首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The primary objective of this paper is to study the use of medical image-based finite element (FE) modelling in subject-specific midsole design and optimisation for heel pressure reduction using a midsole plug under the calcaneus area (UCA). Plugs with different relative dimensions to the size of the calcaneus of the subject have been incorporated in the heel region of the midsole. The FE foot model was validated by comparing the numerically predicted plantar pressure with biomechanical tests conducted on the same subject. For each UCA midsole plug design, the effect of material properties and plug thicknesses on the plantar pressure distribution and peak pressure level during the heel strike phase of normal walking was systematically studied. The results showed that the UCA midsole insert could effectively modify the pressure distribution, and its effect is directly associated with the ratio of the plug dimension to the size of the calcaneus bone of the subject. A medium hardness plug with a size of 95% of the calcaneus has achieved the best performance for relieving the peak pressure in comparison with the pressure level for a solid midsole without a plug, whereas a smaller plug with a size of 65% of the calcaneus insert with a very soft material showed minimum beneficial effect for the pressure relief.  相似文献   

2.
Confinement of the heel due to the counter of the shoe is believed to influence heel pad biomechanics. Using a two-dimensional finite element model of the heel pad and shoe during a simulation of static standing, the aim of this study was to quantify the potential effect of confinement on internal heel pad stress. Non-weightbearing MRI and weightbearing MRI with plantar pressure and ground reaction force data were recorded for a single subject. The non-weightbearing MRI was used to create two FE models of the heel pad, using either homogeneous or composite material properties. The composite model included a distinction in material properties between fat pad and skin. Vertical and medial-lateral forces, as measured on the subject's heel, were applied to the models and vertical compressive strains for both models were comparable with those observed by weightbearing MRI. However, only for the composite model was the predicted plantar pressure distribution comparable with measured data. The composite model was therefore used in further analyses. In this composite model, the internal stresses were located mainly in the skin and were predominantly tensile in nature, whereas the stress state in the fat pad approached hydrostatic conditions. A representation of a running shoe, including an insole, midsole and heel counter was then added to the composite heel pad to form the shod model. In order to investigate the counter effect, the load was applied to the shod model with and without the heel counter. The effect of the counter on peak stress was to elevate compression (0-50%), reduce tension (22-34%) and reduce shear (22-28%) in the skin. In addition, the counter reduced both compressive (20-40%) and shear (58-80%) stress in the fat pad and tension in the fat pad remained negligible. Taken together the results indicate that a well-fitted counter works in sympathy with the internal structure of the heel pad and could be an effective reducer of heel pad stress. However, further research needs to be undertaken to assess the long-term effects on the soft-tissues, practicalities of achieving good fit and behavior under dynamic events.  相似文献   

3.
A major goal of therapeutic footwear in patients with pain or those at risk for skin injury is to relieve focal loading under prominent metatarsal heads. One frequent approach is to place plugs of compliant material into the midsole of the shoe. This study investigated 36 plug designs, a combination of three materials, six geometries, and two placements using a two-dimensional (2D) finite element model. Realistic loading conditions were obtained from plantar pressures (PP) recorded during walking in five subjects who wore control midsoles manufactured using Microcell Puff. Measured peak pressures underneath the second metatarsal head were similar to the results of the control model. PP obtained from simulations with the plugs built into a firm midsole were compared to the simulation results of the control midsole. Large plugs (e.g. 40 mm width), made out of Microcell Puff Lite or Plastazote Medium, placed at peak pressure sites, resulted in highest reductions in peak pressures (18-28%). Smaller plugs benefited from tapering when placed at high pressure areas. Case studies were completed on a healthy male subject and a diabetic female patient to address the efficacy of a plug design favored by our simulations (pressure based placement, 40 x 20 mm, Plastazote Medium). Successful reductions of second metatarsal head pressures were observed with a mediolateral load redistribution that was not represented by our model. 2D computer simulations allowed systematic investigation of plug properties without the need for high volume experimentation on human subjects and established basic guidelines for plug selection. In particular, plugs that are placed based on plantar pressure measurements were proven to be more effective when compared to those positioned according to the projection of the bony landmark on the foot-shoe plantar contact area.  相似文献   

4.
Heel-shoe interactions and the durability of EVA foam running-shoe midsoles   总被引:2,自引:0,他引:2  
A finite element analysis (FEA) was made of the stress distribution in the heelpad and a running shoe midsole, using heelpad properties deduced from published force-deflection data, and measured foam properties. The heelpad has a lower initial shear modulus than the foam (100 vs. 1050 kPa), but a higher bulk modulus. The heelpad is more non-linear, with a higher Ogden strain energy function exponent than the foam (30 vs. 4). Measurements of plantar pressure distribution in running shoes confirmed the FEA. The peak plantar pressure increased on average by 100% after 500 km run. Scanning electron microscopy shows that structural damage (wrinkling of faces and some holes) occurred in the foam after 750 km run. Fatigue of the foam reduces heelstrike cushioning, and is a possible cause of running injuries.  相似文献   

5.
This study investigated the plantar pressure distribution during gait on wooden surface with different slipperiness in the presence of contaminants. Fifteen Chinese males performed 10 walking trials on a 5-m wooden walkway wearing cloth shoe in four contaminated conditions (dry, sand, water, oil). A pressure insole system was employed to record the plantar pressure data at 50Hz. Peak pressure and time-normalized pressure-time integral were evaluated in nine regions. In comparing walking on slippery to non-slippery surfaces, results showed a 30% increase of peak pressure beneath the hallux (from 195.6 to 254.1kPa), with a dramatic 79% increase in the pressure time integral beneath the hallux (from 63.8 to 114.3kPa) and a 34% increase beneath the lateral toes (from 35.1 to 47.2kPa). In addition, the peak pressure beneath the medial and lateral heel showed significant 20-24% reductions, respectively (from 233.6-253.5 to 204.0-219.0kPa). These findings suggested that greater toe grip and gentler heel strike are the strategies to adapt to slippery surface. Such strategies plantarflexed the ankle and the metatarsals to achieve a flat foot contact with the ground, especially at heel strike, in order to shift the ground reaction force to a more vertical direction. As the vertical ground reaction force component increased, the available ground friction increased and the floor became less slippery. Therefore, human could walk without slip on slippery surfaces with greater toe grip and gentler heel strike as adaptation strategies.  相似文献   

6.
Plantar heel pain is a common condition that is often exacerbated by the repetitive stresses of walking. Treatment usually includes an in-shoe intervention designed to reduce plantar pressure under the heel by using insoles and a variety of off-the-shelf products. The design process for these products is often intuitive in nature and does not always rely on scientifically derived guidelines. Finite element analysis provides an efficient computational framework to investigate the performance of a large number of designs for optimal plantar pressure reduction. In this study, we used two-dimensional plane strain finite element modeling to investigate 27 insole designs. Combinations of three insole conformity levels (flat, half conforming, full conforming), three insole thickness values (6.3, 9.5 and 12.7 mm) and three insole materials (Poron Cushioning, Microcel Puff Lite and Microcel Puff) were simulated during the early support phase of gait. Plantar pressures predicted by the model were validated by experimental trials conducted in the same subject whose heel was modeled by loading the bare foot on a rigid surface and on foam mats. Conformity of the insole was the most important design variable, whereas peak pressures were relatively insensitive to insole material selection. The model predicted a 24% relief in pressure compared to barefoot conditions when using flat insoles; the reduction increased up to 44% for full conforming insoles.  相似文献   

7.
Abnormal and excessive plantar pressure and shear are potential risk factors for high-heeled related foot problems, such as forefoot pain, hallux valgus deformity and calluses. Plantar shear stresses could be of particular importance with an inclined supporting surface of high-heeled shoe. This study aimed to investigate the contact pressures and shear stresses simultaneously between plantar foot and high-heeled shoe over five major weightbearing regions: hallux, heel, first, second and fourth metatarsal heads, using in-shoe triaxial force transducers. During both standing and walking, peak pressure and shear stress shifted from the lateral to the medial forefoot as the heel height increased from 30 to 70mm. Heel height elevation had a greater influence on peak shear than peak pressure. The increase in peak shear was up to 119% during walking, which was about five times that of peak pressure. With increasing heel height, peak posterolateral shear over the hallux at midstance increased, whereas peak pressure at push-off decreased. The increased posterolateral shear could be a contributing factor to hallux deformity. It was found that there were differences in the location and time of occurrence between in-shoe peak pressure and peak shear. In addition, there were significant differences in time of occurrence for the double-peak loading pattern between the resultant horizontal ground reaction force peaks and in-shoe localized peak shears. The abnormal and drastic increase of in-shoe shear stresses might be a critical risk factor for shoe-related foot disorders. In-shoe triaxial stresses should therefore be considered to help in designing proper footwear.  相似文献   

8.
Orthopedic insole was important for partial foot amputation (PFA) to achieve foot balance and avoid foot deformity. The inapposite insole orthosis was thought to be one of the risk factors of reamputation for foot valgus patient, but biomechanical effects of internal tissues on valgus foot had not been clearly addressed. In this study, plantar pressure on heel and metatarsal regions of PFA was measured using F-Scan. The three-dimensional finite element (FE) model of partial foot evaluated different medial wedge angles (MWAs) (0.0°–10.0°) of orthopedic insole on valgus foot. The effect of orthopedic insole on the internal bone stress, the medial ligament tension of ankle, plantar fascia tension, and plantar pressure was investigated. Plantar pressure on medial heel region was about 2.5 times higher than that of lateral region based on the F-Scan measurements. FE-predicted results showed that the tension of medial ankle ligaments was the lowest, and the plantar pressure was redistributed around the heel, the first metatarsal, and the lateral longitudinal arch regions when MWA of orthopedic insole ranged from 7.5° to 8.0°. The plantar fascias maintained about 3.5% of the total load bearing on foot. However, the internal stresses from foot bones increased. The simulation in this study would provide the suggestion of guiding optimal design of orthopedic insole and therapeutic planning to pedorthist.  相似文献   

9.
A technique is introduced for simultaneous measurements of the heel pad tissue deformation and the heel–ground contact stresses developing during the stance phase of gait. Subjects walked upon a gait platform integrating the contact pressure display optical method for plantar pressure measurements and a digital radiographic fluoroscopy system for skeletal and soft tissue motion recording. Clear images of the posterior-plantar aspect of the calcaneus and enveloping soft tissues were obtained simultaneously with the pressure distribution under the heel region throughout the stance phase of gait. The heel pad was shown to undergo a rapid compression during initial contact and heel strike, reaching a strain of 0.39±0.05 in about 150 ms. The stress–strain relation of the heel pad was shown to be highly non-linear, with a compression modulus of 105±11 kPa initially and 306±16 kPa at 30% strain. The energy dissipation during heel strike was evaluated to be 17.8±0.8%. The present technique is useful for biomechanical as well as clinical evaluation of the stress–strain and energy absorption characteristics of the heel pad in vivo, during natural gait.  相似文献   

10.
Based on the hypothesis that diabetic foot lesions have a mechanical etiology, extensive efforts have sought to establish a relationship between ulcer occurrence and plantar pressure distribution. However, these factors are still not fully understood. The purpose of this study was to simultaneously record shear and pressure distributions in the heel and forefoot and to answer whether: (i) peak pressure and peak shear for anterior-posterior (AP) and medio-lateral (ML) occur at different locations, and if (ii) peak pressure is always centrally located between sites of maximum AP and ML shear stresses. A custom built system was used to collect shear and pressure data simultaneously on 11 subjects using the 2-step method. The peak pressure was found to be 362 kPa ± 106 in the heel and 527 kPa ± 123 in the forefoot. In addition, the average peak shear values were higher in the forefoot than in the heel. The greatest shear on the plantar surface of the forefoot occurred in the anterior direction (mean and std. dev.: 37.7 ± 7.6 kPa), whereas for the heel, peak shear the foot was in the posterior direction (21.2 ± 5 kPa). The results of this study suggest that the interactions of the shear forces caused greater "spreading" in the forefoot and greater tissue "dragging" in the heel. The results also showed that peak shear stresses do not occur at the same site or time as peak pressure. This may be an important factor in locating where skin breakdown occurs in patients at high-risk for ulceration.  相似文献   

11.
Soft-tissue deficits over the plantar forefoot, plantar heel, tendo calcaneus, and lower leg are often impossible to cover with a simple skin graft. The previously developed medial plantar fasciocutaneous island flap has been adapted to cover soft-tissue defects over these areas. This fasciocutaneous flap based on the medial plantar neurovascular bundle is capable of providing sensate and structurally similar local tissue. Application of this fasciocutaneous island flap is demonstrated in 12 clinical cases. Successful soft-tissue cover was achieved on the plantar calcaneus (four patients), tendo calcaneus (four patients), lower leg (two patients), and plantar forefoot (two patients). Follow-up ranged from 6 months to 5 years. All flaps were viable at follow-up. Protective sensation was present in 11 of 12 flaps evaluated at 6 months. In addition, all 11 patients were able to ambulate in normal footwear. The medial plantar island flap seems to be more durable than a skin graft, and the donor site on the non-weight-bearing instep is well tolerated. This study demonstrates that the medial plantar fasciocutaneous island flap should be considered as another valuable tool in reconstructive efforts directed at the plantar forefoot, plantar heel, posterior ankle, and lower leg.  相似文献   

12.
A numerical-experimental approach has been developed to characterize heel-pad deformation at the material level. Left and right heels of 20 diabetic subjects and 20 nondiabetic subjects matched for age, gender and body mass index were indented using force-controlled ultrasound. Initial tissue thickness and deformation were measured using M-mode ultrasound; indentation forces were recorded simultaneously. An inverse finite-element analysis of the indentation protocol using axisymmetric models adjusted to reflect individual heel thickness was used to extract nonlinear material properties describing the hyperelastic behavior of each heel. Student's t-tests revealed that heel pads of diabetic subjects were not significantly different in initial thickness nor were they stiffer than those from nondiabetic subjects. Another heel-pad model with anatomically realistic surface representations of the calcaneus and soft tissue was developed to estimate peak pressure prediction errors when average rather than individualized material properties were used. Root-mean-square errors of up to 7% were calculated, indicating the importance of subject-specific modeling of the nonlinear elastic behavior of the heel pad. Indentation systems combined with the presented numerical approach can provide this information for further analysis of patient-specific foot pathologies and therapeutic footwear designs.  相似文献   

13.
《Journal of biomechanics》2014,47(16):3799-3806
Soft tissue injuries, such as anterior cruciate ligament rupture, ankle sprain and foot skin problems, frequently occur during cutting maneuvers. These injuries are often regarded as associated with abnormal joint torque and interfacial friction caused by excessive external and in-shoe shear forces. This study simultaneously investigated the dynamic in-shoe localized plantar pressure and shear stress during lateral shuffling and 45° sidestep cutting maneuvers. Tri-axial force transducers were affixed at the first and second metatarsal heads, lateral forefoot, and heel regions in the midsole of a basketball shoe. Seventeen basketball players executed both cutting maneuvers with maximum efforts. Lateral shuffling cutting had a larger mediolateral braking force than 45° sidestep cutting. This large braking force was concentrated at the first metatarsal head, as indicated by its maximum medial shear stress (312.2±157.0 kPa). During propulsion phase, peak shear stress occurred at the second metatarsal head (271.3±124.3 kPa). Compared with lateral shuffling cutting, 45° sidestep cutting produced larger peak propulsion shear stress (463.0±272.6 kPa) but smaller peak braking shear stress (184.8±181.7 kPa), of which both were found at the first metatarsal head. During both cutting maneuvers, maximum medial and posterior shear stress occurred at the first metatarsal head, whereas maximum pressure occurred at the second metatarsal head. The first and second metatarsal heads sustained relatively high pressure and shear stress and were expected to be susceptible to plantar tissue discomfort or injury. Due to different stress distribution, distinct pressure and shear cushioning mechanisms in basketball footwear might be considered over different foot regions.  相似文献   

14.
This study represents a functional analysis of the human foot complex based on in-vivo gait measurements, finite element (FE) modeling and biological coupling theory, with the objective of achieving a comprehensive understanding of the impact attenuation and energy absorption functions of the human foot complex. A simplified heel pad FE model comprising reticular fiber structure and fat cells was constructed based on the foot pad Magnetic Resonance (MR) images. The model was then used to investigate the foot pad behaviors under impact during locomotion. Three-dimensional (3D) gait measurement and a 3D FE foot model comprising 29 bones, 85 ligaments and the plantar soft tissues were used to investigate the foot arch and plantar fascia deformations in mid-stance phase. The heel pad simulation results show that the pad model with fat cells (coupling model) has much stronger capacity in impact attenuation and energy storage than the model without fat cells (structure model). Furthermore, the FE simulation reproduced the deformations of the foot arch structure and the plantar fascia extension observed in the gait measurements, which reinforces the postulation that the foot arch structure also plays an important role in energy absorption during locomotion. Finally, the coupling mechanism of the human foot functions in impact attenuation and energy absorption was proposed.  相似文献   

15.
Diabetic subjects are at an increased risk of developing plantar ulcers. Knowledge of the physiologic compressive properties of the plantar soft tissue is critical to understanding the possible mechanisms of ulcer formation and improving treatment options. The purpose of this study was to determine the compressive mechanical properties of the plantar soft tissue in both diabetic and non-diabetic specimens from six relevant locations beneath the foot, namely the hallux (big toe), first, third, and fifth metatarsal heads, lateral midfoot, and calcaneus (heel). Cylindrical specimens (1.905 cm diameter) from these locations were excised and separated from the skin and bone from 4 diabetic and 4 non-diabetic age-matched, elderly, fresh-frozen cadaveric feet. Specimens were then subjected to biomechanically realistic strains of ~50% in compression using triangle wave tests conducted at five frequencies ranging from 1 to 10 Hz to determine tissue modulus, energy loss, and strain rate dependence. Diabetic vs. non-diabetic results across all specimens, locations, and testing frequencies demonstrated altered mechanical properties with significantly increased modulus (1146.7 vs. 593.0 kPa) but no change in energy loss (68.5 vs. 67.9%). All tissue demonstrated strain rate dependence and tissue beneath the calcaneus was found to have decreased modulus and energy loss compared to other areas. The results of this study could be used to generate material properties for all areas of the plantar soft tissue in diabetic or non-diabetic feet, with implications for foot computational modeling efforts and potentially for pressure alleviating footwear that could reduce plantar ulcer incidence.  相似文献   

16.
No technology is presently available to provide real-time information on internal deformations and stresses in plantar soft tissues of individuals during evaluation of the gait pattern. Because internal deformations and stresses in the plantar pad are critical factors in foot injuries such as diabetic foot ulceration, this severely limits evaluation of patients. To allow such real-time subject-specific analysis, we developed a hierarchal modeling system which integrates a two-dimensional gross structural model of the foot (high-order model) with local finite element (FE) models of the plantar tissue padding the calcaneus and medial metatarsal heads (low-order models). The high-order whole-foot model provides real-time analytical evaluations of the time-dependent plantar fascia tensile forces during the stance phase. These force evaluations are transferred, together with foot-shoe local reaction forces, also measured in real time (under the calcaneus, medial metatarsals and hallux), to the low-order FE models of the plantar pad, where they serve as boundary conditions for analyses of local deformations and stresses in the plantar pad. After careful verification of our custom-made FE solver and of our foot model system with respect to previous literature and against experimental results from a synthetic foot phantom, we conducted human studies in which plantar tissue loading was evaluated in real time during treadmill gait in healthy individuals (N = 4). We concluded that internal deformations and stresses in the plantar pad during gait cannot be predicted from merely measuring the foot-shoe force reactions. Internal loading of the plantar pad is constituted by a complex interaction between the anatomical structure and mechanical behavior of the foot skeleton and soft tissues, the body characteristics, the gait pattern and footwear. Real-time FE monitoring of internal deformations and stresses in the plantar pad is therefore required to identify elevated deformation/stress exposures toward utilizing it in gait laboratories to protect feet that are susceptible to injury.  相似文献   

17.
In this paper, we generated finite element (FE) models to predict the contact pressure between a foam mattress and the human body in a supine position. Twenty-year-old males were used for three-dimensional scanning to produce the FE human models, which was composed of skin and muscle tissue. A linear elastic isotropic material model was used for the skin, and the Mooney–Rivlin model was used for the muscle tissue because it can effectively represent the nonlinear behavior of muscle. The contact pressure between the human model and the mattress was predicted by numerical simulation. The human models were validated by comparing the body pressure distribution obtained from the same human subject when he was lying on two different mattress types. The experimental results showed that the slope of the lower part of the mattress caused a decrease in the contact pressure at the heels, and the effect of bone structure was most pronounced in the scapula. After inserting a simple structure to function as the scapula, the contact pressure predicted by the FE human models was consistent with the experimental body pressure distribution for all body parts. These results suggest that the models proposed in this paper will be useful to researchers and designers of products related to the prevention of pressure ulcers.  相似文献   

18.
The aim of the present study was to investigate the influence of reduced plantar sensation on pressure distribution patterns during gait of 40 healthy subjects (25.3+/-3.3 yr, 70.8+/-10.6 kg and 176.5+/-7.8 cm) with no history of sensory disorders. Plantar sensation in the subjects was reduced by using an ice immersion approach, and reduced sensitivity was tested with Semmes-Weinstein monofilaments. All subjects performed six trials of barefoot walking over a pressure distribution platform under normal as well as iced conditions. Plantar cutaneous sensation was significantly reduced after the cooling procedure (p<0.0001). Pressure distribution analysis showed substantially modified plantar pressure distribution patterns during the roll-over process (ROP) under iced conditions. Analysis of peak pressures revealed significant reductions under the toes and under the heel (p<0.001). The contact time and the relative impulse for the whole foot did not change significantly between the two conditions. For the different areas, a significant load shift from the heel and toes towards the central and lateral forefoot and the lateral midfoot was observed. The results indicate the strong influence of reduced afferent information of the sole of the foot on the ROP in walking.  相似文献   

19.
The majority of foot deformities are related to arch collapse or instability, especially the longitudinal arch. Although the relationship between the plantar fascia and arch height has been previously investigated, the stress distribution remains unclear. The aim of this study was to explore the role of the plantar ligaments in foot arch biomechanics. We constructed a geometrical detailed three-dimensional (3-D) finite element (FE) model of the human foot and ankle from computer tomography images. The model comprised the majority of joints in the foot as well as bone segments, major ligaments, and plantar soft tissue. Release of the plantar fascia and other ligaments was simulated to evaluate the corresponding biomechanical effects on load distribution of the bony and ligamentous structures. These intrinsic ligaments of the foot arch were sectioned to simulate different pathologic situations of injury to the plantar ligaments, and to explore bone segment displacement and stress distribution. The validity of the 3-D FE model was verified by comparing results with experimentally measured data via the displacement and von Mise stress of each bone segment. Plantar fascia release decreased arch height, but did not cause total collapse of the foot arch. The longitudinal foot arch was lost when all the four major plantar ligaments were sectioned simultaneously. Plantar fascia release was compromised by increased strain applied to the plantar ligaments and intensified stress in the midfoot and metatarsal bones. Load redistribution among the centralized metatarsal bones and focal stress relief at the calcaneal insertion were predicted. The 3-D FE model indicated that plantar fascia release may provide relief of focal stress and associated heel pain. However, these operative procedures may pose a risk to arch stability and clinically may produce dorsolateral midfoot pain. The initial strategy for treating plantar fasciitis should be non-operative.  相似文献   

20.
ObjectiveElevated dynamic plantar foot pressures significantly increase the risk of foot ulceration in diabetes mellitus. The aim was to determine which factors predict plantar pressures in a population of diabetic patients who are at high-risk of foot ulceration.MethodsPatients with diabetes, peripheral neuropathy and a history of ulceration were eligible for inclusion in this cross sectional study. Demographic data, foot structure and function, and disease-related factors were recorded and used as potential predictor variables in the analyses. Barefoot peak pressures during walking were calculated for the heel, midfoot, forefoot, lesser toes, and hallux regions. Potential predictors were investigated using multivariate linear regression analyses. 167 participants with mean age of 63 years contributed 329 feet to the analyses.ResultsThe regression models were able to predict between 6% (heel) and 41% (midfoot) of the variation in peak plantar pressures. The largest contributing factor in the heel model was glycosylated haemoglobin concentration, in the midfoot Charcot deformity, in the forefoot prominent metatarsal heads, in the lesser toes hammer toe deformity and in the hallux previous ulceration. Variables with local effects (e.g. foot deformity) were stronger predictors of plantar pressure than global features (e.g. body mass, age, gender, or diabetes duration).ConclusionThe presence of local deformity was the largest contributing factor to barefoot dynamic plantar pressure in high-risk diabetic patients and should therefore be adequately managed to reduce plantar pressure and ulcer risk. However, a significant amount of variance is unexplained by the models, which advocates the quantitative measurement of plantar pressures in the clinical risk assessment of the patient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号