首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pigment aggregation in melanophores of Labrus ossifagus is controlled by an alpha2-adrenoceptor and is somehow modulated by melatonin. The signal transduction mechanisms seem to involve both an attenuation of cAMP and an increase in intracellular Ca2+, inhibiting protein kinase A or activating a phosphatase, respectively. These effects result in dephosphorylation, which in turn induces aggregation. Various alpha2-adrenoceptor agonists attenuate cAMP levels or increase the concentration of intracellular Ca2+. Noradrenaline, for example, lowers cAMP but does not affect the calcium signal whereas B-HT 920, an alpha2-adrenoceptor specific agonist, does not induce a cAMP decrease but does appear to induce an increase in intracellular Ca2+. This later inference is drawn from experiments with BAPTA/AM, an intracellular calcium chelator, which counteracts the aggregation induced by B-HT 920. Interestingly, the very potent alpha2-adrenoceptor agonist medetomidine apparently activates both signal transduction pathways, which could explain its high efficacy in producing aggregation. Melatonin itself does not cause pigment aggregation, but it potentiates noradrenaline-induced aggregation. It has been suggested that melatonin receptors and alpha2-adrenoceptors follow the same signal transduction pathway, i.e. an attenuation of cAMP. In our experiments, melatonin did not reduce cAMP levels; instead it appears to increase Ca2+ concentration, since melatonin-potentiated aggregation was inhibited by BAPTA/AM. Thus, aggregation amplified by melatonin is probably not mediated by a further decrease in cAMP, but by the same signal transduction mechanism as B-HT 920, i.e. an increase in Ca2+. This further strengthens the suggestion that melatonin and B-HT 920 bind to the same site, but it is unclear if that particular site is on the melatonin receptor or the alpha2-adrenoceptor.  相似文献   

2.
1. The aggregation of melanosomes within melanophores of the cuckoo wrasse (Labrus ossifagus; belonging to the family Labridae) has, on pharmacological grounds, been shown to be mediated by postsynaptic alpha 2-adrenoceptors which in turn act via an inhibitory control of adenylate cyclase. 2. In the present paper we have investigated some American species belonging to the Labridae, Haemulidae, Embiotocidae, Clinidae and Pleuronectidae. 3. In all instances, except in the case of sargo (Haemulidae), we could demonstrate that melanosome aggregation probably was mediated by postsynaptic alpha 2-adrenoceptors which mediate their effect by inhibiting the adenylate cyclase of the melanophores. 4. Although these receptors apparently, on pharmacological grounds, may be classified as alpha 2-adrenoceptors it was also concluded that there is a phylogenetic divergence among these receptors.  相似文献   

3.
The function and distribution of α1-adrenergic receptor (AR) subtypes in prostate cancer cells is well characterized. Previous studies have used RNA localization or low-avidity antibodies in tissue or cell lines to determine the α1-AR subtype and suggested that the α1 A-AR is dominant. Two androgen-insensitive, human metastatic cancer cell lines DU145 and PC3 were used as well as the mouse TRAMP C1-C3 primary and clonal cell lines. The density of α1-ARs was determined by saturation binding and the distribution of the different α1-AR subtypes was examined by competition-binding experiments. In contrast to previous studies, the major α1-AR subtype in DU145, PC3 and all of the TRAMP cell lines is the α1B-AR. DU145 cells contained 100% of the α1B-AR subtype, whereas PC3 cells were composed of 21% α1 A-AR and 79% α1B-AR. TRAMP cell lines contained between 66% and 79% of the α1B-AR with minor fractions of the other two subtypes. Faster doubling time in the TRAMP cell lines correlated with decreasing α 1B-AR and increasing α1 A- and α1D-AR densities. Transfection with EGFP-tagged α1B-ARs revealed that localization was mainly intracellular, but the majority of the receptors translocated to the cell surface after extended preincubation (18 hr) with either agonist or antagonist. Localization was confirmed by ligand-binding studies and inositol phosphate assays where prolonged preincubation with either agonist and/or antagonist increased the density and function of α 1-ARs, suggesting that the native receptors were mostly intracellular and nonfunctional. Our studies indicate that α1B-ARs are the major α1-AR subtype expressed in DU145, PC3, and all TRAMP cell lines, but most of the receptor is localized in intracellular compartments in a nonfunctional state, which can be rescued upon prolonged incubation with any ligand.  相似文献   

4.
The density of skin melanophores in many teleost fish decreases during long‐term adaptation to a white background. Using the medaka, Oryzias latipes, we previously reported that apoptosis is responsible for the decrease in melanophores, and that a sympathetic neurotransmitter, norepinephrine (NE), induces their apoptosis in skin tissue cultures. In this study, we show that NE‐induced apoptosis of melanophores is mediated by the activation of α2‐adrenoceptors. Clonidine, an α2‐adrenoceptor agonist, induced apoptotic melanophore death in skin organ culture, while phenylephrine, an α1‐adrenoceptor agonist, had no effect. NE‐induced apoptosis was diminished by an α2‐adrenoceptor antagonist, yohimbine, but an α1‐adrenoceptor antagonist, prazosin, did not abrogate the effect of NE. Furthermore, forskolin inhibited NE‐induced apoptosis, while an inhibitor of PKA, H‐89, mimicked the effect of NE. These results suggest that NE induces apoptosis in melanophores by attenuating cAMP‐PKA signaling via α2‐adrenoceptors.  相似文献   

5.
The effect of pertussis toxin (PT) on the aggregation of pigment granules in melanophores from cuckoo wrasse (Labrus ossifagus L.) was studied. The results indicate the presence of a PT resistant alpha 2-adrenoceptor signal transduction mechanism.  相似文献   

6.
α1D-Adrenergic receptors, key regulators of cardiovascular system function, are organized as a multi-protein complex in the plasma membrane. Using a Type-I PDZ-binding motif in their distal C-terminal domain, α1D-ARs associate with syntrophins and dystrophin-associated protein complex (DAPC) members utrophin, dystrobrevin and α-catulin. Three of the five syntrophin isoforms (α, β1 and β2) interact with α1D-ARs and our previous studies suggest multiple isoforms are required for proper α1D-AR function in vivo. This study determined the contribution of each specific syntrophin isoform to α1D-AR function. Radioligand binding experiments reveal α-syntrophin enhances α1D-AR binding site density, while phosphoinositol and ERK1/2 signaling assays indicate β2-syntrophin augments full and partial agonist efficacy for coupling to downstream signaling mechanisms. The results of this study provide clear evidence that the cytosolic components within the α1D-AR/DAPC signalosome significantly alter the pharmacological properties of α1-AR ligands in vitro.  相似文献   

7.
Zebrafish, like other teleosts, display rapid skin color change in response to the background through sympathetic nerves. Here, the α- and β-adrenoceptors of melanophores were studied pharmacologically both in zebrafish embryo and adult scale. In vitro experiments on adult scale melanophores demonstrated that both α1- and α2-adrenoceptors are functional in melanosome aggregation, the α2 subtype being predominant. Most melanophores in zebrafish embryos were able to concentrate melanosomes to α2-adrenergic agonist α-methylnorepinephrine when they first appeared. This ability increased at least in the following 48 h, showing melanophores at these stages have developed functional adrenoceptors and these receptors increase independently before sympathetic innervation. However, even high concentration (10−3 M) of α1-adrenoceptor agonist phenylephrine was not able to evoke any paling of the embryos. In adult scales, propranolol enhanced the melanosome-aggregating response of epinephrine and isoproterenol, but not norepinephrine, indicating β-adrenoceptor mediates melanosome-dispersing response in adult zebrafish. Similar response was not observed in embryos until 60 h post-fertilization (hpf). The melanophore adrenoceptor blocking effects of phentolamine and propranolol in embryos were much lower than that in adult zebrafish, suggesting these adrenoceptors in developing melanophores are less sensitive to the classical antagonists.  相似文献   

8.
The aggregation of melanin-granules within fish pigment cells (melanophores) can be elicited either by electrical stimulation of intrinsic nerves or by the addition of adrenergic agonists. The pigment aggregation seems to be mediated by alpha-2-adrenoceptors. In this investigation we have used various agonists and antagonists (noradrenaline, (+)- and (-)-adrenaline, isoprenaline, yohimbine and prazosin) to further characterize the pigment-aggregating receptor of Labrus ossifagus. All the results obtained support the notion of alpha-2-adrenoceptor-mediated pigment aggregation. The pertussis toxin, islet-activating protein (IAP), is known to inhibit the alpha-2-adrenoceptor-mediated signal transduction in mammals. We have used IAP to investigated whether fish melanophore alpha-2-adrenoceptors are also inhibited by this toxin. We found that IAP inactivated the alpha-2-adrenoceptor-mediated pigment aggregation in a dose-dependent manner. The inhibitory IAP-effect had a remarkably short onset-time in the melanophores (maximal effect was obtained within 10 min of incubation). Interestingly, binding of an agonist (noradrenaline) to the receptors prevented IAP from exerting its inhibitory action, whereas binding of an antagonist (yohimbine) gave no protection against the IAP-inactivation. In conclusion, the pigment-aggregating receptors of melanophores of L. ossifagus are very similar to the mammalian alpha-2-adrenoceptors. It is possible to inactivate the melanophore receptor system with IAP and this inactivation has a remarkably short onset-time. Stimulation of the alpha-2-adrenoceptors prevents IAP from inactivating the receptor system.  相似文献   

9.
Human α1D-adrenoceptors (α1D-ARs) are a group of the seven transmembrane-spanning proteins that mediate many of the physiological and pathophysiological actions of adrenaline and noradrenaline. Although it is known that α1D-ARs are phosphoproteins, their specific phosphorylation sites and the kinases involved in their phosphorylation remain largely unknown. Using a combination of in silico analysis, mass spectrometry and site directed mutagenesis, we identified distinct α1D-AR phosphorylation patterns during noradrenaline- or phorbol ester-mediated desensitizations. We found that the G protein coupled receptor kinase, GRK2, and conventional protein kinases C isoforms α/β, phosphorylate α1D-AR during these processes. Furthermore, we showed that the phosphorylated residues are located in the receptor's third intracellular loop (S300, S323, T328, S331, S332, S334) and carboxyl region (S441, T442, T477, S486, S492, T507, S515, S516, S518, S543) and are conserved among orthologues but are not conserved among the other human α1-adrenoceptor subtypes. Additionally, we found that phosphorylation in either the third intracellular loop or carboxyl tail was sufficient to regulate calcium signaling desensitization. By contrast, mutations in either of these two domains significantly altered mitogen activated protein kinase (ERK) pathway and receptor internalization, suggesting that they have differential regulatory mechanisms. Our data provide new insights into the functional repercussions of these posttranslational modifications in signaling outcomes and desensitization.  相似文献   

10.
We used melanophores, cells specialized for regulated organelle transport, to study signaling pathways involved in the regulation of transport. We transfected immortalized Xenopus melanophores with plasmids encoding epitope-tagged inhibitors of protein phosphatases and protein kinases or control plasmids encoding inactive analogues of these inhibitors. Expression of a recombinant inhibitor of protein kinase A (PKA) results in spontaneous pigment aggregation. α-Melanocyte-stimulating hormone (MSH), a stimulus which increases intracellular cAMP, cannot disperse pigment in these cells. However, melanosomes in these cells can be partially dispersed by PMA, an activator of protein kinase C (PKC). When a recombinant inhibitor of PKC is expressed in melanophores, PMA-induced pigment dispersion is inhibited, but not dispersion induced by MSH. We conclude that PKA and PKC activate two different pathways for melanosome dispersion. When melanophores express the small t antigen of SV-40 virus, a specific inhibitor of protein phosphatase 2A (PP2A), aggregation is completely prevented. Conversely, overexpression of PP2A inhibits pigment dispersion by MSH. Inhibitors of protein phosphatase 1 and protein phosphatase 2B (PP2B) do not affect pigment movement. Therefore, melanosome aggregation is mediated by PP2A.  相似文献   

11.
The influence of noradrenaline acting at α2-AR and β2-ARs on the turnover of glycogen after learning has been investigated. The role of glycogen turnover in memory formation was examined using weakly-reinforced, single trial bead discrimination training in day-old domestic chickens. This study follows our previous work that focused on the need for glycogen breakdown (glycogenolysis) during learning. Inhibition of glycogenolysis by 1,4-dideoxy-1,4-imino-d-arabinitol (DAB) prevented the consolidation of strongly-reinforced learning and inhibited memory. The action of DAB could be prevented by stimulating glycogenolysis with the selective β2-AR agonist, zinterol. Stimulation of α2-ARs has been shown to lead to an increase in the turnover and synthesis of glycogen. In the present study, we examined the effect of inhibition of α2-AR stimulated glycogen turnover (measured as14C-glucose incorporation into glycogen) on the ability of zinterol to promote the consolidation of weakly reinforced memory. In astrocytes, the selective α2-AR agonist clonidine stimulated 14C-glucose incorporation into glycogen in chick astrocytes and this was inhibited by the selective α2-AR antagonist, ARC239. The critical importance of the timing of ARC239 injection relative to training and intracerebral administration of zinterol was examined. It is concluded that our data provides evidence for a readily accessible labile pool of glycogen in brain astrocytes. If glycogen synthesis is inhibited, the can be depleted within 10?min, thus preventing zinterol from promoting consolidation.  相似文献   

12.
Purpose: The present work was carried out to reveal the involvement of histamine receptors at the neuro-melanophore junction of teleost, Oreochromis mossambicus.

Methods: The isolated scale melanophores were assayed using the mean melanophore size index and their responses were recorded in presence of various concentrations of histamine along with H1 and H2 receptor specific agonists and antagonist and potentiator compound 48/80.

Results: Melanophores showed high sensitivity to histamine and its specific agonists. Histamine caused a dose-dependent pigment aggregation, whereas 2-(2-Pyridyl) ethylamine (PEA), a specific H1R agonist also caused aggregation in a similar manner. Conversely, amthamine, a specific H2R agonist resulted in pigment dispersion. The effects were antagonized by mepyramine; specific H1R antagonist and ranitidine a specific H2R antagonist.

Conclusion: It is concluded that O. mossambicus melanophores have both H1 and H2 receptors which mediate melanophore aggregation and dispersion respectively. Compound 48/80 augmented the melanin-aggregating and dispersing effects of PEA and amthamine. It is suggested that the effect of histamine is directly mediated through H1 and H2 receptors, whereas H1Rs may be predominantly involved in the aggregatory responses.  相似文献   

13.
The noradrenaline-induced pigment aggregation within the melanophores of the cuckoo wrasse ( Labrus ossifagus L.) has been shown to be mediated by postsynaptic alpha2-adrenoceptors which in turn act via an inhibitory control of adenylate cyclase. In a previous paper it was shown that pertussis toxin (PT) caused a blockade of noradrenaline-induced pigment aggregation. Based on these findings, an assay for PT has been developed. The method involves toxin titration directly on isolated fish scales from L. ossifagus , takes about 2 h to perform and needs no sophisticated equipment. The method allows detection of femtogram quantities of toxin per ml. The effect of purified PT was neutralized by antiserum. Some preliminary results indicate that it is possible to detect PT-like activity in sputum samples from patients with suspected whooping cough, whereas no PT-like activity could be detected in samples from healthy volunteers.  相似文献   

14.
15.
The effects of melatonin and noradrenaline (NA) on bi‐directional melanosome transport were analysed in primary cultures of melanophores from the Atlantic cod. Both agents mediated rapid melanosome aggregation, and by using receptor antagonists, melatonin was found to bind to a melatonin receptor whereas NA binds to an α2‐adrenoceptor. It has previously been stated that melatonin‐mediated melanosome aggregation in Xenopus is coupled with tyrosine phosphorylation of a so far unidentified high molecular weight protein and we show that although acting through different receptors and through somewhat different downstream signalling events, tyrosine phosphorylation is of the utmost importance for melanosome aggregation mediated by both NA and melatonin in cod melanophores. Together with cyclic adenosine 3‐phosphate‐fluctuations, tyrosine phosphorylation functions as a switch signal for melanosome aggregation and dispersion in these cells.  相似文献   

16.
The in vitro biological actions of synthetic chum salmon melanin concentrating hormone (MCH) on melanophores of the blue damselfish (a teleost), Chrysiptera cyanea, were studied. This cyclic heptadecapeptide stimulated melanosome (melanin granule) aggregation (centripetal migration) within melanophores at a threshold concentration of about 10(-10) M. The action of this putative hormone was not blocked by alpha- or beta-adrenoceptor antagonists. It was concluded that the effects of MCH were direct and were not mediated indirectly through the actions of adrenergic neurotransmitters released from nerve terminals. Further evidence for this view comes from the observation that, unlike the case of neurotransmitter release, melanosome aggregation in response to MCH proceeded in the absence of calcium. The possible role of MCH in the control of color change of teleost fishes is discussed.  相似文献   

17.
Melanophores of the cichlid Tilapia mossambica can be induced to aggregate pigment by addition of epinephrine to the medium, suggesting adrenergic control of this transport. The melanophore response to adrenergic stimulation was examined using agonists and antagonists that are highly specific for each alpha-adrenoceptor subclass. The signal transduction mechanism of each subclass is unique: stimulation of alpha 1 receptors results in a rise in intracellular free Ca2+, while alpha 2 stimulation results in decreased cAMP levels [Exton, 1985: Am. J. Physiol. 248:E633-E647]. Each alpha 1 or alpha 2 specific agonist tested showed a dose dependent ability to induce aggregation and each was able to effect complete aggregation of pigment, suggesting that aggregation can be mediated either by elevating Ca2+ or by lowering cAMP. However, in the presence of either an alpha 1 or an alpha 2 receptor antagonist, none of the agonists were able to induce significant aggregation, suggesting that changes in levels of both messengers are required for pigment aggregation in the melanophores. Moreover, experiments in which intracellular levels of Ca2+ or cAMP were perturbed, using BAPTA and forskolin, respectively, indicated that elevating Ca2+ in the presence of high cAMP is not sufficient to induce aggregation and, conversely, that lowering cAMP levels in the presence of reduced Ca2+ is not sufficient to induce pigment aggregation. These data indicate that the concentrations of both cAMP and Ca2+ are important in regulating pigment aggregation in teleost melanophores, and suggest that maximal aggregation of pigment requires altering the levels of both messengers.  相似文献   

18.
cAMP, dbcAMP, cCMP, cGMP, theophylline and caffeine caused reversible melanosome dispersion within 5 minutes at 10 mM in the dermal melanophores of the black goldfish, Carassius auratus L. cTMP, cUMP, 5′-AMP, 5′-CMP, 5′-GMP, 5′-TMP, and 5′-UMP did not produce melanosome dispersion or aggregation in this melanophore system. cAMP was the most effective nucleotide in the induction of melanosome dispersion; at 10 mM, cGMP and at 5 mM, dbcAMP were the least effective of those nucleotides inducing melanosome dispersion. At the 10 mM level dbcAMP required 30 minutes to evoke the same degree of melanosome dispersion as 5 minutes cAMP treatment. Theophylline was more effective than caffeine in eliciting melanosome dispersion. At 1 mM, theophylline and caffeine first induced melanosome dispersion which was followed by aggregation in the course of the 30 minute test period. These reactions suggest both a high melanophore phosphodiesterase activity and competitive inhibition of phosphodiesterase by theophylline and caffeine. Induction of melanosome dispersion by several cyclic 3′,5′-nucleotides suggest multi-nucleotide control of melanosome dispersion. These findings also support a proposed mechanism of prostaglandin induced melanosome dispersion as well as the “second messenger” hypothesis.  相似文献   

19.
In atrial myocytes, an initial exposure to isoproterenol (ISO) acts via cAMP to mediate a subsequent acetylcholine (ACh)-induced activation of ATP-sensitive K(+) current (I(K,ATP)). In addition, beta-adrenergic receptor (beta-AR) stimulation activates nitric oxide (NO) release. The present study determined whether the conditioning effect of beta-AR stimulation acts via beta(1)- and/or beta(2)-ARs and whether it is mediated via NO signaling. 0.1 microM ISO plus ICI 118,551 (ISO-beta(1)-AR stimulation) or ISO plus atenolol (ISO-beta(2)-AR stimulation) both increased L-type Ca(2+) current (I(Ca,L)) markedly, but only ISO-beta(2)-AR stimulation mediated ACh-induced activation of I(K,ATP). 1 microM zinterol (beta(2)-AR agonist) also increased I(Ca,L) and mediated ACh-activated I(K,ATP). Inhibition of NO synthase (10 microM L-NIO), guanylate cyclase (10 microM ODQ), or cAMP-PKA (50 microM Rp-cAMPs) attenuated zinterol-induced stimulation of I(Ca,L) and abolished ACh-activated I(K,ATP). Spermine-NO (100 microM; an NO donor) mimicked beta(2)-AR stimulation, and its effects were abolished by Rp-cAMPs. Intracellular dialysis of 20 microM protein kinase inhibitory peptide (PKI) abolished zinterol-induced stimulation of I(Ca,L). Measurements of intracellular NO ([NO](i)) using the fluorescent indicator DAF-2 showed that ISO-beta(2)-AR stimulation or zinterol increased [NO](i). L-NIO (10 microM) blocked ISO- and zinterol-induced increases in [NO](i). ISO-beta(1)-AR stimulation failed to increase [NO](i). Inhibition of G(i)-protein by pertussis toxin significantly inhibited zinterol-mediated increases in [NO](i). Wortmannin (0.2 microM) or LY294002 (10 microM), inhibitors of phosphatidylinositol 3'-kinase (PI-3K), abolished the effects of zinterol to both mediate ACh-activated I(K,ATP) and stimulate [NO](i). We conclude that both beta(1)- and beta(2)-ARs stimulate cAMP. beta(2)-ARs act via two signaling pathways to stimulate cAMP, one of which is mediated via G(i)-protein and PI-3K coupled to NO-cGMP signaling. Only beta(2)-ARs acting exclusively via NO signaling mediate ACh-induced activation of I(K,ATP). NO signaling also contributes to beta(2)-AR stimulation of I(Ca,L). The differential effects of beta(1)- and beta(2)-ARs can be explained by the coupling of these two beta-ARs to different effector signaling pathways.  相似文献   

20.
Melanin concentrating hormone (MCH) is a cyclic heptadecapeptide, Asp-Thr-Met-Arg-Cys-Met-Val-Gly-Arg-Val-Tyr-Arg-Pro-Cys-Trp-Glu-Val, synthesized in the hypothalamus and released by the neurohypophysis of teleost fish. This hormone is a potent lightening agent of fish skin. This lightening results from the stimulation of a centripetal melanosome (melanin granule) migration to a perinuclear position within integumental melanophores. MCH and related fragment analogues, MCH5-17 and MCH1-14 were used to investigate the ionic requirements for receptor activation by MCH on dermal melanophores of the fish Poecilia reticulata. In calcium-free saline, the sensitivity of the melanophores to MCH and MCH1-14 increased, whereas the sensitivity of the cells to MCH5-17 decreased. Verapamil diminished the sensitivity to MCH5-17, but did not affect melanophore responses to MCH or MCH1-14. The melanosome aggregating response to MCH was not affected in the presence of tetrodotoxin or in sodium- or potassium-free (choline-substituted) saline. These results suggest that neither TTX-sensitive sodium channels nor extracellular sodium or potassium ions play a role in MCH-induced melanosome aggregation. It is known that MCH and MCH1-14 also exhibit MSH-like melanosome dispersion within melanophores, skin darkening activity on fish melanophores whereas MCH5-17 lacks this characteristic. Since the darkening activity of MCH and MCH1-14 requires calcium, these analogues exhibited a diminished lightening (MCH-like) activity in the presence of the divalent cation. In the absence of the N-terminal tetrapeptide sequence (necessary for the expression of MSH-like activity), a role for calcium on melanosome aggregation became evident. These results demonstrate a bifunctional role of calcium on melanosome movements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号