首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
土壤微生物生物量氮及其在氮素循环中作用   总被引:11,自引:0,他引:11  
简述了土壤微生物生物量氮的含量及其影响因素,阐述了其在土壤氮素循环中的重要作用,着重讨论了其与可矿化氮、矿质氮、有机氮和固定态铵之间的关系,指出土壤微生物生物量氮与供氮因子间的关系在氮素循环研究中有非常重要的作用,可为调控土壤氮素的供应状况,减少氮素损失,提高氮肥利用率提供科学依据,并提出了需要深入研究的问题。  相似文献   

2.
通过盆栽试验研究了土壤易矿化有机态氮和土壤微生物态氮与土壤净矿化氮及植物吸氮量之间的关系。结果表明,种植前土壤易矿化有机态氮和土壤微生物态氮以及种植前后土壤易矿化有机态氮的变化量均与土壤氮素净矿化量和植物吸氮量之间存在显著的相关性。在盆栽试验条件下,土壤易矿化有机态氮和种植前土壤微生物态氮能够较好地反映土壤氮素的矿化和供应能力,可以作为土壤氮素的生物有效性指标。  相似文献   

3.
对川南天然常绿阔叶林及其人工更新成檫木林、柳杉林和水杉林后土壤不同形态氮素含量、微生物数量和脲酶活性进行研究,并探讨了它们之间的相互关系。结果表明:土壤全氮、微生物量氮、铵态氮和硝态氮含量、细菌、真菌和放线菌数量及脲酶活性,各林分均为秋季>春季>冬季>夏季,各季节均为天然常绿阔叶林>檫木林>水杉林>柳杉林。这说明天然常绿阔叶林人工更新后土壤不同形态氮素含量、微生物数量和脲酶活性下降,土壤保肥和供肥能力降低,而各人工林下降程度不同。土壤不同形态氮素含量与微生物数量和脲酶活性之间呈显著正相关,说明微生物数量及脲酶活性的变化能够表征土壤氮素含量变化。研究结果为保护天然常绿阔叶林、选择适宜的更新树种和天然常绿阔叶林人工更新后林地土壤的科学管理提供依据,也为退耕还林中树种的选择提供参考。  相似文献   

4.
韩琳  王鸽 《生态学杂志》2012,31(8):1893-1902
以长白山阔叶红松混交林为研究对象,于2006—2008年原位模拟不同形态氮((NH4)2SO4、NH4Cl和KNO3)沉降水平(22.5和45kgN·hm-2·a-1),利用树脂芯法技术(resin-core incubation technique)测定了表层(有机层0~7cm)和土层(0~15cm)土壤氮素净矿化、净氨化和净硝化通量的季节和年际变化规律。同时,结合前人报道的有关林地碳、氮过程及其环境变化影响的结果,力求有效预估森林生态系统中氮素年矿化通量对大气氮沉降量和水热条件等因子变化的响应。结果表明,长白山阔叶红松林地土壤氮素年净矿化通量为1.2~19.8kgN·hm-2·a-1,2008年不同深度的土壤氮素年净矿化通量均显著高于2006和2007年(P<0.05)。随着模拟氮沉降量增加,土壤氮素净矿化通量也随之增加,尤其外源NH4+-N输入对净矿化通量的促进作用更为明显(P<0.05),但随着施肥年限的延长,这种促进作用逐渐减弱。与林地0~15cm土壤相比,氮沉降增加对0~7cm有机层氮素净氨化和净矿化通量的促进作用更为明显,尤其NH4Cl处理的促进作用更大。结合前人报道的野外原位观测结果,土壤氮素年净矿化通量随氮素沉降量的增加而增大,氮沉降量对不同区域森林土壤氮素净矿化通量的贡献率约为52%;氮沉降量(x1)和pH值(x2)可以解释区域森林土壤氮素年净矿化通量(y)变化的70%(y=0.54x1-18.38x2-109.55,R2=0.70,P<0.0001)。前人研究结果仅提供区域年均温度,未考虑积温的影响,这可能是造成年净矿化通量与温度无关的原因。今后的研究工作应该加强区域森林土壤积温观测,进而更加准确地预估森林土壤氮素的年净矿化通量。  相似文献   

5.
王春阳  周建斌  董燕婕  陈兴丽  李婧 《生态学报》2010,30(24):7092-7100
黄土高原丘陵沟壑区进行的以退耕还林还草为主的生态环境建设,使得进入土壤生态系统有机物的种类及数量发生变化,其对土壤微生物量碳、氮的影响是值得关注的问题。采用室内培养法研究了采自该区6种不同植物凋落物(碳氮比在15.1-50.7之间)及其与不同形态氮素(NH+4-N及NO-3-N)配合对土壤微生物量碳、氮及矿质态氮含量的影响。结果表明,加入不同凋落物均显著提高了土壤微生物量碳、氮含量,其中加入柠条、沙打旺等碳氮比低的凋落物在培养的一段时期内土壤微生物量碳、氮均高于碳氮比高的凋落物(刺槐、沙柳和长芒草)。在加入凋落物再施用NH+4或NO-3,也提高了土壤微生物量碳、氮含量,其中铵态氮处理土壤微生物量碳、氮含量的增加达显著水平,说明微生物更易利用铵态氮。加入C/N高的凋落物后土壤中的矿质氮发生固持,矿质态氮固持量与凋落物的C/N比呈显著的正相关关系。建议在黄土高原丘陵沟壑区植被恢复过程中,有必要考虑不同植物凋落物的碳、氮养分含量及转化特性,以协调土壤碳、氮转化过程。  相似文献   

6.
以黄土高原南部17年长期定位试验不同处理土壤为研究对象,研究了不同肥料处理及撂荒条件下土壤氮素矿化特性、灭菌与不灭菌条件下不同肥力土壤对施入外源硝态氮转化的影响.结果表明:氮磷钾化肥和有机肥配施(MNPK)及长期撂荒处理显著提高了土壤有机质和全氮含量以及土壤氮素矿化量和矿化率;氮磷钾化肥(NPK)处理虽然提高了土壤无机氮含量,但对土壤有机质、全氮、土壤氮素矿化量和矿化率的影响相对较小.高温高压灭菌显著增加了土壤铵态氮含量,但对不同处理土壤硝态氮含量无明显影响;在灭菌土壤培养过程中,土壤铵态氮含量呈显著增加趋势.同一土壤类型,不论灭菌与否,培养过程中施入土壤的硝态氮含量保持相对稳定,说明在本研究培养条件下,生物因素和非生物因素对外源硝态氮在土壤中的转化无明显影响.  相似文献   

7.
秸秆生物有机肥的施用对土壤供氮能力的影响   总被引:63,自引:7,他引:56  
通过盆栽试验研究了秸秆生物有机肥的施用对土壤供氮能力的影响。结果表明,与原始秸秆相比,秸秆生物有以与尿素配合施用能明显提高土壤生物量碳,氮的含量,增幅约为3-4倍;土壤微生物量氮与土壤的供氮能力关系非常密切,前期发生强烈的微生物增殖过程,则中后期必会发生无机氮释放过程,这对作物的生长发育极为重要。同时提高了肥料氮利用率,揭示了秸秆生物有机肥配施无机氮肥改善土壤供氮能力的机理。  相似文献   

8.
植被类型与坡位对喀斯特土壤氮转化速率的影响   总被引:4,自引:0,他引:4  
土壤氮素转化对于植物氮素营养具有重要作用,尤其是对于受氮素限制的喀斯特退化生态系统。选取植被恢复过程中4种典型喀斯特植被类型(草丛、灌丛、次生林、原生林)和3个坡位(上、中、下坡位)表层土壤(0—15cm)为对象,利用室内培养的方法,研究不同植被类型和坡位下土壤氮素养分与氮转化速率(氮净矿化率、净硝化率和净氨化率)的特征及其影响因素。结果表明,植被类型对土壤硝态氮含量、无机氮含量、氮净矿化率、净硝化率和净氨化率均有显著影响(P0.01),即随着植被的正向演替(草丛—灌丛—次生林—原生林),土壤硝态氮含量、无机氮含量、土壤氮净矿化速率和净硝化速率整体上呈增加趋势,而坡位以及坡位与植被类型的交互作用对上述土壤氮素指标无显著影响(P0.05)。冗余分析结果表明凋落物氮含量、凋落物C∶N比和硝态氮含量对土壤氮转化速率有显著影响,其中凋落物氮含量是影响土壤氮转化速率的主要因子(F=35.634,P=0.002)。可见,尽管坡位影响喀斯特水土再分配过程,但植被类型决定的凋落物质量(如凋落物氮含量等)对喀斯特土壤氮素转化速率的作用更为重要。因此,在喀斯特退化生态系统植被恢复初期,应注重植被群落的优化配置(如引入豆科植物)和土壤质量的改善(如降低土壤C∶N),促进土壤氮素转化及氮素的有效供给。  相似文献   

9.
土壤氮素矿化的生态模型研究   总被引:28,自引:5,他引:23  
土壤氮素矿化是反映土壤供氮能力的重要因素之一,也是目前国内外土壤生态学研究热点之一。土壤氮素矿化可表示为土壤有机氮的含量、矿化过程中土壤环境因素和矿化持续时间的复合函数;土壤氮素矿化的基本模型有3类,即动力学模型、热力学模型及经验模型;影响矿化过程并可定量表示的土壤环境条件如土壤温度、湿度、pH及有机质形态。  相似文献   

10.
不同施氮处理玉米根茬在土壤中矿化分解特性   总被引:4,自引:0,他引:4  
蔡苗  董燕婕  李佰军  周建斌 《生态学报》2013,33(14):4248-4256
以黄土高原南部地区7a定位试验不同氮肥处理玉米根茬为研究对象,通过室内培养试验研究了施氮量分别为0、120和240 kg N/hm2处理玉米根茬(分别用R0、R120、R240表示)在15-20 cm和45-50 cm土层土壤中有机碳矿化及其对土壤微生物量碳、可溶性有机碳和矿质态氮含量的影响.结果表明,不同处理玉米根茬C/N为R0>R240 >R120.培养条件下,R120和R240根茬的碳矿化速率高于R0根茬,R120与R240根茬之间差异不显著.不同处理根茬C/N与其培养过程中碳素累积表观矿化量呈极显著负相关关系.3种施氮量处理的玉米根茬在培养过程中有机碳矿化率、潜在碳矿化量、土壤微生物量碳、可溶性有机碳含量均为添加R120根茬的处理最高,R240次之,R0最低.添加R120和R240根茬显著提高了培养起始时土壤矿质态氮含量.R0、R120和R240根茬在15-20 cm土层土壤中的碳矿化率分别比其在45-50 cm土层土壤中高51.70%、26.41%和27.84%.在评价根茬还田对农田生态系统碳、氮等养分循环的作用时,应同时考虑施肥对根茬分解和转化的影响.  相似文献   

11.
Soil solarization, alone or combined with organic amendment, is an increasingly attractive approach for managing soil-borne plant pathogens in agricultural soils. Even though it consists in a relatively mild heating treatment, the increased soil temperature may strongly affect soil microbial processes and nutrients dynamics. This study aimed to investigate the impact of solarization, either with or without addition of farmyard manure, in soil dynamics of various C, N and P pools. Changes in total C, N and P contents and in some functionally-related labile pools (soil microbial biomass C and N, K2SO4-extractable C and N, basal respiration, KCl-exchangeable ammonium and nitrate, and water-soluble P) were followed across a 72-day field soil solarization experiment carried out during a summer period on a clay loam soil in Southern Italy. Soil physico-chemical properties (temperature, moisture content and pH) were also monitored. The average soil temperature at 8-cm depth in solarized soils approached 55 °C as compared to 35 °C found in nonsolarized soil. Two-way ANOVA (solarization×organic amendment) showed that both factors significantly affected most of the above variables, being the highest influence exerted by the organic amendment. With no manure addition, solarization did not significantly affect soil total C, N and P pools. Whereas soil pH, microbial biomass and, at a greater extent, K2SO4-extractable N and KCl-exchangeable ammonium were greatly affected. An increased release of water-soluble P was also found in solarized soils. Yet, solarization altered the quality of soluble organic residues released in soil as it lowered the C-to-N ratio of both soil microbial biomass and K2SO4-extractable organic substrates. Additionally, in solarized soils the metabolic quotient (qCO2) significantly increased while the microbial biomass C-to-total organic C ratio (microbial quotient) decreased over the whole time course. We argued that soil solarization promoted the mineralization of readily decomposable pools of the native soil organic matter (e.g. the microbial biomass) thus rendering larger, at least over a short-term, the available fraction of some soil mineral nutrients, namely N and P forms. However, over a longer prospective solarization may lead to an over-exploitation of labile organic resources in agricultural soils. Manure addition greatly increased the levels of both total and labile C, N and P pools. Thus, addition of organic amendments could represent an important strategy to protect agricultural lands from excessive soil resources exploitation and to maintain soil fertility while enhancing pest control.  相似文献   

12.
探讨外源养分的输入对土壤系统内碳、氮、磷化学计量特征的影响,对于深刻认识农田土壤有机碳(C)和养分循环及其相互作用过程具有重要意义。以26年的农田长期定位施肥试验为平台,分析长期不同施肥条件下土壤、有机态及微生物生物量碳、氮、磷含量及其化学计量学特征,并根据内稳性模型y=c x~(1/H)计算其化学计量内稳性指数H。结果表明:与长期撂荒处理(CK_0)相比,种植作物条件下26年化肥配施有机肥处理(MNPK和1.5MNPK)显著降低微生物生物量氮含量,但显著提高了微生物生物量磷的含量。相对于撂荒处理,即使长期配施化肥磷处理(NP、PK、NPK),其土壤有机磷降低显著。对于C∶N比而言,化肥配施有机物料处理(秸秆或有机肥)的土壤C∶N比、有机质C∶N及微生物生物量C∶N比均显著低于化肥处理(N、NP、PK和NPK)。对于C∶P比而言,相对于撂荒处理,26年施用磷肥(化肥磷或有机磷)显著降低了土壤C∶P比和微生物生物量C∶P比,而CK和偏施化肥处理(N、NP和PK)显著降低了土壤有机质C∶P比。对于土壤N∶P比而言,撂荒处理土壤N∶P比显著高于其他处理,而撂荒处理土壤有机质N∶P比显著高于CK和化肥处理,表明不施肥或化肥条件下作物种植加剧了土壤有机质中氮素的消耗。微生物生物量C∶N、C∶P、N∶P比的内稳性指数H分别为0.24、0.75、0.64,不具有内稳性特征。微生物生物量C∶N、C∶P、N∶P比分别与土壤C∶N、C∶P、N∶P比呈显著正相关关系,但与土壤有机质碳氮磷化学计量比之间无显著相关性。表明土壤碳、氮、磷元素的改变会直接导致微生物生物量碳、氮、磷化学计量比的改变,但微生物生物量碳氮磷化学计量比对土壤有机质碳氮磷化学计量比无显著影响,土壤有机质的碳氮磷计量比可能更多是受到作物和施肥等养分管理措施的影响。  相似文献   

13.
贵州山区土壤中微生物担是能源物质碳流动的源与汇   总被引:7,自引:0,他引:7  
在传统的农业生态系统的研究中 ,主要精力放在营养物 (如N)上 ,认为它们是限制生产力的因素 ;而往往忽略了土壤中碳的重要性 ,认为收获不受C限制的影响。然而 ,碳循环中的有机碳的分解作用部分控制着出现在地表下和显露在地表上的农业过程[4]。土壤中所储存的有机质 ,其数量既反映土壤从植物残留物的输入所获得的有机质与微生物群落的能量和营养需求之间的平衡 ,又反映植物对营养物的需求与有机质分解作用之间的平衡。因此 ,土壤中碳的平衡能反映出有机质中能量物质的储存[5]。大部分由光合作用形成的碳 ,是通过地表下的生态系统来流动的[…  相似文献   

14.
Assimilation of N by heterotrophic soil microbial biomass is associated with decomposition of organic matter in the soil. The form of N assimilated can be either low molecular weight organic N released from the breakdown of organic matter (direct assimilation), or NH+4 and NO3 from the soil inorganic N pool, into which mineralized organic N is released (mineralization immobilization turnover). The kinetics of C and N turnover in soil is quantifiable by means of computer simulation models. NCSOIL was constructed to represent the two assimilation schemes. The rate of N assimilation depends on the rate of C assimilation and microbial C/N ratio, thereby rendering it independent of the assimilation scheme. However, if any of the N forms is labeled, a different amount of labeled N assimilation will be simulated by the different schemes. Experimental data on inorganic N and 15N and on organic 15N dynamics in soils incubated with 15N added as NH+4 or organic N were compared with data simulated by different model schemes. Direct assimilation could not account for the amount of 15N assimilated in any of the experimental treatments. The best fit of the model to experimental data was obtained for the mineralization immobilization turnover scheme when both NH+4 and NO3 were assimilated, in proportion to their concentration in the soil.  相似文献   

15.
Previous studies have shown that fertilization with nitrogen depresses overall microbial biomass and activity in soil. In the present study we broaden our understanding of this phenomenon by studying the seasonality of responses of specific microbial functional groups to chronic nitrogen additions in alpine tundra soils. We measured soil enzyme activities, mineralization kinetics for 8 substrates, biomass of 8 microbial functional groups, and changes in N and carbon pools in the soil. Our approach allowed us to compare the ability of the soil microbial biomass to utilize various substrates in addition to allowing us to estimate changes in biomass of microbial functional groups that are involved in carbon and nitrogen cycling. Overall microbial activity and biomass was reduced in fertilized plots, whereas pools of N in the soil and microbial biomass N were higher in fertilized plots. The negative effects of N were most prominent in the summer. Biomass of the dominant microbial functional groups recovered in fertilized soils during the winter and nitrogen storage in microbial biomass was higher in fertilized soils in the autumn and winter than in the summer. Microbial immobilization of N may therefore be a significant sink for added N during autumn and winter months when plants are not active. One large microbial group that did not recover in the winter in fertilized soils was phenol mineralizers, possibly indicating selection against microbes with enzyme systems for the breakdown of phenolic compounds and complex soil organic matter. Overall, this work is a step towards understanding how chronic N additions affect the structure and biogeochemical functioning of soil microbial communities.  相似文献   

16.
The soil microbial carbon (C), nitrogen (N) and phosphorus (P) pools were quantified in the organic horizon of soils from an arctic/alpine low-altitude heath and a high-altitude fellfield by the fumigation-extraction method before and after factorial addition of sugar, NPK fertilizer and benomyl, a fungicide. In unamended soil, microbial C, N and P made up 3.3–3.6%, 6.1–7.3% and 34.7% of the total soil C, N and P content, respectively. The inorganic extractable N pool was below 0.1% and the inorganic extractable P content slightly less than 1% of the total soil pool sizes. Benomyl addition in spring and summer did not affect microbial C or nutrient content analysed in the autumn. Sugar amendments increased microbial C by 15 and 37% in the two soils, respectively, but did not affect the microbial nutrient content, whereas inorganic N and P either declined significantly or tended to decline. The increased microbial C indicates that the microbial biomass also increased but without a proportional enhancement of N and P uptake. NPK addition did not affect the amount of microbial C but almost doubled the microbial N pool and more than doubled the P pool. A separate study has shown that CO2 evolution increased by more than 50% after sugar amendment and by about 30% after NPK and NK additions to one of the soils. Hence, the microbial biomass did not increase in response to NPK addition, but the microbes immobilized large amounts of the added nutrients and, judging by the increased CO2 evolution, their activity increased. We conclude: (1) that microbial biomass production in these soils is stimulated by labile carbon and that the microbial activity is stimulated by both labile C and by nutrients (N); (2) that the microbial biomass is a strong sink for nutrients and that the microbial community probably can withdraw substantial amounts of nutrients from the inorganic, plant-available pool, at least periodically; (3) that temporary declines in microbial populations are likely to release a flush of inorganic nutrients to the soil, particularly P of which the microbial biomass contained more than one third of the total soil pool; and (4) that the mobilization-immobilization cycles of nutrients coupled to the population dynamics of soil organisms can be a significant regulating factor for the nutrient supply to the primary producers, which are usually strongly nutrient-limited in arctic ecosystems.  相似文献   

17.
26年长期施肥对土壤微生物量碳、氮及土壤呼吸的影响   总被引:44,自引:0,他引:44  
研究长期小麦连作施肥条件下土壤微生物量碳、氮,土壤呼吸的变化及其与土壤养分的相关性。以陕西长武长期定位试验为平台,应用氯仿熏蒸-K2SO4提取法、碱液吸收法和化学分析法分析了长达26a不同施肥处理农田土壤微生物量碳、微生物量氮和土壤呼吸之间的差异及其调控土壤肥力的作用。长期施肥及种植作物,均能提高土壤微生物量碳、氮含量,尤其是施用有机肥,土壤微生物量碳、氮含量高于单施无机肥的处理,土壤呼吸量也提高15.91%—75.73%,而施用无机肥对于土壤呼吸无促进作用。土壤微生物生物量碳氮、土壤呼吸与土壤有机质、全氮呈极显著相关。长期有机无机肥配施可以提高土壤微生物量碳氮、土壤呼吸,氮磷肥与厩肥配施对提高土壤肥力效果最好。微生物量碳氮及土壤呼吸可以反映土壤质量的变化,作为评价土壤肥力的生物学指标。  相似文献   

18.
Nitrogen (N) deposition has increased dramatically worldwide, which may affect forest soils in various ways. In this study, we conducted a short-term manipulation experiment of N addition on two types of forest soils (urban and rural soils) found in Korea. N addition significantly decreased phenol oxidase activities in urban soil samples; however, it did not affect those in rural soils. Furthermore, N addition did not change β-glucosidase and N-acetylglucosaminidase activities, except for β-glucosidase activities in the O layer of rural soils. Changes in microbial biomass and general activity (dehydrogenase activity) were not induced by N addition, except for dehydrogenase in the A layer of urban soils. Although N addition did not change the extractable soil nutrients, organic matter, and water contents significantly, it enhanced nutrient leaching and resulted in lower pH leachate. These results suggest that excessive N addition to forest soils may induce nutrient leaching in the long-term. Overall results of our study also suggest that N addition may induce retardation of organic matter decomposition in soils; however, such a response may depend on the intensity of previous exposure to N deposition.  相似文献   

19.
The objectives of this study were to explore the effects of long-term and continued application of fertilizers and manures on microbial biomass, soil biological activity and their seasonal variations in surface and subsurface soils in relation to soil fertility. For this, soils were sampled in spring, summer and autumn from Shenyang Long-term Experimental Station, northeastern China. The results showed that soil total nitrogen (N), organic carbon (C), basal respiration, microbial biomass and enzymatic activity increased in manure-amended surface soils, but decreased with soil depth. Long-term application of inorganic fertilizers significantly decreased soil pH value, sucrase activity and microbial biomass C, but increased soil metabolic quotient (qCO2). However, no significant effect of inorganic fertilizers on soil total N, urease activity and microbial biomass N was observed in comparison with CK0 (neither tillage nor fertilization) and CK (no fertilizers). There was no significant difference between CK0 and CK in soil total N, organic C and microbial activity in surface soil layer (0–20 cm), but these parameters in subsurface soil layer (20–40 cm) were higher in CK than in CK0. Moreover, seasonal changes were observed in terms of soil nutrient contents, enzymatic activity, microbial biomass and soil respiration. There were significant correlations between soil microbial biomass C and N, between organic C and sucrase activity and between total N and urease activity, respectively. It is recommended that combined use of organic manure with inorganic fertilizers should be considered to maintain higher microbial biomass, soil biological activity and soil fertility. Considering considerably high nutrients reserve and microbial activity in subsurface layers of soil and wind-erosion-caused nutrient loss in spring in north China, we also propose that low tillage should be considered to make use of nutrients in soils.  相似文献   

20.

Background and aims

Tundra soils, which usually contain low concentrations of soil nutrients and have a low pH, store a large proportion of the global soil carbon (C) pool. The importance of soil nitrogen (N) availability for microbial activity in the tundra has received a great deal of attention; however, although soil pH is known to exert a considerable impact on microbial activities across ecosystems, the importance of soil pH in the tundra has not been experimentally investigated.

Methods

We tested a hypothesis that low nutrient availability and pH may limit microbial biomass and microbial capacity for organic matter degradation in acidic tundra heaths by analyzing potential extracellular enzyme activities and microbial biomass after 6 years of factorial treatments of fertilization and liming.

Results

Increasing nutrients enhanced the potential activity of β-glucosidase (synthesized for cellulose degradation). Increasing soil pH, in contrast, reduced the potential activity of β-glucosidase. The soil phospholipid fatty acid concentrations (PLFAs; indicative of the amount of microbial biomass) increased in response to fertilization but were not influenced by liming.

Conclusions

Our results show that soil nutrient availability and pH together control extracellular enzyme activities but with largely differing or even opposing effects. When nutrient limitation was alleviated by fertilization, microbial biomass and enzymatic capacity for cellulose decomposition increased, which likely facilitates greater decomposition of soil organic matter. Increased soil pH, in contrast, reduced enzymatic capacity for cellulose decomposition, which could be related with the bioavailability of organic substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号