首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
This study evaluated the performance of a walking speed estimation system based on using an inertial measurement unit (IMU), a combination of accelerometers and gyroscopes. The walking speed estimation algorithm segments the walking sequence into individual stride cycles (two steps) based on the inverted pendulum-like behaviour of the stance leg during walking and it integrates the angular velocity and linear accelerations of the shank to determine the displacement of each stride. The evaluation was performed in both treadmill and overground walking experiments with various constraints on walking speed, step length and step frequency to provide a relatively comprehensive assessment of the system. Promising results were obtained in providing accurate and consistent walking speed/step length estimation in different walking conditions. An overall percentage root mean squared error (%RMSE) of 4.2 and 4.0% was achieved in treadmill and overground walking experiments, respectively. With an increasing interest in understanding human walking biomechanics, the IMU-based ambulatory system could provide a useful walking speed/step length measurement/control tool for constrained walking studies.  相似文献   

2.
Treadmill walking aims to simulate overground walking, but intra-stride belt speed variations of treadmills result in some interaction between treadmill and subject, possibly obstructing this aim. Especially in self-paced treadmill walking, in which the belt speed constantly adjusts to the subject, these interactions might affect the gait pattern significantly. The aim of this study was to quantify the energy exchange between subject and treadmill, during the fixed speed (FS) and self-paced (SP) modes of treadmill walking. Eighteen subjects walked on a dual-belt instrumented treadmill at both modes. The energy exchange was calculated as the integration of the product of the belt speed deviation and the fore-aft ground reaction force over the stride cycle. The total positive energy exchange was 0.44 J/stride and the negative exchange was 0.11 J/stride, which was both less than 1.6% of the performed work on the center of mass. Energy was mainly exchanged from subject to treadmill during both the braking and propulsive phase of gait. The two treadmill modes showed a similar pattern of energy exchange, with a slightly increased energy exchange during the braking phase of SP walking. It is concluded that treadmill walking is only mildly disturbed by subject-belt interactions when using instrumented treadmills with adequate belt control.  相似文献   

3.
We studied the feasibility of estimating walking speed using a shank-mounted inertial measurement unit. Our approach took advantage of the inverted pendulum-like behavior of the stance leg during walking to identify a new method for dividing up walking into individual stride cycles and estimating the initial conditions for the direct integration of the accelerometer and gyroscope signals. To test its accuracy, we compared speed estimates to known values during walking overground and on a treadmill. The speed estimation method worked well across treadmill speeds and slopes yielding a root mean square speed estimation error of only 7%. It also worked well during overground walking with a 4% error in the estimated travel distance. This accuracy is comparable to that achieved from foot-mounted sensors, providing an alternative in sensor positioning for walking speed estimation. Shank mounted sensors may be of great benefit for estimating speed in walking with abnormal foot motion and for the embedded control of knee-mounted devices such as prostheses and energy harvesters.  相似文献   

4.
Treadmill has been broadly used in laboratory and rehabilitation settings for the purpose of facilitating human locomotion analysis and gait training. The objective of this study was to determine whether dynamic gait stability differs or resembles between the two walking conditions (overground vs. treadmill) among young adults. Fifty-four healthy young adults (age: 23.9 ± 4.7 years) participated in this study. Each participant completed five trials of overground walking followed by five trials of treadmill walking at a self-selected speed while their full body kinematics were gathered by a motion capture system. The spatiotemporal gait parameters and dynamic gait stability were compared between the two walking conditions. The results revealed that participants adopted a “cautious gait” on the treadmill compared with over ground in response to the possible inherent challenges to balance imposed by treadmill walking. The cautious gait, which was achieved by walking slower with a shorter step length, less backward leaning trunk, shortened single stance phase, prolonged double stance phase, and more flatfoot landing, ensures the comparable dynamic stability between the two walking conditions. This study could provide insightful information about dynamic gait stability control during treadmill ambulation in young adults.  相似文献   

5.
This study investigated the fractal dynamic properties of stride time (ST), stride length (SL) and stride speed (SS) during walking on a self-paced treadmill (STM) in which the belt speed is automatically controlled by the walking speed. Twelve healthy young subjects participated in the study. The subjects walked at their preferred walking speed under four conditions: STM, STM with a metronome (STM+met), fixed-speed (conventional) treadmill (FTM), and FTM with a metronome (FTM+met). To compare the fractal dynamics between conditions, the mean, variability, and fractal dynamics of ST, SL, and SS were compared. Moreover, the relationship among the variables was examined under each walking condition using three types of surrogates. The mean values of all variables did not differ between the two treadmills, and the variability of all variables was generally larger for STM than for FTM. The use of a metronome resulted in a decrease in variability in ST and SS for all conditions. The fractal dynamic characteristics of SS were maintained with STM, in contrast to FTM, and only the fractal dynamic characteristics of ST disappeared when using a metronome. In addition, the fractal dynamic patterns of the cross-correlated surrogate results were identical to those of all variables for the two treadmills. In terms of the fractal dynamic properties, STM walking was generally closer to overground walking than FTM walking. Although further research is needed, the present results will be useful in research on gait fractal dynamics and rehabilitation.  相似文献   

6.
This study used surface electromyography (EMG) to investigate the regions and patterns of activity of the external oblique (EO), erector spinae longissimus (ES), multifidus (MU) and rectus abdominis (RA) muscles during walking (W) and pole walking (PW) performed at different speeds and grades. Eighteen healthy adults undertook W and PW on a motorized treadmill at 60% and 100% of their walk-to-run preferred transition speed at 0% and 7% treadmill grade. The Teager-Kaiser energy operator was employed to improve the muscle activity detection and statistical non-parametric mapping based on paired t-tests was used to highlight statistical differences in the EMG patterns corresponding to different trials. The activation amplitude of all trunk muscles increased at high speed, while no differences were recorded at 7% treadmill grade. ES and MU appeared to support the upper body at the heel-strike during both W and PW, with the latter resulting in elevated recruitment of EO and RA as required to control for the longer stride and the push of the pole. Accordingly, the greater activity of the abdominal muscles and the comparable intervention of the spine extensors supports the use of poles by walkers seeking higher engagement of the lower trunk region.  相似文献   

7.
Consistent measurement of maximum running speed overground is problematic due to the difficulty in precise, continual measurement of speed, and the substantial workload in accelerating the body promoting the onset of fatigue. Treadmills remove the requirement for acceleration which enables more repeats. They also allow experiments to be carried out in controlled environments and where space is limited, but they usually depend on manual and subjective speed control. Here we used a draw-wire position sensor and a proportional–derivative (PD) controller to automatically adjust treadmill belt speed of a large equine treadmill. The feedback loop took the real-time position and velocity of the runner relative to the front of the treadmill as input. This control system allowed runners to accelerate from walking speed to a peak running speed within a few strides and then decelerate as quickly as they wished. We used the system to evaluate the variation in maximum speed determination that results from one trial to 10 trials, in eleven individuals. Three trials gave a maximum speed 97.8% of that achieved after ten. The approach used is appropriate for any treadmill where the running zone length is greater than three metres and the speed controller can be externally controlled. Subjects ran 11.5% faster on the treadmill than overground, part of which can be explained by the removal of aerodynamic drag and the fatigue of overground running. Additional factors may, however, contribute to athletes running faster on a treadmill, for instance some aspect of stability or control.  相似文献   

8.
Human walking is characterized by pronounced arm movement, yet computer simulation models of walking usually lump the mass of the arms with the head and torso. The implications of this simplification have not been thoroughly documented in the literature. Thus, the purpose of this study was to establish the dependence of several biomechanical and energetic variables on suppressing arm swing (AS) in walking. Eight healthy adult subjects walked with and without normal AS, with speed and stride frequency/length matched between trials. Metabolic data were collected during walking on a treadmill, while kinematic and kinetic data were collected during overground walking. Gross and net energy expenditure were significantly higher during walking without AS, with the mean differences being less than 10%. Joint angles, angular velocities, and ground reaction forces were nearly identical for walking with and without AS. Most joint moments and powers were also similar between AS conditions; however, some kinetic variables (e.g., knee joint power) exhibited larger differences, primarily during the stance phase. The variable that differed most between walking with and without AS was the free vertical moment between the foot and ground. In summary, most variables differed by less than 10% and were highly correlated (r0.90) between walking with and without normal AS. Thus, researchers may be justified in using walking models without articulated arms. However, a few variables exhibited larger differences, which might be of relevance based on the specific research question being addressed.  相似文献   

9.
Hemiplegic gait: a kinematic analysis using walking speed as a basis.   总被引:8,自引:0,他引:8  
The kinematics of treadmill ambulation of stroke patients (N = 9) and healthy subjects (N = 4) was studied at a wide range of different velocities (i.e. 0.25-1.5 m s-1), with a focus on the transverse rotations of the trunk. Video recordings revealed, for both stroke patients and healthy subjects, similar relations between walking speed and stride length as well as stride frequency. The phase difference between pelvic and thoracic rotations (i.e. trunk rotation) and the total range of trunk rotation were almost linearly related to the walking speed. Healthy subjects showed a marked increase in pelvic rotation from 1 to 1.5 m s-1. Using dimensional analysis in a comparison between stroke patients and healthy subjects, invariances in the coordination of gait were found for stride length, stride frequency, pelvic rotation, and trunk rotation. Constant relations were obtained between, on the one hand, dimensionless velocity and, on the other, dimensionless stride length as well as stride frequency. Transitions were found between the velocities 0.75 and 1 m s-1 for dimensionless pelvic rotation and trunk rotation, indicating that, from this velocity range onwards, pelvic swing lengthens the stride: rotations of pelvis, thorax and trunk become tightly coordinated. On the basis of the dimensionless stride length, stride frequency, pelvic rotation and trunk rotation, deficits in the gait of stroke patients could be quantified. It is concluded that walking speed is an important control parameter, which should be used as a basic variable in the evaluation of the gait of stroke patients.  相似文献   

10.
Biomechanics of overground vs. treadmill walking in healthy individuals.   总被引:1,自引:0,他引:1  
The goal of this study was to compare treadmill walking with overground walking in healthy subjects with no known gait disorders. Nineteen subjects were tested, where each subject walked on a split-belt instrumented treadmill as well as over a smooth, flat surface. Comparisons between walking conditions were made for temporal gait parameters such as step length and cadence, leg kinematics, joint moments and powers, and muscle activity. Overall, very few differences were found in temporal gait parameters or leg kinematics between treadmill and overground walking. Conversely, sagittal plane joint moments were found to be quite different, where during treadmill walking trials, subjects demonstrated less dorsiflexor moments, less knee extensor moments, and greater hip extensor moments. Joint powers in the sagittal plane were found to be similar at the ankle but quite different at the knee and hip joints. Differences in muscle activity were observed between the two walking modalities, particularly in the tibialis anterior throughout stance, and in the hamstrings, vastus medialis and adductor longus during swing. While differences were observed in muscle activation patterns, joint moments and joint powers between the two walking modalities, the overall patterns in these behaviors were quite similar. From a therapeutic perspective, this suggests that training individuals with neurological injuries on a treadmill appears to be justified.  相似文献   

11.
The purpose of the current study was to investigate whether adaptations of stride length, stride frequency, and walking speed, independently influence local dynamic stability and the size of the medio-lateral and backward margins of stability during walking. Nine healthy subjects walked 25 trials on a treadmill at different combinations of stride frequency, stride length, and consequently at different walking speeds. Visual feedback about the required and the actual combination of stride frequency and stride length was given during the trials. Generalized Estimating Equations were used to investigate the independent contribution of stride length, stride frequency, and walking speed on the measures of gait stability. Increasing stride frequency was found to enhance medio-lateral margins of stability. Backward margins of stability became larger as stride length decreased or walking speed increased. For local dynamic stability no significant effects of stride frequency, stride length or walking speed were found. We conclude that adaptations in stride frequency, stride length and/or walking speed can result in an increase of the medio-lateral and backward margins of stability, while these adaptations do not seem to affect local dynamic stability. Gait training focusing on the observed stepping strategies to enhance margins of stability might be a useful contribution to programs aimed at fall prevention.  相似文献   

12.
Spatio-temporal gait characteristics (step and stride length, stride frequency, duty factor) were determined for the hind-limb cycles of nine bonobos (Pan paniscus) walking quadrupedally and bipedally at a range of speeds. The data were recalculated to dimensionless quantities according to the principle of dynamic similarity. Lower leg length was used as the reference length. Interindividual variability in speed modulation strategy of bonobos appears to be low. Compared to quadrupedal walking, bipedal bonobos use smaller steps to attain a given speed (differences increase with speed), resulting in shorter strides at a higher frequency. In the context of the ("hybrid") dynamic pattern approach to locomotion (Latach, 1998) we argue that, despite these absolute differences, intended walking speed is the basic control variable which elicits both quadrupedal and bipedal walking kinematics in a similar way. Differences in the initial status of the dynamic system may be responsible for the differences in step length between both gaits. Comparison with data deduced from the literature shows that the effects of walking speed on stride length and frequency are similar in bonobos, common chimpanzees, and humans. This suggests that (at least) within extant homininae, spatio-temporal gait characteristics are highly comparable, and this in spite of obvious differences in mass distribution and bipedal posture.  相似文献   

13.
Implementing user-driven treadmill control in gait training programs for rehabilitation may be an effective means of enhancing motor learning and improving functional performance. This study aimed to determine the effect of a user-driven treadmill control scheme on walking speeds, anterior ground reaction forces (AGRF), and trailing limb angles (TLA) of healthy adults. Twenty-three participants completed a 10-m overground walking task to measure their overground self-selected (SS) walking speeds. Then, they walked at their SS and fastest comfortable walking speeds on an instrumented split-belt treadmill in its fixed speed and user-driven control modes. The user-driven treadmill controller combined inertial-force, gait parameter, and position based control to adjust the treadmill belt speed in real time. Walking speeds, peak AGRF, and TLA were compared among test conditions using paired t-tests (α = 0.05). Participants chose significantly faster SS and fast walking speeds in the user-driven mode than the fixed speed mode (p > 0.05). There was no significant difference between the overground SS walking speed and the SS speed from the user-driven trials (p < 0.05). Changes in AGRF and TLA were caused primarily by changes in walking speed, not the treadmill controller. Our findings show the user-driven treadmill controller allowed participants to select walking speeds faster than their chosen speeds on the fixed speed treadmill and similar to their overground speeds. Since user-driven treadmill walking increases cognitive activity and natural mobility, these results suggest user-driven treadmill control would be a beneficial addition to current gait training programs for rehabilitation.  相似文献   

14.
This randomized controlled study was designed to prove the hypothesis that a novel approach to high-speed interval training, based on walking on a treadmill with the use of body weight unloading (BWU), would have improved energy cost and speed of overground walking in healthy older women. Participants were randomly assigned to either the exercise group (n = 11, 79.6 +/- 3.7 yr, mean +/- SD) or the nonintervention control group (n = 11, 77.6 +/- 2.3 yr). During the first 6 wk, the exercise group performed walking interval training on the treadmill with 40% BWU at the maximal walking speed corresponding to an intensity close to heart rate at ventilatory threshold (T(vent) walking speed). Each session consisted of four sets of 5 min of walking (three 1-min periods at T(vent) walking speed, with two 1-min intervals at comfortable walking speed in between each period at T(vent) walking speed) with 1-min interval between each set. Speed was increased session by session until the end of week 6. BWU was then progressively reduced to 10% during the last 6 wk of intervention. After 12 wk, the walking energy cost per unit of distance at all self-selected overground walking speeds (slow, comfortable, and fast) was significantly reduced in the range from 18 to 21%. The exercise group showed a 13% increase in maximal walking speed and a 67% increase in mechanical power output at T(vent) after the training program. The novel "overspeed" training approach has been demonstrated to be effective in improving energy cost and speed of overground walking in healthy older women.  相似文献   

15.
As humans increase walking speed, there are concurrent transitions in the frequency ratio between arm and leg movements from 2:1 to 1:1 and in the phase relationship between the movements of the two arms from in-phase to out-of-phase. Superharmonic resonance of a pendulum with monofrequency excitation had been proposed as a potential model for this phenomenon. In this study, an alternative model of paired pendulums with multiple-frequency excitations is explored. It was predicted that the occurrence of the concurrent transitions was a function of (1) changes in the magnitude ratio of shoulder accelerations at step and stride frequencies that accompany changes in walking speed and (2) proximity of these frequencies to the natural resonance frequencies of the arms modeled as a pair of passive pendulums. Model predictions were compared with data collected from 14 healthy young subjects who were instructed to walk on a treadmill. Walking speeds were manipulated between 0.18 and 1.52 m/s in steps of 0.22 m/s. Kinematic data for the arms and shoulders were collected using a 3D motion analysis system, and simulations were conducted in which the movements of a double-pendulum system excited by the accelerations at the suspension point were analyzed to determine the extent to which the arms acted as passive pendulums. It was confirmed that the acceleration waveforms at the shoulder are composed primarily of stride and step frequency components. Between the shoulders, the stride frequency components were out-of-phase, while the step frequency components were in-phase. The amplitude ratio of the acceleration waveform components at the step and stride frequencies changed as a function of walking speed and were associated with the occurrence of the transitions. Simulation results using these summed components as excitatory inputs to the double-pendulum system were in agreement with actual transitions in 80% of the cases. The potential role of state-dependent active muscle contraction at shoulder joints on the occurrence of the transitions was discussed. Due to the tendency of arm movements to stay in the vicinity of their primary resonance frequency, these active muscle forces were hypothesized to function as escapements that created limit cycle oscillations at the shoulders resonant frequency.  相似文献   

16.
Instrumented treadmills offer significant advantages for analysis of human locomotion, including recording consecutive steady-state gait cycles, precisely controlling walking speed, and avoiding force plate targeting. However, some studies of hemiparetic walking on a treadmill have suggested that the moving treadmill belt may fundamentally alter propulsion mechanics. Any differences in propulsion mechanics during treadmill walking would be problematic since recent studies assessing propulsion have provided fundamental insight into hemiparetic walking. The purpose of this study was to test the hypothesis that there would be no difference in the generation of anterior/posterior (A/P) propulsion by performing a carefully controlled comparison of the A/P ground reaction forces (GRFs) and impulses in healthy adults during treadmill and overground walking. Gait data were collected from eight subjects walking overground and on a treadmill with speed and cadence controlled. Peak negative and positive horizontal GRFs in early and late stance, respectively, were reduced by less than 5% of body weight (p<0.05) during treadmill walking compared to overground walking. The magnitude of the braking impulse was similarly lower (p<0.05) during treadmill walking, but no significant difference was found between propulsion impulses. While there were some subtle differences in A/P GRFs between overground and treadmill walking, these results suggest there is no fundamental difference in propulsion mechanics. We conclude that treadmill walking can be used to investigate propulsion generation in healthy and by implication clinical populations.  相似文献   

17.
Treadmill vs. floor walking: kinematics, electromyogram, and heart rate   总被引:2,自引:0,他引:2  
To identify the degree of difference between treadmill and floor walking, kinematic, electromyographic (EMG), and heart rate measurements were recorded in seven normal female subjects during walking at three speeds on the treadmill and on the floor. During treadmill walking, subjects tended to use a faster cadence and shorter stride length than during floor walking. In addition the displacements of the head, hip, and ankle in the sagittal plane showed statistically significant differences between floor and treadmill walking. Average EMG activity was usually greater on the treadmill than on the floor; however, this difference was only significant for the quadriceps. Heart rate was significantly higher during fast treadmill walking than floor walking. In general, treadmill walking was not found to differ markedly from floor walking in kinematic measurements or EMG patterns.  相似文献   

18.
Human walking requires active neuromuscular control to ensure stability in the lateral direction, which inflicts a certain metabolic load. The magnitude of this metabolic load has previously been investigated by means of passive external lateral stabilization via spring-like cords. In the present study, we applied this method to test two hypotheses: (1) the effect of external stabilization on energy cost depends on the stiffness of the stabilizing springs, and (2) the energy cost for balance control, and consequently the effect of external stabilization on energy cost, depends on walking speed. Fourteen healthy young adults walked on a motor driven treadmill without stabilization and with stabilization with four different spring stiffnesses (between 760 and 1820 N m−1) at three walking speeds (70%, 100%, and 130% of preferred speed). Energy cost was calculated from breath-by-breath oxygen consumption. Gait parameters (mean and variability of step width and stride length, and variability of trunk accelerations) were calculated from kinematic data. On average external stabilization led to a decrease in energy cost of 6% (p<0.005) as well as a decrease in step width (24%; p<0.001), step width variability (41%; p<0.001) and variability of medio-lateral trunk acceleration (12.5%; p<0.005). Increasing stabilizer stiffness increased the effects on both energy cost and medio-lateral gait parameters up to a stiffness of 1260 N m−1. Contrary to expectations, the effect of stabilization was independent of walking speed (p=0.111). These results show that active lateral stabilization during walking involves an energetic cost, which is independent of walking speed.  相似文献   

19.
Investigations of trunk muscle activation during gait are rare in the literature. As yet, the small body of literature on trunk muscle activation during gait does not include any systematic study on the influence of walking speed. Therefore, the aim of this study was to analyze trunk muscle activation patterns at different walking speeds. Fifteen healthy men were investigated during walking on a treadmill at speeds of 2, 3, 4, 5 and 6 km/h. Five trunk muscles were investigated using surface EMG (SEMG). Data were time normalized according to stride time and grand averaged SEMG curves were calculated. From these data stride characteristics were extracted: mean SEMG amplitude, minimum SEMG level and the variation coefficient (VC) over the stride period. With increasing walking speed, muscle activation patterns remained similar in terms of phase dependent activation during stride, but mean amplitudes increased generally. Phasic activation, indicated by VC, increased also, but remained almost unchanged for the back muscles (lumbar multifidus and erector spinae) between 4 and 6 km/h. During stride, minimum amplitude reached a minimum at 4 km/h for the back muscles, but for internal oblique muscle it decreased continuously from 2 to 6 km/h. Cumulative sidewise activation of all investigated muscles reached maximum amplitudes during the contralateral heel strike and propulsion phases. The observed changes argue for a speed dependent modulation of activation of trunk muscles within the investigated range of walking speeds prior to strictly maintaining certain activation characteristics for all walking speeds.  相似文献   

20.
This study aimed to investigate effects of walking direction and speed on gait complexity, symmetry and variability as indicators of neural control mechanisms, and if a period of backward walking has acute effects on forward walking. Twenty-two young adults attended 2 visits. In each visit participants walked forwards at preferred walking speed (PWS) for 3-minutes (pre) followed by 5-minutes walking each at 80%, 100% and 120% of PWS of either forward or backward walking then a further 3-minutes walking forward at PWS (post). The order of walking speed in each visit was randomised and walking direction of each visit was randomised. An inertial measurement unit was placed over L5 vertebra to record tri-axial accelerations. From the trunk accelerations multiscale entropy, harmonic ratio and stride time variability were calculated to measure complexity, symmetry and variability for each walk. Complexity increased with increasing walking speed for all axes in forward and backward walking, and backward walking was less complex than forward walking. Stride time variability was also greater in backward than forward walking. Anterio-posterior and medio-lateral complexity increased following forward and backward walking but there was no difference between forward and backward walking post effects. No effects were found for harmonic ratio. These results suggest during backward walking trunk motion is rigidly controlled but central pattern generators responsible for temporal gait patterns are less refined for backward walking. However, in both directions complexity increased as speed increased suggesting additional constraint of trunk motion, normally characterised by reduced complexity, is not applied as speed increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号