首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The purpose of this study was to apply the Floating Axis analysis technique to the elbow joint, and to verify its ability to quantify clinically relevant radiohumeral translation in vitro using an electromagnetic tracking device. Of particular interest was the ability to quantify changes in anterior-posterior radial head translation, which is associated with the clinical condition of posterolateral rotatory instability of the elbow. Following the method proposed by Grood and Suntay to determine motions in the knee, an elbow coordinate system with axes representing the flexion-extension axis of the humerus, the long axis of the radius, and their mutual perpendicular, was developed. The algorithm was tested using a mechanical articulator that modeled the Floating Axis approach. Translation errors using this articulator were 0.1+/-0.1mm. The algorithm was applied to kinematic data collected from 12 cadaveric elbows that underwent a pivot shift test prior and subsequent to transection of the lateral collateral ligament. Anterior-posterior radiohumeral translation increased significantly in these elbows following the ligament sectioning (p<0.0001), with the average magnitude of posterior translation increasing from 0.9 to 19.8mm at 90 degrees of flexion. This approach will provide valuable information related to alterations in elbow motion pathways, especially for studies aimed at quantifying changes in joint stability.  相似文献   

2.
Joint surface interaction and ligament constraints determine the kinematic characteristics of the ankle and subtalar joints. Joint surface interaction is characterized by joint contact mechanics and by relative joint surface position potentially characterized by distance mapping. While ankle contact mechanics was investigated, limited information is available on joint distance mapping and its changes during motion. The purpose of this study was to use image-based distance mapping to quantify this interaction at the ankle and subtalar joints during tri-planar rotations of the ankle complex. Five cadaveric legs were scanned using Computed Tomography and the images were processed to produce 3D bone models of the tibia, fibula, talus and calcaneus. Each leg was tested on a special linkage through which the ankle complex was loaded in dorsiflexion/plantarflexion, inversion/eversion, and internal/external rotation and the resulting bone movements were recorded. Fiduciary bone markers data and 3D bone models were combined to generate color-coded distance maps for the ankle and subtalar joints. The results were processed focusing on the changes in surface-to-surface distance maps between the extremes of the range of motion and neutral. The results provided detailed insight into the three-dimensional highly coupled nature of these joints showing significant and unique changes in distance mapping from neutral to extremes of the range of motion. The non-invasive nature of the image-based distance mapping technique could result, after proper modifications, in an effective diagnostic and clinical evaluation technique for application such as ligament injuries and quantifying the effect of arthrodesis or total ankle replacement surgery.  相似文献   

3.
为了探讨肘关节骨折患者行骨折术后采用持续静态牵伸技术结合常规功能康复的应用效果,并揭示其对患者生活质量的影响,本研究选取我院手术治疗的84例肘关节骨折患者,收集时间为2015年1月至2016年12月,其中42例患者术后接受常规功能康复(常规组)、另外42例患者在常规功能康复基础上加用持续静态牵伸技术(研究组),观察两组患者术后3个月和6个月时的肘关节功能和生活质量的差异。研究显示,术后3个月和6个月,研究组的疼痛、功能、矢状面活动、肌肉力量、屈曲挛缩、旋前、旋后评分均显著高于常规组(p<0.05);术后6个月,研究组的FIynn肘关节功能评价(优78.57%,良16.67%,可4.76%)优于常规组(优57.14%,良30.95%,可11.90%),差异具有统计学意义(p<0.05);两组患者术前生活质量无差别。术后3个月,研究组患者躯体功能、肢体疼痛等生活质量得分高于常规组。本研究表明,肘关节骨折患者行骨折术后采用持续静态牵伸技术结合常规功能康复可显著改善患者术后的肘关节功能,值得临床推广应用。  相似文献   

4.
The biomechanics of the patellofemoral (PF) joint is complex in nature, and the aetiology of such manifestations of PF instability as patellofemoral pain syndrome (PFPS) is still unclear. At this point, the particular factors affecting PFPS have not yet been determined. This study has two objectives: (1) The first is to develop an alternative geometric method using a three-dimensional (3D) registration technique and linear mapping to investigate the PF joint contact stress using an indirect measure: the depth of virtual penetration (PD) of the patellar cartilage surface into the femoral cartilage surface. (2) The second is to develop 3D PF joint models using the finite element analysis (FEA) to quantify in vivo cartilage contact stress and to compare the peak contact stress location obtained from the FE models with the location of the maximum PD. Magnetic resonance images of healthy and PFPS subjects at knee flexion angles of 15°, 30° and 45° during isometric loading have been used to develop the geometric models. The results obtained from both approaches demonstrated that the subjects with PFPS show higher PD and contact stresses than the normal subjects. Maximum stress and PD increase with flexion angle, and occur on the lateral side in healthy and on the medial side in PFPS subjects. It has been concluded that the alternative geometric method is reliable in addition to being computationally efficient compared with FEA, and has the potential to assess the mechanics of PFPS with an accuracy similar to the FEA.  相似文献   

5.
To reach the level of elite, most baseball pitchers need to consistently produce high ball velocity but avoid high joint loads at the shoulder and elbow that may lead to injury. This study examined the relationship between fastball velocity and variations in throwing mechanics within 19 baseball pitchers who were analyzed via 3-D high-speed motion analysis. Inclusion in the study required each one to demonstrate a variation in velocity of at least 1.8 m/s (range 1.8-3.5 m/s) during 6 to 10 fastball pitch trials. Three mixed model analyses were performed to assess the independent effects of 7 kinetic, 11 temporal, and 12 kinematic parameters on pitched ball velocity. Results indicated that elbow flexion torque, shoulder proximal force, and elbow proximal force were the only three kinetic parameters significantly associated with increased ball velocity. Two temporal parameters (increased time to max shoulder horizontal adduction and decreased time to max shoulder internal rotation) and three kinematic parameters (decreased shoulder horizontal adduction at foot contact, decreased shoulder abduction during acceleration, and increased trunk tilt forward at release) were significantly related to increased ball velocity. These results point to variations in an individual's throwing mechanics that relate to pitched ball velocity, and also suggest that pitchers should focus on consistent mechanics to produce consistently high fastball velocities. In addition, pitchers should strengthen shoulder and elbow musculature that resist distraction as well as improve trunk strength and flexibility to maximize pitching velocity and help prevent injury.  相似文献   

6.
Epidemiological studies indicate that occupational activities that require extended deep knee flexion or kneeling are associated with a higher prevalence of knee osteoarthritis. In many sport activities, such as a catcher in a baseball or a softball game, athletes have to make repetitive deep squatting motions, which have been associated with the development of osteochondritis dissecans. Excessive deep knee flexion postures may cause excessive loading in the knee joint. In deep knee flexion postures, the posterior aspect of the shank will contact the posterior thigh, resulting in a compressive force within the soft tissues. The current study was aimed at analyzing the effects of the posterior thigh/shank contact on the joint loading during deep knee flexion in a natural knee. An existing, whole body model with detailed anatomical components of the knee (AnyBody) has been adopted and modified for this study. The effects of the posterior thigh/shank contact were evaluated by comparing the results of the inverse dynamic analysis for two scenarios: with and without the posterior thigh/shank contact force. Our results showed that, in a deep squatting posture (knee flexion 120+ degrees), the posterior thigh/shank contact helps reduce the patellofemoral (PF) and tibiofemoral (TF) normal contact forces by 42% and 57%, respectively.  相似文献   

7.
The purpose of this study was to determine in vivo moment arm lengths (MAs) of three elbow flexors at rest and during low- and relatively high-intensity contractions, and to examine the contraction intensity dependence of MAs at different joint positions. At 50°, 80° and 110° of elbow flexion, MAs of the biceps brachii, brachialis and brachioradialis were measured in 10 young men using sagittal images of the right arm obtained by magnetic resonance imaging, at rest and during 20% and 60% of isometric maximal voluntary elbow flexion. In most conditions, MAs increased with isometric contractions, which is presumably due to the contraction-induced thickening of the muscles. This phenomenon was especially evident in the flexed elbow positions. The influence of the contraction intensities on the increases in MAs varied across the muscles. These results suggest that in vivo measurements of each elbow flexor MA during contractions are essential to properly examine the effects on the interrelationships between elbow flexion torque and individual muscle forces.  相似文献   

8.

Background

Transection of the canine cranial cruciate ligament (CCL) is a well-established osteoarthritis (OA) model. The effect of CCL loss on contact pressure and joint alignment has not been quantified for stifle loading in standing. The purposes of the study were to measure femorotibial contact areas and stresses and joint alignment following transection of the CCL in an ex vivo model. We hypothesized that transection of the CCL would lead to abnormal kinematics, as well as alterations in contact mechanics of the femorotibial joint.

Methodology/Principal Findings

Eight canine hindlimbs were tested in a servo-hydraulic materials testing machine using a custom made femoral jig. Contact area and pressure measurements, and femorotibial rotations and translations were measured in the normal and the CCL–deficient stifle in both standing and deep flexion angles.We found that at standing angle, transection of the CCL caused cranial translation and internal rotation of the tibia with a concurrent caudal shift of the contact area, an increase in peak pressure and a decrease in contact area. These changes were not noted in deep flexion. At standing, loss of CCL caused a redistribution of the joint pressure, with the caudal region of the compartment being overloaded and the rest of the joint being underloaded.

Conclusion

In the Pond-Nuki model alterations in joint alignment are correlated with shifting of the contact points to infrequently loaded areas of the tibial plateau. The results of this study suggest that this cadaveric Pond-Nuki model simulates the biomechanical changes previously reported in the in-vivo Pond-Nuki model.  相似文献   

9.
Usual human motion capture systems are designed to work in controlled laboratory conditions. For occupational health, instruments that can measure during normal daily life are essential, as the evaluation of the workers' movements is a key factor to reduce employee injury- and illness-related costs. In this paper, we present a method for joint angle measurement, combining inertial sensors (accelerometers and gyroscopes) and magnetic sensors. This method estimates wrist flexion, wrist lateral deviation, elbow flexion, elbow pronation, shoulder flexion, shoulder abduction and shoulder internal rotation. The algorithms avoid numerical integration of the signals, which allows for long-time estimations without angle estimation drift. The system has been tested both under laboratory and field conditions. Controlled laboratory tests show mean estimation errors between 0.06° and of 1.05°, and standard deviation between 2.18° and 9.20°. Field tests seem to confirm these results when no ferromagnetic materials are close to the measurement system.  相似文献   

10.
Shoulder muscle function has been documented based on muscle moment arms, lines of action and muscle contributions to contact force at the glenohumeral joint. At present, however, the contributions of individual muscles to shoulder joint motion have not been investigated, and the effects of shoulder and elbow joint position on shoulder muscle function are not well understood. The aims of this study were to compute the contributions of individual muscles to motion of the glenohumeral joint during abduction, and to examine the effect of elbow flexion on shoulder muscle function. A three-dimensional musculoskeletal model of the upper limb was used to determine the contributions of 18 major muscles and muscle sub-regions of the shoulder to glenohumeral joint motion during abduction. Muscle function was found to depend strongly on both shoulder and elbow joint positions. When the elbow was extended, the middle and anterior deltoid and supraspinatus were the greatest contributors to angular acceleration of the shoulder in abduction. In contrast, when the elbow was flexed at 90°, the anterior deltoid and subscapularis were the greatest contributors to joint angular acceleration in abduction. This dependence of shoulder muscle function on elbow joint position is explained by the existence of dynamic coupling in multi-joint musculoskeletal systems. The extent to which dynamic coupling affects shoulder muscle function, and therefore movement control, is determined by the structure of the inverse mass matrix, which depends on the configuration of the joints. The data provided may assist in the diagnosis of abnormal shoulder function, for example, due to muscle paralysis or in the case of full-thickness rotator cuff tears.  相似文献   

11.
Propulsion in swimming is achieved by complex sculling movements with elbow quasi-fixed on the antero-posterior axis to transmit forces from the hand and the forearm to the body. The purpose of this study was to investigate how elbow muscle coactivation was influenced by the front crawl stroke phases. Ten international level male swimmers performed a 200-m front crawl race-pace bout. Sagittal views were digitized frame by frame to determine the stroke phases (aquatic elbow flexion and extension, aerial elbow flexion and extension). Surface electromyograms (EMG) of the right biceps brachii and triceps brachii were recorded and processed using the integrated EMG to calculate a coactivation index (CI) for each phase. A significant effect of the phases on the CI was revealed with highest levels of coactivation during the aquatic elbow flexion and the aerial elbow extension. Swimmers stabilize the elbow joint to overcome drag during the aquatic phase, and act as a brake at the end of the recovery to replace the arm for the next stroke. The CI can provide insight into the magnitude of mechanical constraints supported by a given joint, in particular during a complex movement.  相似文献   

12.
Influence of patella alta on knee extensor mechanics   总被引:2,自引:0,他引:2  
The purpose of this study was to compare the knee extensor mechanics in persons with and without patella alta. Thirteen subjects with patella alta and 14 subjects with normal patellar position participated in the study. Sagittal and axial MR images of the knee were acquired at 0°, 20°, 40°, and 60° of knee flexion. Measurements of actual moment arm, patellar ligament/quadriceps tendon force ratio, quadriceps effective moment arm, and joint reaction force/quadriceps force ratio were obtained. There were no differences between groups in terms of actual moment arm. However, subjects with patella alta had significantly larger patellar ligament/quadriceps tendon force ratios (1.04±0.02 vs. 0.92±0.02) and quadriceps effective moment arms (4.40±0.09 vs. 4.00±0.09 cm) when averaged across the range of knee flexion angles tested. There was no difference in the joint reaction force/quadriceps force ratio between groups. The observed differences in knee extensor mechanics suggest that individuals with patella alta have a more efficient knee extensor mechanism and would be expected to generate similar joint reaction forces per unit quadriceps force compared to subjects with normal patellar position. Therefore, persons with patella alta may experience less patellofemoral joint reaction force to overcome the same knee flexion moment in the range of 0°–60° of knee flexion.  相似文献   

13.
It is common practice to study jump landing mechanics by having subjects step off a box set at a certain height instead of landing from a jump. This practice assumes that the landing mechanics are similar between stepping off a box and a countermovement jump as long as the heights can be matched. The mechanics of the two methods had never been compared when landing from identical heights. Thus, the purpose of this study was to compare the mechanics of landing from a countermovement jump to landing from a step-off. Participants performed three maximal countermovement jumps. The mechanics of one countermovement jump was compared with a center of mass fall height matched step-off landing. The step-off landing showed a more rapid time to peak ground reaction force (GRF) in both genders and greater GRF peak and loading rate in males only. No difference was observed between joint angles at initial contact; however, the countermovement jump showed significantly greater joint flexion angles at peak GRF for both genders. EMG showed greater muscle activity during the countermovement jump condition in all subjects. It was concluded that countermovement jump landings are different from step-off landings; thus, results from analyses involving step-off landings should be taken with caution if the aim is to relate them to landing from a jump.  相似文献   

14.
Computational measurement of joint contact distributions offers the benefit of non-invasive measurements of joint contact without the use of interpositional sensors or casting materials. This paper describes a technique for indirectly measuring joint contact based on overlapping of articular cartilage computer models derived from CT images and positioned using in vitro motion capture data. The accuracy of this technique when using the physiological nonuniform cartilage thickness distribution, or simplified uniform cartilage thickness distributions, is quantified through comparison with direct measurements of contact area made using a casting technique. The efficacy of using indirect contact measurement techniques for measuring the changes in contact area resulting from hemiarthroplasty at the elbow is also quantified. Using the physiological nonuniform cartilage thickness distribution reliably measured contact area (ICC=0.727), but not better than the assumed bone specific uniform cartilage thicknesses (ICC=0.673). When a contact pattern agreement score (sagree) was used to assess the accuracy of cartilage contact measurements made using physiological nonuniform or simplified uniform cartilage thickness distributions in terms of size, shape and location, their accuracies were not significantly different (p>0.05). The results of this study demonstrate that cartilage contact can be measured indirectly based on the overlapping of cartilage contact models. However, the results also suggest that in some situations, inter-bone distance measurement and an assumed cartilage thickness may suffice for predicting joint contact patterns.  相似文献   

15.
Three-dimensional mathematical model analysis of the patellofemoral joint   总被引:1,自引:0,他引:1  
This paper is concerned with a mathematical model analysis of the patellofemoral joint in the human knee, taking into account the articular surface geometry and mechanical properties of the ligament. It was made by the application of a computer-aided design theory (previously studied) and it was possible to express the articular surface geometries in a mathematical formulation and hence elucidate the joint movement mechanics. This method was then applied to a three-dimensional geometrical model of the patellofemoral joint. For the modelling of tendofemoral contact at large angles of knee flexion, the geodestic line theory was adopted. Applying the Newton-Raphson method and the Runge-Kutta Gil method to the model, variables such as patellar attitudes, patellofemoral contact force and tensile force of the patellar ligament for various knee flexion angles were computed. Applying the Hertzian elastic theory, contact stress was also computed. These results showed good agreement with the previously reported experimental results. As an application for the model, some parameter analyses were performed in terms of the contact stress variations and compared with those of the normal knee. The simulation results indicated that both the Q-angle increase and decrease increased contact stress, the patella alta showed undulating variations of stress while the patella infera showed little change of stress, and the tibial tuberositas elevation showed 20-30% reduction of stress.  相似文献   

16.
To reduce anatomically unrealistic limb postures in a virtual musculoskeletal model of a horse's forelimb, accurate knowledge on forelimb joint constraints is essential. The aim of this cadaver study is to report all orientation and position changes of the finite helical axes (FHA) as a function of joint angle for different equine forelimb joints. Five horse cadaver forelimbs with standardized cuts at the midlevel of each segment were used. Bone pins with reflective marker triads were drilled into the forelimb bones. Unless joint angles were anatomically coupled, each joint was manually moved independently in all three rotational degrees of freedom (flexion–extension, abduction–adduction, internal–external rotation). The 3D coordinates of the marker triads were recorded using a six infra-red camera system. The FHA and its orientational and positional properties were calculated and expressed against joint angle over the entire range of motion using a finite helical axis method. When coupled, joint angles and FHA were expressed in function of flexion–extension angle. Flexion–extension movement was substantial in all forelimb joints, the shoulder allowed additional considerable motion in all three rotational degrees of freedoms. The position of the FHA was constant in the fetlock and elbow and a constant orientation of the FHA was found in the shoulder. Orientation and position changes of the FHA over the entire range of motion were observed in the carpus and the interphalangeal joints. We report FHA position and orientation changes as a function of flexion–extension angle to allow for inclusion in a musculoskeletal model of a horse to minimize calculation errors caused by incorrect location of the FHA.  相似文献   

17.
Robotics allows up to 40× visual magnification and 10× magnification of the surgeon's movements, and eliminates physiologic tremors. These properties should allow the development of mini-invasive limb surgery, especially of the brachial plexus. The purpose of this work was to test the feasibility of the restoration of elbow flexion according to the technique of Oberlin using a da Vinci robot. The authors' series included four patients (average age, 31 years) presenting with elbow flexion paralysis. They were operated on 8 months after injury using a da Vinci S robot. In three patients, the open technique (technique 1) was used, and the mini-invasive approach (technique 2) was used for the last one. Strength of elbow flexion was measured. After 1-year follow-up, all of the patients had recovered elbow flexion. No sensory or motor deficit was found in the ulnar nerve territory. There was no difficulty with technique 1; technique 2, however, required a conversion to technique 1 because of difficulty visualizing the operative field. The results of the authors' series show the feasibility of the robot-assisted technique for the Oberlin procedure. The lack of sensory feedback was not an issue. The development of specific retractors and instruments should improve the mini-invasive technique. CLINICAL QUESTION/LEVEL OF EVIDENCE: Therapeutic, V.  相似文献   

18.
OBJECTIVE: Ex vivo studies have suggested that cartilage contact areas and pressure are of high clinical relevance in the etiology of osteoarthritis in patients with patellar subluxation. The aims of this study were therefore to validate in vivo measurements of contact areas with 3D open magnetic resonance imaging (MRI), and to study knee joint contact areas in patients with patellar subluxation at different angles of knee flexion in comparison with healthy subjects. METHODS: 3D-MRI data sets of 12 healthy volunteers and eight patients with patellar subluxation were acquired using a standard clinical (1.5 T) and an open (0.2 T) MRI scanner. We compared femoro-patellar and femoro-tibial contact areas obtained with two different sequences from open MRI [dual-echo-steady-state (DESS) and fast-low-angle-shot (FLASH) sequences] with those derived from standard clinical 1.5 T MRI. We then analyzed differences in joint contact areas between healthy subjects and patients with patellar subluxation at 0 degree, 30 degrees, and 90 degrees of knee flexion using open MRI. RESULTS: The correlation of the size of contact areas from open MRI with standard clinical MRI data ranged from r = 0.52 to 0.92. Open-MRI DESS displayed a smaller overestimation of joint contact areas (+21% in the femoro-patellar, +12% in the medial femoro-tibial, and +19% in the lateral femoro-tibial compartment) than FLASH (+40%, +37%, +30%, respectively). The femoro-patellar contact areas in patients were significantly reduced in comparison with healthy subjects (-47% at 0 degree, -56% at 30 degrees, and -42% at 90 degrees of flexion; all p < 0.01), whereas no significant difference was observed in femoro-tibial contact areas. CONCLUSIONS: Open MRI allows one to quantify joint contact areas of the knee with reasonable accuracy, if an adequate pulse sequence is applied. The technique permits one to clearly identify differences between patients with patellar subluxation and healthy subjects at different flexion angles, demonstrating a significant reduction and lateralization of contact areas in patients. In the future, application of this in vivo technique is of particular interest for monitoring the efficacy of different types of surgical and conservative treatment options for patellar subluxation.  相似文献   

19.
Children who exhibit gait deviations often present a range of bone deformities, particularly at the proximal femur. Altered gait may affect bone growth and lead to deformities by exerting abnormal stresses on the developing bones. The objective of this study was to calculate variations in the hip joint contact forces with different gait patterns. Muscle and hip joint contact forces of four children with different walking characteristics were calculated using an inverse dynamic analysis and a static optimisation algorithm. Kinematic and kinetic analyses were based on a generic musculoskeletal model scaled down to accommodate the dimensions of each child. Results showed that for all the children with altered gaits both the orientation and magnitude of the hip joint contact force deviated from normal. The child with the most severe gait deviations had hip joint contact forces 30% greater than normal, most likely due to the increase in muscle forces required to sustain his crouched stance. Determining how altered gait affects joint loading may help in planning treatment strategies to preserve correct loading on the bone from a young age.  相似文献   

20.
Neuromusculoskeletal (NMS) modeling is a valuable tool in orthopaedic biomechanics and motor control research. To evaluate the feasibility of using electromyographic (EMG) signals with NMS modeling to estimate individual muscle force during dynamic movement, an EMG driven NMS model of the elbow was developed. The model incorporates dynamical equation of motion of the forearm, musculoskeletal geometry and musculotendon modeling of four prime elbow flexors and three prime elbow extensors. It was first calibrated to two normal subjects by determining the subject-specific musculotendon parameters using computational optimization to minimize the root mean square difference between the predicted and measured maximum isometric flexion and extension torque at nine elbow positions (0-120 degrees of flexion with an increment of 15 degrees ). Once calibrated, the model was used to predict the elbow joint trajectories for three flexion/extension tasks by processing the EMG signals picked up by both surface and fine electrodes using two different EMG-to-activation processing schemes reported in the literature without involving any trajectory fitting procedures. It appeared that both schemes interpreted the EMG somewhat consistently but their prediction accuracy varied among testing protocols. In general, the model succeeded in predicting the elbow flexion trajectory in the moderate loading condition but over-drove the flexion trajectory under unloaded condition. The predicted trajectories of the elbow extension were noted to be continuous but the general shape did not fit very well with the measured one. Estimation of muscle activation based on EMG was believed to be the major source of uncertainty within the EMG driven model. It was especially so apparently when fine wire EMG signal is involved primarily. In spite of such limitation, we demonstrated the potential of using EMG driven neuromusculoskeletal modeling for non-invasive prediction of individual muscle forces during dynamic movement under certain conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号