首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
The microbial ecology of traditional postharvesting processing of vanilla beans (curing) was examined using a polyphasic approach consisting of conventional cultivation, substrate utilization-based and molecular identification of isolates, and cultivation-independent community profiling by 16S ribosomal DNA based PCR-denaturing gradient gel electrophoresis. At two different locations, a batch of curing beans was monitored. In both batches a major shift in microbial communities occurred after short-term scalding of the beans in hot water. Fungi and yeast disappeared, although regrowth of fungi occurred in one batch during a period in which process conditions were temporarily not optimal. Conventional plating showed that microbial communities consisting of thermophilic and thermotolerant bacilli (mainly closely related to Bacillus subtilis, B. licheniformis, and B. smithii) developed under the high temperatures (up to 65 degrees C) that were maintained for over a week after scalding. Only small changes in the communities of culturable bacteria occurred after this period. Molecular analysis revealed that a proportion of the microbial communities could not be cultured on conventional agar medium, especially during the high-temperature period. Large differences between both batches were observed in the numbers of microorganisms, in species composition, and in the enzymatic abilities of isolated bacteria. These large differences indicate that the effects of microbial activities on the development of vanilla flavor could be different for each batch of cured vanilla beans.  相似文献   

2.
The multiple shoots and callus cultures of Vanilla planifolia obtained from the nodal explant on MS medium supplemented with 6-benzylaminopurine (BAP) 2 mg l?1 and α-naphthalene acetic acid (NAA) 2 mg l?1 were maintained by regular subculturing every 30 days and also cultured liquid MS medium of the same hormonal combination. Shoots were transferred to the MS basal medium for rooting. Different explants along with vanilla pods and in vitro cultures were analyzed using HPLC for the presence of vanillin and related compounds. When the amount of these compounds was determined in explants and in in vitro cultures after precursor feeding and curing process, explants showed different profile after precursor feeding and after undergoing curing process. During further investigations we have applied a novel approach for curing in vitro tissues as done for vanilla beans. Curing of in vitro shoots resulted in a significant change in the aromatic compound profile.  相似文献   

3.
4.
The aim of this research was to improve our understanding of the mechanism of glucovanillin hydrolysis by β‐d ‐glucosidase activity in vanilla beans by studying their senescence, freezing and traditional curing. A batch of green pods from Madagascar was ripened at 30°C until fruits turned black; another batch was frozen for few days at ?18°C and defrosted at 35°C for 24 h and a third batch was cured using traditional methods. During treatments, samples were analysed for the yield of glucovanillin hydrolysis, and β‐glucosidase activity was measured. Cellular structures were also examined by light and transmission electron microscopy. Green fruits had a low yield of glucovanillin hydrolysis (<5%), a high level of β‐glucosidase activity (~1000 nkatal g?1 fresh weight) and a perfect cellular integrity. Senescent fruits had a high yield of glucovanillin hydrolysis (>95%), no measurable β‐glucosidase activity and complete cellular degradation. Similar results were observed in beans after defrosting. During curing, beans had a medium yield of glucovanillin hydrolysis (<50%), no measurable β‐glucosidase activity and partial cellular degradation compared with senescent or defrosted beans. Results show that the mechanism of glucovanillin hydrolysis in vanilla beans is regulated by cellular compartmentation and that the β‐glucosidase activity level is not the limiting factor for complete hydrolysis. If total decompartmentation is obtained, then complete glucovanillin hydrolysis is observed even if most of the β‐glucosidase activity is lost. The β‐glucosidase activity level only has an effect on glucovanillin hydrolysis kinetics.  相似文献   

5.
Beef burgers were stored at 4°C in a vacuum in nisin-activated antimicrobial packaging. Microbial ecology analyses were performed on samples collected between days 0 and 21 of storage to discover the population diversity. Two batches were analyzed using RNA-based denaturing gradient gel electrophoresis (DGGE) and pyrosequencing. The active packaging retarded the growth of the total viable bacteria and lactic acid bacteria. Culture-independent analysis by pyrosequencing of RNA extracted directly from meat showed that Photobacterium phosphoreum, Lactococcus piscium, Lactobacillus sakei, and Leuconostoc carnosum were the major operational taxonomic units (OTUs) shared between control and treated samples. Beta diversity analysis of the 16S rRNA sequence data and RNA-DGGE showed a clear separation between two batches based on the microbiota. Control samples from batch B showed a significant high abundance of some taxa sensitive to nisin, such as Kocuria rhizophila, Staphylococcus xylosus, Leuconostoc carnosum, and Carnobacterium divergens, compared to control samples from batch A. However, only from batch B was it possible to find a significant difference between controls and treated samples during storage due to the active packaging. Predicted metagenomes confirmed differences between the two batches and indicated that the use of nisin-based antimicrobial packaging can determine a reduction in the abundance of specific metabolic pathways related to spoilage. The present study aimed to assess the viable bacterial communities in beef burgers stored in nisin-based antimicrobial packaging, and it highlights the efficacy of this strategy to prolong beef burger shelf life.  相似文献   

6.
Bacterial gut symbiont communities are critical for the health of many insect species. However, little is known about how microbial communities vary among host species or how they respond to anthropogenic disturbances. Bacterial communities that differ in richness or composition may vary in their ability to provide nutrients or defenses. We used deep sequencing to investigate gut microbiota of three species in the genus Bombus (bumble bees). Bombus are among the most economically and ecologically important non-managed pollinators. Some species have experienced dramatic declines, probably due to pathogens and land-use change. We examined variation within and across bee species and between semi-natural and conventional agricultural habitats. We categorized as ‘core bacteria'' any operational taxonomic units (OTUs) with closest hits to sequences previously found exclusively or primarily in the guts of honey bees and bumble bees (genera Apis and Bombus). Microbial community composition differed among bee species. Richness, defined as number of bacterial OTUs, was highest for B. bimaculatus and B. impatiens. For B. bimaculatus, this was due to high richness of non-core bacteria. We found little effect of habitat on microbial communities. Richness of non-core bacteria was negatively associated with bacterial abundance in individual bees, possibly due to deeper sampling of non-core bacteria in bees with low populations of core bacteria. Infection by the gut parasite Crithidia was negatively associated with abundance of the core bacterium Gilliamella and positively associated with richness of non-core bacteria. Our results indicate that Bombus species have distinctive gut communities, and community-level variation is associated with pathogen infection.  相似文献   

7.
8.
Conventional anaerobic digesters (ADs) treating dairy manure are fed with raw or fermented manure rich in volatile fatty acids (VFAs). In contrast, pre-fermented AD (PF-AD) is fed with the more recalcitrant, fiber-rich fraction of manure that has been pre-fermented and depleted of VFAs. Thus, the substrate of PF-AD may be likened to a lean diet rich in fibers while the pre-fermentation stage fermenter is fed a relatively rich diet containing labile organic substances. Previous results have shown that conventional and pre-fermented ADs fed with raw or pre-fermented manure, respectively, produced comparable methane yields. The primary objective of this study was to characterize, using next-generation DNA sequencing, the bacterial communities in various bioreactors (pre-fermentation stage fermenter; various operational arrangements PF-AD; conventional single-stage AD; and a full scale AD) and compare the Firmicutes to Bacteroidetes (F/B) ratios in these different systems. Firmicutes and Bacteroidetes constituted the two most abundant phyla in all AD samples analyzed, as well as most of the samples analyzed in the fermenters and manure samples. Higher relative abundance of Bacteroidetes, ranging from 26% to 51% of bacteria, tended to be associated with PF-AD samples, while the highest relative abundance of Firmicutes occurred in the fermenter (maximum of 76% of bacteria) and manure (maximum of 66% of bacteria) samples. On average, primary stage fermenters exhibited microbiological traits linked to obesity: higher F/B ratios and a ‘diet’ that is less fibrous and more labile compared to that fed to PF-AD. On the other hand, microbial characteristics associated with leanness (lower F/B ratios combined with fibrous substrate) were associated with PF-AD. We propose that bacterial communities in AD shift depending on the quality of substrate, which ultimately results in maintaining VFA yields in PF-AD, similar to the role of bacterial communities and a high fiber diet in lean mice.  相似文献   

9.
不同生香阶段香荚兰豆荚中糖甙水解成份研究   总被引:2,自引:0,他引:2  
B-葡糖甙酶处理香荚兰青荚,HPLC测定酶处理豆荚和空白对照样中香兰素、香兰酸、对羟基苯甲醛、对羟基苯甲酸4个糖甙水解成份的含量。对不同生香阶段的香荚兰豆荚进行上述水解成份的定性,定量分析度监测其在豆荚完整陈化过程中含量的变化。研究结果可为完善生香加工技术,提高豆荚质量提供依据。  相似文献   

10.
11.
The metabolomic analysis of Vanilla planifolia leaves collected at different developmental stages was carried out using 1H-nuclear magnetic resonance (NMR) spectroscopy and multivariate data analysis in order to evaluate their variation. Ontogenic changes of the metabolome were considered since leaves of different ages were collected at two different times of the day and in two different seasons. Principal component analysis (PCA) and partial least square modeling discriminate analysis (PLS-DA) of 1H NMR data provided a clear separation according to leaf age, time of the day and season of collection. Young leaves were found to have higher levels of glucose, bis[4-(β-d-glucopyranosyloxy)-benzyl]-2-isopropyltartrate (glucoside A) and bis[4-(β-d-glucopyranosyloxy)-benzyl]-2-(2-butyl)-tartrate (glucoside B), whereas older leaves had more sucrose, acetic acid, homocitric acid and malic acid. Results obtained from PLS-DA analysis showed that leaves collected in March 2008 had higher levels of glucosides A and B as compared to those collected in August 2007. However, the relative standard deviation (RSD) exhibited by the individual values of glucosides A and B showed that those compounds vary more according to their developmental stage (50%) than to the time of day or the season in which they were collected (19%). Although morphological variations of the V. planifolia accessions were observed, no clear separation of the accessions was determined from the analysis of the NMR spectra. The results obtained in this study, show that this method based on the use of 1H NMR spectroscopy in combination with multivariate analysis has a great potential for further applications in the study of vanilla leaf metabolome.  相似文献   

12.
The compost environment consists of complex organic materials that form a habitat for a rich and diverse microbial community. The aim of this research was to study the dynamics of microbial communities during the compost-curing phase. Three different methods based on 16S rRNA gene sequence were applied to monitor changes in the microbial communities: (1) denaturing gradient gel electrophoresis of PCR-generated rRNA gene fragments; (2) partial rRNA gene clone libraries; and (3) a microarray of oligonucleotide probes targeting rRNA gene sequences. All three methods indicated distinctive community shifts during curing and the dominant species prevailing during the different curing stages were identified. We found a successional transition of different bacterial phylogenetic groups during compost curing. The Proteobacteria were the most abundant phylum in all cases. The Bacteroidetes and the Gammaproteobacteria were ubiquitous. During the midcuring stage, Actinobacteria were dominant. Different members of nitrifying bacteria and cellulose and macromolecule-degrading bacteria were found throughout the curing process. In contrast, pathogens were not detected. In the cured compost, bacterial population shifts were still observed after the compost organic matter and other biochemical properties had seemingly stabilized.  相似文献   

13.
The aim of the experiment was to determine if temporal variations of belowground activity reflect the influence of the Cry1Ab protein from transgenic maize on soil bacteria and, hence, on a regulatory change of the microbial community (ability to metabolize sources belonging to different chemical guilds) and/or a change in numerical abundance of their cells. Litter placement is known for its strong influence on the soil decomposer communities. The effects of the addition of crop residues on respiration and catabolic activities of the bacterial community were examined in microcosm experiments. Four cultivars of Zea mays L. of two different isolines (each one including the conventional crop and its Bacillus thuringiensis cultivar) and one control of bulk soil were included in the experimental design. The growth models suggest a dichotomy between soils amended with either conventional or transgenic maize residues. The Cry1Ab protein appeared to influence the composition of the microbial community. The highly enhanced soil respiration observed during the first 72 h after the addition of Bt-maize residues can be interpreted as being related to the presence of the transgenic crop residues. This result was confirmed by agar plate counting, as the averages of the colony-forming units of soils in conventional treatments were about one-third of those treated with transgenic straw. Furthermore, the addition of Bt-maize appeared to induce increased microbial consumption of carbohydrates in BIOLOG EcoPlates. Three weeks after the addition of maize residues to the soils, no differences between the consumption rate of specific chemical guilds by bacteria in soils amended with transgenic maize and bacteria in soils amended with conventional maize were detectable. Reaped crop residues, comparable to post-harvest maize straw (a common practice in current agriculture), rapidly influence the soil bacterial cells at a functional level. Overall, these data support the existence of short Bt-induced ecological shifts in the microbial communities of croplands' soils.  相似文献   

14.
Marine sponges harbor dense microbial communities of exceptionally high diversity. Despite the complexity of sponge microbiota, microbial communities in different sponges seem to be remarkably similar. In this study, we used a subset of a previously established 454 amplicon pyrosequencing dataset (Schmitt and Taylor, unpublished data). Five Mediterranean sponges were chosen including the model sponge Aplysina aerophoba to determine the extent of uniformity by defining (i) the core microbial community, consisting of bacteria found in all sponges, (ii) the variable microbial community, consisting of bacteria found in 2–4 sponges, and (iii) the species-specific community, consisting of bacteria found in only one sponge. Using the enormous sequencing depth of pyrosequencing the diversity in each of the five sponges was extended to up to 15 different bacterial phyla per sponge with Proteobacteria and Chloroflexi being most diverse in each of the five sponges. Similarity comparison of bacteria on phylum and phylotype level revealed most similar communities in A. aerophoba and A. cavernicola and the most dissimilar community in Pseudocorticium jarrei. A surprising minimal core bacterial community was found when distribution of 97% operational taxonomic units (OTUs) was analyzed. Core, variable, and species-specific communities were comprised of 2, 26, and 72% of all OTUs, respectively. This indicates that each sponge contains a large set of unique bacteria and shares only few bacteria with other sponges. However, host species-specific bacteria are probably still closely related to each other explaining the observed similarity among bacterial communities in sponges.  相似文献   

15.
Microbial communities in hot pepper (Capsicum annuum L.) cultivation fields under different cultivation methods were investigated by terminal restriction fragment length polymorphism (T-RFLP) analysis. Rhizosphere soil and leaf samples were collected from control, conventional and nature-friendly cultivation fields between May and July, 2009. Two Bacillus subtilis strains were applied to nature-friendly cultivation fields as biocontrol agents during the sampling period. Relative abundances of bacteria and plant pathogenic fungi related T-RFs were also measured to monitor the effect of biocontrol agents on potential plant pathogenic fungi. In the principal component analysis (PCA) based on T-RFLP profiles, the microbial communities from rhizosphere soil samples in July, including bacteria and fungi, showed distinct difference between nature-friendly cultivation fields and other cultivation fields. However, there was no correlation between cultivation methods and leaf microbial communities at any sampling period. Changes in the abundance of bacteria related T-RF in the rhizosphere of nature-friendly cultivation fields were observed clearly two months after application of biocontrol agent, while the abundance of plant pathogenic fungi related T-RFs significantly decreased.  相似文献   

16.
A novel approach based on headspace solid-phase microextraction (HS-SPME) combined with comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry (GC×GC–ToFMS) was developed for the simultaneous screening of microbial and mite contamination level in cereals and coffee beans. The proposed approach emerges as a powerful tool for the rapid assessment of the microbial contamination level (ca. 70 min versus ca. 72 to 120 h for bacteria and fungi, respectively, using conventional plate counts), and mite contamination (ca. 70 min versus ca. 24 h). A full-factorial design was performed for optimization of the SPME experimental parameters. The methodology was applied to three types of rice (rough, brown, and white rice), oat, wheat, and green and roasted coffee beans. Simultaneously, microbiological analysis of the samples (total aerobic microorganisms, moulds, and yeasts) was performed by conventional plate counts. A set of 54 volatile markers was selected among all the compounds detected by GC×GC–ToFMS. Principal Component Analysis (PCA) was applied in order to establish a relationship between potential volatile markers and the level of microbial contamination. Methylbenzene, 3-octanone, 2-nonanone, 2-methyl-3-pentanol, 1-octen-3-ol, and 2-hexanone were associated to samples with higher microbial contamination level, especially in rough rice. Moreover, oat exhibited a high GC peak area of 2-hydroxy-6-methylbenzaldehyde, a sexual and alarm pheromone for adult mites, which in the other matrices appeared as a trace component. The number of mites detected in oat grains was correlated to the GC peak area of the pheromone. The HS-SPME/GC×GC–ToFMS methodology can be regarded as the basis for the development of a rapid and versatile method that can be applied in industry to the simultaneous assessment the level of microbiological contamination and for detection of mites in cereals grains and coffee beans.  相似文献   

17.
Wastewater treatment plants (WWTPs) are major collection pools of antibiotics of which low concentrations may induce antibiotic resistance in their microbial communities and pose threat to human health. However, information is still limited on the microbial community alteration in WWTPs upon exposure to low-dose antibiotics due to absence of negative control systems without input of resistant bacteria and resistance genes. Here we report the impact of trace erythromycin (ERY) and dehydrated erythromycin (ERY-H2O) on microbial community dynamics in three long-term (1 year) running sequencing batch reactors (SBRs), R1 (ERY-H2O), R2 (ERY), and negative control R3. The PhyloChip microarray analysis showed that ERY-H2O and ERY significantly altered their microbial communities based on bacterial richness (e.g., 825 operational taxonomic units (OTUs) in R1, 699 OTUs in R2, and 920 OTUs in R3) and population abundance (15 and 48 subfamilies with >80 % abundance decrease in R1 and R2, respectively). ERY-H2O and ERY have broad but distinct antimicrobial spectrums. For example, bacteria of all the major phyla (i.e., Proteobacteria, Actinobacteria, Bacteroidetes, and Chloroflexi) present in SBRs were severely inhibited by ERY-H2O and ERY, but bacteria of Acidobacteria, Chlorobi, Firmicutes, Nitrospira and OP10 phyla were only inhibited by ERY. Very limited bacterial groups showed antibiotic resistance to ERY-H2O or ERY through forming biofilms (e.g., Zoogloea) or synthesizing resistant proteins (e.g., Thauera, Candidatus Accumulibacter, Candidatus Competibacter, and Dechloromonas) in the SBRs. Inhibition was observed to be the main effect of ERY-H2O and ERY on microbial communities in the reactors. The results would broaden our knowledge of effects of low-dose antibiotics on microbial communities in WWTPs.  相似文献   

18.
The morphology, anatomy and histology of mature green vanilla beans were examined by light and transmission electron microscopy. Beans have a triangular cross-section with a central cavity containing seeds. Each angle is lined with tubular cells, or papillae, while the cavity sides consist of placental laminae. The epicarp and endocarp are formed by one or two layers of very small cells, while the mesocarp contains large, highly vacuolarized cells, the cytoplasm being restricted to a thin layer along the cell walls. The radial distributions of glucovanillin and beta-glucosidase activity, measured on p-nitrophenyl-beta-glucopyranoside and glucovanillin, are superimposable and show how beta-glucosidase activity increases from the epicarp towards the placental zone, whereas glucovanillin is exclusively located in the placentae and papillae. Subcellular localization of beta-glucosidase activity was achieved by incubating sections of vanilla beans in a buffer containing 5-bromo-4-chloro-3-indolyl-beta-d-glucopyranoside as a substrate. Activity was observed in the cytoplasm (and/or the periplasm) of mesocarp and endocarp cells, with a more diffuse pattern observed in the papillae. A possible mechanism for the hydrolysis of glucovanillin and release of the aromatic aglycon vanillin involves the decompartmentation of cytoplasmic (and/or periplasmic) beta-glucosidase and vacuolar glucovanillin.  相似文献   

19.
20.
This investigation determined the response of soil microbial communities to enhanced UV‐B radiation and disturbance in upland grassland. A factorial field experiment encompassing two levels of UV‐B supplementation (simulating ambient and a 30% increase in stratospheric ozone) and two levels of disturbance (disturbed and undisturbed) was established at Buxton Climate Change Impacts Laboratory, Derbyshire, UK, and maintained for 7 years prior to sampling. Enhanced UV‐B increased microbial utilization of carbohydrates, carboxylic acids, polymers and aromatic compounds present in Biolog® GN plates when inoculated with soils taken from disturbed plots, but did not affect carbon utilization of soil microbial communities associated with undisturbed plots (UV‐B×Disturbance interaction, P<0.05 for each substrate type). UV‐B treatment did not affect numbers of bacteria or fungi. Direct microscopic counts showed fewer bacteria in soil originating from disturbed plots than from undisturbed plots (Disturbance, P<0.001), although a greater number of culturable bacteria and fungi were isolated from disturbed than from undisturbed soils (Disturbance, P<0.001). No UV‐B‐ or disturbance‐related differences in protein, starch or urea hydrolysis were exhibited by bacterial isolates. UV‐B treatment did not affect total plant biomass within undisturbed plots or the biomass of individual groupings of grasses, forbs and mosses. Per cent root length colonized by arbuscular mycorrhizal fungi (AMF) was not affected by enhanced UV‐B radiation in the undisturbed plots. Neither AMF nor plant biomass was measured in disturbed plots. The key findings of this study show that UV‐B‐mediated alterations in carbon utilization occurred in soil microbial communities subjected to disturbance, but such changes were not observed in communities sampled from undisturbed grassland. Differences in the catabolic potential of microbial communities from disturbed grassland subjected to enhanced UV‐B are probably related to plant‐mediated changes in resource availability or quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号