activation of these NK cells. TNK2 is representative of this small subset of peripheral blood NK cells, expanded during IL-2 treatment, which does not express Fc gamma RIII and therefore cannot perform antibody-dependent cellular cytotoxicity.  相似文献   

18.
NK1.1+ T cells in the mouse thymus and bone marrow were compared because some marrow NK1.1+ T cells have been reported to be extrathymically derived. Almost all NK1.1+ T cells in the thymus were depleted in the CD1-/-, beta2m-/-, and Jalpha281-/- mice as compared with wild-type mice. CD8+NK1.1+ T cells were not clearly detected, even in the wild-type mice. In bone marrow from the wild-type mice, CD8+NK1.1+ T cells were easily detected, about twice as numerous as CD4+NK1.1+ T cells, and were similar in number to CD4-CD8-NK1.1+ T cells. All three marrow NK1.1+ T cell subsets were reduced about 4-fold in CD1-/- mice. No reduction was observed in CD8+NK1.1+ T cells in the bone marrow of Jalpha281-/- mice, but marrow CD8+NK1.1+ T cells were markedly depleted in beta2m-/- mice. All NK1.1+ T cell subsets in the marrow of wild-type mice produced high levels of IFN-gamma, IL-4, and IL-10. Although the numbers of marrow CD4-CD8-NK1.1+ T cells in beta2m-/- and Jalpha281-/- mice were similar to those in wild-type mice, these cells had a Th1-like pattern (high IFN-gamma, and low IL-4 and IL-10). In conclusion, the large majority of NK1.1+ T cells in the bone marrow are CD1 dependent. Marrow NK1.1+ T cells include CD8+, Valpha14-Jalpha281-, and beta2m-independent subsets that are not clearly detected in the thymus.  相似文献   

19.
In the present study we describe a novel functional cell surface molecule, designated as Kp43, which is expressed among leukocytes by NK cells, TCR-gamma/delta + T lymphocytes, and some CD8+ CD56+TCR-alpha/beta + T cell clones. The Kp43 Ag is a 70-kDa disulfide-linked dimer, which migrates in SDS-PAGE under reducing conditions as a single 43-kDa band. Two-color immunofluorescence staining of fresh PBL revealed that only a fraction of CD16+, and of TCR-gamma/delta + T lymphocytes expressed the Ag. The analysis of TCR-alpha/beta + T cell clones showed that a small proportion (2 out of 20) weakly expressed Kp43 together with the CD8 and CD56 molecules. By immunoperoxidase staining of different tissues the anti-Kp43, reactivity was detected exclusively in lymphoid organs, where a minority of scattered cells was stained, and in some liver sinusoidal cells. Essentially all NK cells acquired Kp43 when stimulated with a B lymphoblastoid cell line. By contrast, the pattern of distribution of Kp43 remained stable upon in vitro culture of T-gamma/delta lymphocytes, thus delineating two subsets according to its expression. In lymphokine-activated killer populations, obtained by culturing either PBL or NK cells with high concentration of IL-2, most CD16+ and CD56+ cells became Kp43+. The Kp43-specific mAb inhibited the IL-2-dependent proliferative response of cultured NK and TCR-gamma/delta + T cells without affecting their non-MHC-restricted cytotoxicity. The partial inhibitory effect, which was mediated as well by pepsin digested F(ab')2 fragments, was lost upon reduction to Fab. The anti-Kp43 mAb did not interfere with the specific binding of IL-2 to its surface receptors. Altogether the data point out that the Kp43 dimer is involved in the regulation of the IL-2-dependent proliferative response of NK cells and a subset of TCR-gamma/delta + T lymphocytes.  相似文献   

20.
Murine CD3+,CD4-,CD8- peripheral T cells, which express various forms of the TCR-gamma delta on their cell surface, have been characterized in terms of their cell-surface phenotype, proliferative and lytic potential, and lymphokine-producing capabilities. Three-color flow cytofluorometric analysis demonstrated that freshly isolated CD3+,CD4-, CD8- TCR-gamma delta lymph node cells were predominantly Thy-1+,CD5dull,IL-2R-,HSA-,B220-, and approximately 70% Ly-6C+ and 70% Pgp-1+. After CD3+,CD4-,CD8-splenocytes were expanded for 7 days in vitro with anti-CD3-epsilon mAb (145-2C11) and IL-2, the majority of the TCR-gamma delta cells expressed B220 and IL-2R, and 10 to 20% were CD8+. In comparison to CD8+ TCR-alpha beta T cells, the population of CD8+ TCR-gamma delta-bearing T cells exhibited reduced levels of CD8, and about 70% of the CD8+ TCR-gamma delta cells did not express Lyt-3 on the cell surface. Functional studies demonstrated that splenic TCR-gamma delta cells proliferated when stimulated with mAb directed against CD3-epsilon, Thy-1, and Ly-6C, but not when incubated with an anti-TCR V beta 8 mAb, consistent with the lack of TCR-alpha beta expression. In addition, activated CD3+,CD4-,CD8- peripheral murine TCR-gamma delta cells were capable of lysing syngeneic FcR-bearing targets in the presence of anti-CD3-epsilon mAb and the NK-sensitive cell line, YAC-1, in the absence of anti-CD3-epsilon mAb. Finally, activated CD3+, CD4-,CD8-,TCR-gamma delta+ splenocytes were also capable of producing IL-2, IL-3, IFN-gamma, and TNF when stimulated in vitro with anti-CD3-epsilon mAb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号