首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Natural regeneration of European beech (Fagus sylvatica L.) establishes under shade, but sudden exposure to high irradiance may occur due to openings in the canopy. To elucidate ecophysiological mechanisms associated with survival of European beech seedlings, the gas exchange, chlorophyll concentrations, and chlorophyll a fluorescence parameters of two different beech populations were studied under changing light conditions. Plants were grown both in a growth chamber and at a natural site (one population) where the seedlings were raised in containers placed in understory and in simulated canopy gaps. Upon exposure to high light in the growth chamber, photosynthetic rates of shade-acclimated leaves of seedlings from both populations increased severalfold and then decreased over several days to the rates of the low-light control seedlings. High-light seedlings always had the highest photosynthetic rates. Initial fluorescence displayed a trend opposite that of photosynthesis; it increased over time, and relative fluorescence and half-time rise declined continuously until the end of experiment to very low values. Exposure to high light of shade-acclimated seedlings resulted in a shift in chlorophyll concentrations to levels intermediate between high-light and low-light seedlings. The light treatment effects were statistically greater than population effects; however, seedlings from the Abetone population were found to be more susceptible to changing light conditions than seedlings from Sicily. Reciprocal light treatments on plants growing at the natural site confirmed the results obtained in the growth chamber experiment. Overall, beech seedlings grown in the field appeared to have a fairly large acclimation potential achieved by plasticity in the photosynthetic apparatus. The lack of pronounced acclimation to high light in seedlings grown in the growth chamber was ascribed to a threshold-type relationship between the acclimation capacity and the level of damage. These observations on the limited potential for acclimation to high light in leaves of European beech seedlings which show a clear capability to exploit sunflecks, are discussed in relation to regeneration following canopy gap formation and reinforce the view of the central role of gap formation in forest dynamics. We conclude that small forest gaps (in which sunflecks play a major role) may present a favorable environment for survival and growth of beech because of their limited ability to acclimate to a sudden increase in irradiance and because of the moderate levels of light stress found in small gaps.  相似文献   

2.
Summary Seedlings of Inga oerstediana Benth. (Mimosaceae) growing in three different light environments (the understory, tree-fall gaps and full sun) were tested for differences in chemistry (nutrients and tannins), wound-induced increases in tannins, growth, and susceptibility to leaf-cutter ants, Atta cephalotes (L.) (Formicidae: Attini). I hypothesized that seedlings of I. oerstediana would contain higher concentrations of tannins when growing in high light conditions and, therefore, would be less susceptible to leaf-cutter ants.Foliar concentrations of condensed tannins were much higher in plants growing in full sun compared to those growing in the understory. The concentrations of condensed tannins did not increase following damage. Despite higher concentrations of condensed tannins in sun foliage, leaf-cutter ants found these leaves more acceptable. The preference for sun leaves was consistent with higher concentrations of foliar nutrients. I suggest that the magnitude of the increase in condensed tannins was not great enough to override the benefits of increased concentrations of foliar nutrients. Finally, based on these results and those of others, I suggest that foraging by leaf-cutter ants may be an important factor determining patterns of succession in early successional habitats.  相似文献   

3.
I investigated competition for light between canopy plants and juvenile valley oaks (Quercus lobata Nee) in a mixed-broadleaf woodland of California's northern Coast Ranges. Canopy effects on understory light supply were separated among the overlying adult valley oak, the adult's woody understory, and neighboring trees and shrubs through a series of light sampling surveys and measurements of the number, size, and spatial distribution of neighboring plants. Light supply in the understory was primarily influenced by neighboring plants, with no detectable effect of the overlying adult valley oak. Light supply in the understory averaged 25% full sun due to a high frequency of canopy gaps and a typically open understory. Seedling response to understory light supply was investigated in an experimental sunfleck gradient (10%, 19%, and 100% full sun). Between 10% and 100% full sun, seedling growth increased by 90% and the shoot:∗∗∗root ratio changed from 1.561 to 0.607. Shade seedlings were also taller and produced fewer, larger, and thinner leaves than seedlings grown in full sun. A field survey of the spatial distribution and crown morphology of saplings and young adults found 1) the distance between young valley oaks and neighboring overstory trees to increase with neighbor size, and 2) crowns of the young oaks to be skewed away from neighbors. Although shading by the canopy was only moderate, canopy effects on understory light supply may restrict juvenile recruitment of valley oak in this woodland.  相似文献   

4.
Sexually and clonally produced offspring may respond to environmental heterogeneity by growing and surviving at different rates. In forest understories, the availability of light ranges from low in shaded, closed canopy to high in tree-fall gaps. We experimentally investigated the growth and survival of both types of offspring in three treatments (gap centers, gap edges, and shaded understory) over 16 months. We expected the demographic performance of both types of offspring to be highest in the centers of gaps and lowest in the shaded understory. However, we expected seedlings to be more sensitive to the gradient in light (larger difference in growth and survival between light levels) than vegetative offspring because of their small size and lack of connection to maternal resources. Both offspring types grew fastest and obtained their largest sizes in gap centers. Contrary to our expectations, offspring types differed in which light conditions favored highest survival. Seedlings survived best in gap centers, while vegetative offspring had their highest survival in the shaded understory. In agreement with our hypothesis, survival and growth of seedlings were more sensitive to light availability, showing a large difference in growth and survival between light levels, compared to vegetative offspring.  相似文献   

5.
We investigated the effect of (a) different local climate and (b) thinning of the forest canopy on growth and N status of naturally regenerated European beech seedlings in a beech forest on shallow rendzina soil in southern Germany. For this purpose, a 15N-tracing experiment was conducted during the growing season of the year 2000 with beech seedlings growing on a warm, dry SW-exposed site and a cooler, moist NE-exposed site, and in a thinned and a control stand at each site. Biomass, 15N uptake and partitioning and total N concentrations of beech seedlings were determined. Site and thinning produced clear differences, particularly at the end of the growing season. Biomass and cumulative 15N uptake of beech seedlings then increased due to thinning on the NE site and decreased on the SW site. Total N concentrations in leaves, roots and stems of beech seedlings responded similarly. Therefore, growth and N status of beech seedlings are found to be favoured by thinning under cool-moist conditions. However, under higher temperature and reduced water availability—conditions that are prognosticated in the near future—thinning reduces N uptake and plant N concentration and, thus, impairs N balance and growth of beech regeneration.  相似文献   

6.
To clarify the interactive effect of the simultaneous death of dwarf bamboo (Sasa kurilensis), forest canopy gap formation, and seed predators on beech (Fagus crenata) regeneration, we analyzed beech demography from seed fall until the end of the first growing season of seedlings in an old-growth forest near Lake Towada, northern Japan. The simultaneous death of S. kurilensis took place in 1995. We established four types of sampling site differing in forest canopy conditions (closed or gap) and Sasa status (dead or alive). Beech seed survival and emergence ratio were both highest in gaps with dead Sasa (gap-dead), because rate of predation was lowest. Seedling survival during the first growing season was also highest in the gap-dead treatment, because of less predation and less damping off. As a result, even though density of seed fall was lowest in the gap-dead treatment, the living seedling density there was highest at the end of the first growing season. Predation, which caused the greatest mortality during the seed and seedling stages, was significantly lower at both sites in gaps and sites with dead Sasa. This was probably due to changes in the behavior of rodents in response to the structure of the forest canopy and undergrowth. Both the death of Sasa and canopy gap formation allowed seedlings to avoid damping off because of the high light availability. The indirect effect of the simultaneous death of Sasa and canopy gap formation in reducing predation contributed more to beech regeneration than their direct effect in increasing light for the seedlings.  相似文献   

7.
生长环境光强对两种热带雨林树种幼苗光合作用的影响   总被引:33,自引:0,他引:33  
以西双版纳热带雨林中演替后期种绒毛番龙眼和先锋树种山黄麻为材料 ,于雾凉季测定了不同光强下生长的 2种树苗叶片最大净光合速率 (Pmax)、叶绿素荧光参数以及光合色素含量和比叶重 (L MA) ,探讨了不同生态习性热带雨林树种幼苗对光强的适应及光保护机制。发现在一定光强范围内随生长环境光强的增加 ,2种树苗 L MA、荧光的非化学猝灭 (N PQ)、类胡萝卜素(Car)含量、Car与叶绿素 (Chl)之比升高 ,光饱和点和光补偿点也有随生长环境光强的增大而升高的趋势 ,Chl含量降低 ,2种树苗均能通过形态和生理特性的变化适应不同的光强环境。相同的生长光强下 ,绒毛番龙眼光抑制明显比山黄麻重 ,山黄麻适应强光的能力强。随生长环境光强的增加 ,山黄麻 N PQ增加不显著 ,热耗散较少 ,相同光强下其 Pmax显著高于绒毛番龙眼。绒毛番龙眼则相反 ,其热耗散随生长环境光强的升高显著增多 ,但 Pmax差异不显著。表明先锋种山黄麻主要通过提高 Pmax利用光能防止光合机构光破坏 ,而演替后期种绒毛番龙眼却较大程度通过增强非光化学猝灭来耗散过量光能。上午人为降低光强度对先锋种山黄麻影响不大 ,但可以明显缓解绒毛番龙眼的光抑制 ,表明上午一定程度的遮光 (如有雾 )可减缓绒毛番龙眼光抑制  相似文献   

8.
Vegetation effects on microclimate in lowland tropical forest in Costa Rica   总被引:4,自引:0,他引:4  
The temperature and atmospheric humidity in a tropical lowland rain forest in Costa Rica were measured in order to assess the microclimate in different forest environments. Two disturbed sites, a single tree fall gap (400 m2) and an 0.5 hectare clearing, were compared for periods up to two years after disturbance. Two locations in primary forest, the canopy and understory, were also monitored. Temperatures were highest in the clearing, intermediate in the canopy and gap which were similar, and lowest in the understory. Vapor pressure deficits (VPD) were highest in the clearing, followed by the canopy, the gap and the understory. With regrowth of the vegetation in the gap and clearing sites, the temperatures and vapor pressure deficits significantly decreased. After 1 year, the microclimate at seedling height in the clearing resembled that of the gap, and after two years the microclimate of the gap was very similar to that of the understory. Seasonal differences in temperature and VPD were small compared to differences caused by changes in the stature of the vegetation.  相似文献   

9.
The long‐term interactive effects of ozone and light on whole‐tree carbon balance of sugar maple (Acer saccharum Marsh.) seedlings were examined, with an emphasis on carbon acquisition, foliar partitioning into starch and soluble sugars, and allocation to growth. Sugar maple seedlings were fumigated with ambient, 1·7 × ambient and 3·0 × ambient ozone in open‐top chambers for 3 years under low and high light (15 and 35% full sunlight, respectively). Three years of ozone fumigation reduced the total biomass of seedlings in the low‐ and high‐light treatments by 64 and 41%, respectively, but had no effect on whole‐plant biomass allocation. Ozone had no effect on net photosynthesis until late in the growing season, with low‐light seedlings generally exhibiting more pronounced reductions in photosynthesis. The late‐season reduction in photosynthesis was not due to impaired stomatal function, but was associated more with accelerated senescence or senescence‐like injury. In contrast, the 3·0 × ambient ozone treatment immediately reduced diurnal starch accumulation in leaves by over 50% and increased partitioning of total non‐structural carbohydrates into soluble sugars, suggesting that injury repair processes may be maintaining photosynthesis in late spring and early summer at the expense of storage carbon. The results in the present study indicate that changes in leaf‐level photosynthesis may not accurately predict the growth response of sugar maple to ozone in different light environments. The larger reduction in seedling growth under low‐light conditions suggests that seedlings in gap or closed‐canopy environments are more susceptible to ozone than those in a clearing. Similarly, understanding the effects of tropospheric ozone on net carbon gain of a mature tree will require scaling of leaf‐level responses to heterogeneous light environments, where some leaves may be more susceptible than others.  相似文献   

10.
Distributions of many humid tropical tree species are associated with specific soil types. This specificity most likely results from processes at the seedling stage, but light rather than nutrient levels is generally considered the dominant limitation for seedling growth in the tropical forest understory. If nutrients are limiting and allocation to belowground resources differs, seedling growth responses to shade should also differ. Here we tested the effects of soil type and light environment on the seedling growth of two canopy tree species in the genus Inga with different soil-type and light-environment affinities as adults. Inga alba is a shade-tolerant soil generalist and I. oestediana is a light-demanding soil specialist. We used four native soils and three light levels (1 and 5% of full sun in shade houses and the forest understory). All growth variables were greatest in 5% full sun, with highest growth rates for the light-demanding soil-type specialist. Soil type significantly affected growth parameters, even at the lower light levels. The specialist grew best on the soils with the most soil phosphorus where adult trees typically occur. Leaf tissue nitrogen:phosphorus ratios suggest increased phosphorus limitation in the low phosphorus soils and with increased light level. Light and soil interacted to significantly affect seedling biomass allocation, growth, and net assimilation rates, indicating that the seedling shade responses were affected by soil type. Seedlings growing on high nutrient soil allocated less to roots and more to photosynthetic tissue. Adult distributions of these two Inga species may be a result of the different growth rates of seedlings in response to the interactive effects of light and soil.  相似文献   

11.
High solar radiation in the tropics is known to cause transient reduction in photosystem II (PSII) efficiency and CO(2) assimilation in sun-exposed leaves, but little is known how these responses affect the actual growth performance of tropical plants. The present study addresses this question. Seedlings of five woody neotropical forest species were cultivated under full sunlight and shaded conditions. In full sunlight, strong photoinhibition of PSII at midday was documented for the late-successional tree species Ormosia macrocalyx and Tetragastris panamensis and the understory/forest gap species, Piper reticulatum. In leaves of O. macrocalyx, PSII inhibition was accompanied by substantial midday depression of net CO(2) assimilation. Leaves of all species had increased pools of violaxanthin-cycle pigments. Other features of photoacclimation, such as increased Chl a/b ratio and contents of lutein, β-carotene and tocopherol varied. High light caused strong increase of tocopherol in leaves of T. panamensis and another late-successional species, Virola surinamensis. O. macrocalyx had low contents of tocopherol and UV-absorbing substances. Under full sunlight, biomass accumulation was not reduced in seedlings of T. panamensis, P. reticulatum, and V. surinamensis, but O. macrocalyx exhibited substantial growth inhibition. In the highly shade-tolerant understory species Psychotria marginata, full sunlight caused strongly reduced growth of most individuals. However, some plants showed relatively high growth rates under full sun approaching those of seedlings at 40?% ambient irradiance. It is concluded that shade-tolerant tropical tree seedlings can achieve efficient photoacclimation and high growth rates in full sunlight.  相似文献   

12.
Understory shrubs contribute to overall species diversity, providing habitat and forage for animals, influence soil chemistry and forest microclimate. However, very little is known about the chemical defense of various shrub species against folivorous insects. Using six shrub species, we tested how seasonal changes and light conditions affect their constitutive defense to insect damage. We monitored leaf perforation, concentrations of total phenols, condensed tannins, nitrogen (N), and total nonstructural carbohydrates (TNC). Leaf damage caused by insects was low in Sambucus nigra, Cornus sanguinea, and Frangula alnus, intermediate in Corylus avellana and Prunus serotina, and high in Prunus padus. Leaves of all the species, when growing in high light conditions, had high concentrations of defense metabolites. Except for C. avellana, leaves of the other shrub species growing in full sun were less injured than those in shade. This may be due to higher concentrations of defense metabolites and lower concentrations of nitrogen. Similar patterns of the effects of light on metabolites studied and N were observed for leaves with varying location within the crown of individual shrubs (from the top of the south direction to the bottom of the north), as for leaves from shrubs growing in full sun and shrubs in the shade of canopy trees. A probable cause of the greater damage of more sunlit leaves of C. avellana was the fact that they were herbivorized mostly by Altica brevicollis, a specialist insect that prefers plant tissues with a high TNC level and is not very sensitive to a high level of phenolic compounds.  相似文献   

13.
为了解林下红松幼苗生长和养分存储季节动态,以长白山原始阔叶红松林(原始林)和次生杨桦林(次生林)林下2年生红松幼苗为对象,研究林下光合有效辐射(PAR)、幼苗生物量、非结构性碳水化合物(NSC)、全氮(N)和全磷(P)等指标的季节变化,分析两林分林下光照的季节动态及其差异对红松幼苗生长和养分积累的影响。结果表明: 原始林和次生林林下月PAR累积量季节变化都呈“双峰”型,夏季为郁闭期,两林分林下光线弱。春季和秋季为阔叶树无叶期,林下光照条件变好,且次生林林下光照明显好于原始林;原始林和次生林红松幼苗的生物量、NSC、全N和全P浓度的季节动态与林下光照的季节变化基本一致,在春季和秋季表现为显著增加,在夏季呈下降趋势。春季幼苗的淀粉浓度增加,夏季淀粉和可溶性糖浓度均逐渐降低,到8月达到最低值,秋季可溶性糖浓度显著升高。春季和秋季次生林林下幼苗的生物量和NSC浓度整体上均显著高于原始林,而夏季两林分差异不显著。因此,春季和秋季的林下光照条件差异是影响原始林和次生林中红松幼苗养分积累和生长更新差异的主要原因。  相似文献   

14.
Chronic photoinhibition in seedlings of tropical trees   总被引:1,自引:0,他引:1  
Seedlings of five canopy species of tropical trees from Costa Rica and Puerto Rico were grown in full shade (midday range of photosynthetic photon flux density [PPFD], 100–140 μmol m?2 s?1), partial shade (midday PPFD, 400–600 μmol m?2 s?1) and full sun (midday PPFD, 1 500–1 800 μmol m?2 s?1) for 3 months. The species were Ochroma lagopus (Bombacaceae), a pioneer species; Inga edulis (Fabaceae), found in secondary forest; and Dipteryx panamensis (Fabaceae), Hampea appendiculata (Malvaceae), and Manilkara bidentata (Sapotaceae), three species characteristic of primary forest. After the plants were placed in the dark overnight, chlorophyll fluorescence characteristics were measured for recently expanded and mature leaves. The ratio of variable fluorescence to maximum fluorescence (Fv/Fm) was used to estimate the degree of chronic photoinhibition. Only individuals of one species, Dipteryx panamensis, showed significant depression of Fv/Fm after long-term exposure to full sun. The depression was highly correlated with quantum yield of O2 evolution which also declined after exposure to full sun. The decline may have been related to foliar N concentration. Although all plants were supplied with ample nutrients, foliar N did not increase significantly for Dipteryx seedlings in full sun, whereas it did for Ochroma and Inga. Leaf age affected Fv/Fm only in the cases of Manilkara, where it was slightly lower in recently expanded leaves, and of Dipteryx where it interacted with the effects of light regime. We conclude that chronic photoinhibition is not common in seedlings of canopy trees of tropical rain forests except when availability of mineral nutrients may be limiting.  相似文献   

15.
Aster macrophyllus, a temperate forest understory species of the northeastern United States, inhabits a broad range of light habitats. Plants receiving several minutes of direct sun in canopy gap and forest edge habitats occasionally wilt, a response indicative of water stress. We compared two alterative scenarios for patterns of evaporative load and stomatal conductance for plants in large (0.15 ha) tree canopy gaps and small (3 m2) herbaceous subcanopy gaps: 1) evaporative loads are typically moderate and stomatal conductance is largely governed by light intensity; or 2) evaporative loads are often substantial, mandating stomatal closure to prevent excessive transpiration. In all cases evaporative loads were elevated by light intensity above 25% of full sun. This was accompanied by substantial stomatal closure. Transitions from low to moderate light intensity (<13% full sun) caused little increase in leaf evaporative load, and stimulated increases in stomatal conductance. Very brief periods of high light also stimulated stomatal opening. Light environments in the small herbaceous subcanopy gaps differ greatly in their patterns of evaporative load from day to day.  相似文献   

16.
 Effects of changing light conditions on the ecophysiological condition behind survival were examined on beech from two different populations. Plants were grown in a greenhouse under simulated understorey and canopy gap light conditions. Upon exposure to high light maximum photosynthesis of shade-acclimated leaves increased followed by a reduction over several days to between high- and low-light control rates. In the reciprocal transfer, the decrease in maximum photosynthesis was rapid during the first 2–3 days and then levelled off to values comparable to low-light controls. Seedlings from Sicily (Madonie) showed generally higher maximum photosynthetic rates than those from Abetone. Leaf conductance varied in the same direction as photosynthesis in high- to low-light seedlings but to a lesser degree. Leaves grown under low light and exposed to high light experienced photoinhibition. The Abetone population was more susceptible to photoinhibitory damage than the seedlings from Sicily. Exposure to high light of shade-acclimated seedlings resulted in intermediate chlorophyll concentrations between levels of the high-light and low-light seedlings. Carotenoid concentration was unaffected by treatments. Seedlings grew more in high light, but had a lower leaf area ratio. Light-limited seedlings showed a shift in carbon allocation to foliage. Leaves formed in the new light regime maintained the same anatomy that had been developed before transfer. Seedlings from Sicily had thicker leaves than those of seedlings from Abetone. Seedlings from Abetone were found to be more susceptible to changing light conditions than seedlings from Sicily. We conclude that small forest gaps may represent a favorable environment for photosynthesis and growth of beech regeneration as a result of the limited ability of seedlings to acclimate to sudden increases in high irradiance and because of the moderate levels of light stress in small gaps. Received: 11 April 1997 / Accepted: 11 December 1997  相似文献   

17.
Photosynthetic rate (Pn) and the partitioning of noncyclic photosynthetic electron transport to photorespiration (Jo) in seedlings of four subtropical woody plants growing at three light intensities were studied in the summer time by measurements of chlorophyll fluorescence and CO2 exchange. Except Schima superba, an upper canopy tree species, the tree species Castanopsis fissa and two understory shrubs Psychotria rubra, Ardisia quinquegona had the highest Pn at 36% of sunlight intensity. The total photosynthetic electron transport rate (JF) and the ratio of Jo/JF were elevated in leaves under full sunlight. Jo/JF ratio reached 0.5-0.6 and coincided with the increasing of oxygenation rate of Rubisco (Vo), the activity of glycolate oxidase and photorespiration rate at full sunlight. It is suggested that an increasing partitioning proportion of photosynthetic electron transport to photorespiration might be one of the protective regulation mechanisms in forest plant under strong summer light and high tempe  相似文献   

18.
Precipitation as a key determinant of forest productivity influences forest ecosystems also indirectly through alteration of the nutrient status of the soil, but this interaction is not well understood. Along a steep precipitation gradient, we studied the consequences of reduced precipitation for the soil and biomass nutrient pools and dynamics in 14 mature European beech (Fagus sylvatica L.) forests on Triassic sandstone. We tested the hypotheses that lowered summer precipitation (1) is associated with less acid soils and (2) a reduced accumulation of organic matter on the forest floor, and (3) reduces nutrient supply from the soil and leads to decreasing foliar and root nutrient concentrations. Soil acidity, the amount of forest floor organic matter, and the associated organic matter N and P pools decreased to about a half from wet to dry sites; the C/P and N/P ratios, but not the C/N ratio, of forest floor organic matter were reduced as well. Net N mineralization and P and K pools in the mineral soil did not change with decreasing precipitation. Foliar P and K concentrations (beech sun leaves) increased while N remained constant, resulting in decreasing foliar N/P and N/K ratios. Estimated N resorption efficiency increased toward the dry sites. We conclude that a reduction in summer rainfall significantly reduces the soil C, N and P pools but does not result in decreasing foliar N and P contents in beech. However, the decreasing foliar N/P ratios towards the dry stands indicate that the importance of P limitation for tree growth declines with decreasing precipitation.  相似文献   

19.
There is limited evidence regarding the adaptive value of plant functional traits in contrasting light environments. It has been suggested that changes in these traits in response to light availability can increase herbivore susceptibility. We tested the adaptive value of plant functional traits linked with carbon gain in contrasting light environments and also evaluated whether herbivores can modify selection on these traits in each light environment. In a temperate rainforest, we examined phenotypic selection on functional traits in seedlings of the pioneer tree Aristotelia chilensis growing in sun (canopy gap) and shade (forest understory) and subjected to either natural herbivory or herbivore exclusion. We found differential selection on functional traits depending on light environment. In sun, there was positive directional selection on photosynthetic rate and relative growth rate (RGR), indicating that selection favors competitive ability in a high-resource environment. Seedlings with high specific leaf area (SLA) and intermediate RGR were selected in shade, suggesting that light capture and conservative resource use are favored in the understory. Herbivores reduced the strength of positive directional selection acting on SLA in shade. We provide the first demonstration that natural herbivory rates can change the strength of selection on plant ecophysiological traits, that is, attributes whose main function is resource uptake. Research addressing the evolution of shade tolerance should incorporate the selective role of herbivores.  相似文献   

20.
在香港的3个红树森样地即黄竹湾(沙土)、西径(沙壤土)和米埔(粘壤土)进行了土壤结构对秋茄(Kandelia candel(L.)Durce)生长和生理影响的研究,并在米埔比较了林内和林外秋茄幼苗的生长和生理参数以观察光照水平的效应。在沙土和沙壤土生长的1.5年秋茄幼苗比粘壤土具有较粗的基径的较高的总生物量,说明秋茄幼苗在沙土和沙壤土中比在粘壤土中生长更好。沙土1.5 茄幼苗的叶片厚度分别为沙壤土和粘壤土的1.75和2.05倍,表明沙土中的秋茄幼苗具有旱生结构以维持体内水分。然而,沙土和沙壤土4.5年秋茄幼树的叶片厚度无显著差异,沙土和沙壤土中1.5年秋茄幼苗分配于根系的生物量比例约为50%,高于粘壤土的值(约40%)。沙土和沙壤土中1.5年的秋茄比粘壤土具有较低的叶绿素含量、根系活力、硝酸盐还原酶活性、过氧化物酶(POX)活性、超氧化物歧化酶(SOD)活性及较高的丙二醛(MDA)含量。米埔1.5年秋茄幼苗在红树林外比林内有更好的长势,具有更大的叶面积、特殊叶面积、叶片数量及生物量。林内幼苗具有较高叶绿素含量,较低叶绿素a/b比值,较高硝酸盐还原酶活性和较强的根系活力,林外幼苗的叶片POX和SOD活性比林内的值稍高,MDA含量比林内显著要高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号