首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary. Clear interspecies differentiation between the chromosomes in pig-mouse somatic cell hybrids was achieved by using the THA-technique for the cytogenetic analysis. The assignments of LDHB and MPI to pig chromosomes nos 5 and 7 respectively, reported previously, were confirmed by analysis of 34 hybrid clones. The LDHA, PEPB and PGM1 genes were assigned to pig chromosomes nos 2, 5 and 6 respectively. Both LDHB and PEPB were indicated to be located on the long arm, except the most proximal part, of pig chromosome no. 5. The proposed synteny between LDHB and PEPB in pigs is in accordance with the synteny observed between these two loci in several other mammalian species.  相似文献   

2.
Clear interspecies differentiation between the chromosomes in pig-mouse somatic cell hybrids was achieved by using the THA-technique for the cytogenetic analysis. The assignments of LDHB and MPI to pig chromosomes nos 5 and 7 respectively, reported previously, were confirmed by analysis of 34 hybrid clones. The LDHA, PEPB and PGM1 genes were assigned to pig chromosomes nos 2, 5 and 6 respectively. Both LDHB and PEPB were indicated to be located on the long arm, except the most proximal part, of pig chromosome no. 5. The proposed synteny between LDHB and PEPB in pigs is in accordance with the synteny observed between these two loci in several other mammalian species.  相似文献   

3.
Summary Nineteen cell hybrids were obtained by fusing rabbit (Oryctolagus cuniculus, OCU) fibroblasts and a Chinese hamster cell line HGPRT. Eleven enzymatic markers were investigated for cosegregation analysis. Seven could be assigned to OCU chromosomes: LDHA to OCU1; LDHB and TPI to OCU4; PEPB, NP, and ITP to OCU16; and G6PD to OCUX. Two assignments were considered possible: MDH2 to OCU15, and GUK to OCU3 or 15. Two could not be assigned: MDH1 and PGD. These results are consistent with the OCU-HSA chromosome homocologies previously reported, except for PEPB.  相似文献   

4.
D S Gerhard  E Lawrence  J Wu  H Chua  N Ma  S Bland  C Jones 《Genomics》1992,13(4):1133-1142
The determination of the physical map of human chromosome 11 will require more clones than are currently available. We have isolated an additional 1001 new markers in a bacteriophage vector from a somatic cell hybrid cell line that contains most of chromosome 11, except the middle of the short arm. These markers were localized to five different regions, 11p15-pter, 11p12-cen, 11q11-q14, 11q14-q23, and 11q23-qter, by a panel of previously characterized somatic cell hybrids. The region 11q11-14 harbors genes that have been shown to be important in breast cancer, B-cell lymphomas, centrocytic lymphomas, asthma, and multiple endocrine neoplasia, type 1 (MEN1). To determine the positions of the recombinant clones located there, we developed a new series of radiation-reduced somatic cell hybrids. These hybrids, together with those previously characterized, allowed us to map the 11q11-q14 markers into 11 separate segregation groups.  相似文献   

5.
Two independent mouse-human somatic cell hybrid clones contained different, de novo chromosome rearrangements involving the short arm of human chromosome 1. One hybrid clone contained a translocation between human chromosomes 1 and 7; the other clone contained a rearrangement product between human chromosomes 1 and 14. Analysis of these clones for expression of genes previously assigned to chromosome 7 and to the short arm of chromosome 1 provided evidence for localization of PGM--1 in segment 1p22.1 leads to 1p31.1, AK--2, ENO--1 and UMPK in region 1pter leads to 1p31.1, and GUS in region 7 pter leads to 7q22. The results have been used to examine the relationship between cytologic and genetic map distances on the short arm of chromosome 1.  相似文献   

6.
A panel of 18 rat x mouse somatic cell hybrid clones segregating individual rat chromosomes in different combinations was used to assign 23 biochemical loci to rat chromosomes. The chromosomal locations for these 23 loci were determined as follows: GOT1 on rat chromosome 1; HAGH on 2; ACP2, ADA, GANC, ITPA, and SORD on 3; LDHB on 4; PEPB on 7; GLB1 and HEXA on 8; IDH1 on 9; UMPH2 on 10; GUSB on 12; FH and PEPC on 13; PEPS on 14; ESD and NP on 15; DIA4 on 19; and PP on 20. In addition, ACP1 and GLO1 were reassigned to rat chromosomes 6 and 20, respectively. The chromosomal assignments of these loci extends the known syntenic homologies among rats, mice, and humans.  相似文献   

7.
The centromeric region of rat chromosome 2 (2q1) harbors unidentified quantitative trait loci of genes that control tumor growth or development. To improve the mapping of this chromosome region, we microdissected it and generated 10 new microsatellite markers, which we included in the linkage map and/or radiation hybrid map of 2q1, together with other known markers, including four genes: Pcsk1 (protein convertase 1), Dhfr (dihydrofolate reductase), Ndub13 (NADH ubiquinone oxidoreductase subunit b13), and Ccnb1 (cyclin B1). To generate anchor points between the different maps, the gene Ndub13 and the microsatellite markers D2Ulb25 and D2Mit1 were also localized cytogenetically. The radiation map generated in region 2q1 extends its centromeric end of about 150 cR.  相似文献   

8.
Prevous work, using human-mouse somatic cell hybrids, has localized the structural gene for human skin type I procollagen (COL 1) to chromosome 17. One of these hybrids contained only the long arm of human chromosome 17, translocated onto a mouse chromosome, as human chromosomal material. This hybrid was treated with adenovirus 12, and various clones were picked which contained different-sized fragments of human chromosome 17 that were still translocated onto a mouse chromosome. Measurements of these fragments, combined with assays for human COL 1 production and galactose kinase (GAK) activity (also localized on the long arm of human chromosome 17), has allowed us to regionally map the structural gene for human COL 1 to an area just distal to the thymidine kinase (TK) and GAK genes within bands q21 and q22 on human chromosome 17.  相似文献   

9.
Five new loci, myogenic factor 5 (MYF5), complement 1 receptor (CIR), myosin-like heavy chain (MYHL), islet amyloid polypeptide (IAPP), and alpha-2-macroglobulin receptor (A2MR), were mapped onto sheep chromosome 3q by Southern hybridization to a panel of chro-mosomally characterized sheep × hamster cell hybrid lines. The location of the triose phosphate isomerase (TPI1) gene and one of the nucleolar organizer regions (RNR) on sheep 3q was confirmed by Southern analysis. This study provides further evidence for the existence of a large conserved chromosomal segment comprising much of sheep chromosome 3q, cattle chromosome 5, and human chromosome 12. The distal evolutionary breakpoint on human chromosome 12, producing the chromosomal segment U23 in cattle marked by aldehyde dehydrogenase (ALDH2), also produces a separate segment in sheep. Neither ALDH2 nor pancreatic lipase (PLA2), which is also distally located on human chromosome 12, were mapped onto sheep chromosome 3q.  相似文献   

10.
The mapping resolution of the physical map for chicken Chromosome 4 (GGA4) was improved by a combination of radiation hybrid (RH) mapping and bacterial artificial chromosome (BAC) mapping. The ChickRH6 hybrid panel was used to construct an RH map of GGA4. Eleven microsatellites known to be located on GGA4 were included as anchors to the genetic linkage map for this chromosome. Based on the known conserved synteny between GGA4 and human Chromosomes 4 and X, sequences were identified for the orthologous chicken genes from these human chromosomes by BLAST analysis. These sequences were subsequently used for the development of STS markers to be typed on the RH panel. Using a logarithm of the odds (LOD) threshold of 5.0, nine linkage groups could be constructed which were aligned with the genetic linkage map of this chromosome. The resulting RH map consisted of the 11 microsatellite markers and 50 genes. To further increase the number of genes on the map and to provide additional anchor points for the physical BAC map of this chromosome, BAC clones were identified for 22 microsatellites and 99 genes. The combined RH and BAC mapping approach resulted in the mapping of 61 genes on GGA4 increasing the resolution of the chicken–human comparative map for this chromosome. This enhanced comparative mapping resolution enabled the identification of multiple rearrangements between GGA4 and human Chromosomes 4q and Xp.  相似文献   

11.
Ninety four NotI-STS markers to seventy two individual NotI clones were developed basing on DNA nucleotide sequences from NotI-"jumping" and "linking" NotI-libraries of human chromosome 3. The localization of NotI-STS markers and their ordering on chromosome was established by combined data of RH-mapping (our data), contig-mapping, cytogenetic mapping and in silico mapping. Performed comparison of NotI-STS DNAs with human genome sequences revealed two gaps in the regions, 3p21.33 (marker NLI-256) and 3p21.31 (NL3-005), and segmental duplication. Identical DNA fragments are localized in the regions 12q and 3p22-21.33 (marker NL3-007). In the region 3q28-q29 (marker NLM-084) a fragment was detected with its identical copies present also on chromosomes 1, 2, 15 and 19. For 69 NotI-STSs, significant homologies with nucleotide sequences of 70 genes and two cDNAs were detected taking in consideration homologies to NotI-STS 5'- and 3'-terminal sequences. Association of NotI-STSs with genes is confirmed by high correlation of gene density distribution with the density of NotI-STS markers on the map of human chromosome 3. Obtained data evidence possibility of NotI-STS marker application as gene markers and allow considering constructed NotI-map as gene map of human chromosome 3.  相似文献   

12.
Cytogenetic analysis has been performed on a series of deletion mutations on human chromosome 11 of AL hybrid clones in which specific markers have been lost as a result of treatment with mutagenic agents. Such analysis has localized the three previously identified components of the AL cell-surface antigen complex to the indicated regions of chromosome 11: a1 and a3:11p13 leads to 11pter; a2:11q13 leads to 11qter. Using these methodologies human lactic dehydrogenase A localization on the short arm as reported by others has been confirmed. Evidence is presented provisionally assigning this gene to 11p13 leads to 11pter.  相似文献   

13.
Current comparative maps between human chromosome 21 and the proximal part of cattle chromosome 1 are insufficient to define chromosomal rearrangements because of the low density of mapped genes in the bovine genome. The recently completed sequence of human chromosome 21 facilitates the detailed comparative analysis of corresponding segments on BTA1. In this study eight bovine bacterial artificial chromosome (BAC) clones containing bovine orthologues of human chromosome 21 genes, i.e. GRIK1, CLDN8, TIAM1, HUNK, SYNJ1, OLIG2, IL10RB, and KCNE2 were physically assigned by fluorescence in situ hybridization (FISH) to BTA1q12.1-q12.2. Sequence tagged site (STS) markers derived from these clones were mapped on the 3000 rad Roslin/Cambridge bovine radiation hybrid (RH) panel. In addition to these eight novel markers, 17 known markers from previously published BTA1 linkage or RH maps were also mapped on the Roslin/Cambridge bovine RH panel resulting in an integrated map with 25 markers of 355.4 cR(3000) length. The human-cattle genome comparison revealed the existence of three chromosomal breakpoints and two probable inversions in this region.  相似文献   

14.
We have constructed a high-resolution cytogenetic map with 168 DNA markers, including 90 RFLP markers for human chromosome 11. The cosmid clones were mapped by fluorescence in situ suppression hybridization, in which discrete fluorescent signals can be detected directly on prometaphase R-banded chromosomes. Although these cosmid clones were distributed throughout the chromosome, they had some tendency to localize in the regions of R-positive band, such as 11p15, 11p11.2, 11q13, 11q23, and 11q25. Since these regions of chromosome 11 are considered to contain genes responsible for certain genetic diseases, cancer breakpoints involved in chromosome rearrangements, and tumor-suppressor genes, this high-resolution cytogenetic map will contribute to the molecular characterization of such genes. This map will also provide many landmarks essential for construction of the complete physical map with contigs of cosmid and YAC clones.  相似文献   

15.
A YAC library enriched for telomere clones was constructed and screened for the human telomere-specific repeat sequence (TTAGGG). Altogether 196 TYAC library clones were studied: 189 new TYAC clones were isolated, 149 STSs were developed for 132 different TYACs, and 39 P1 clones were identified using 19 STSs from 16 of the TYACs. A combination of mapping methods including fluorescencein situhybridization, somatic cell hybrid panels, clamped homogeneous electric fields, meiotic linkage, and BLASTN sequence analysis was utilized to characterize the resource. Forty-five of the TYACs map to 31 specific telomere regions. Twenty-four linkage markers were developed and mapped within 14 proterminal regions (12 telomeres and 2 terminal bands). The polymorphic markers include 12 microsatellites for 10 telomeres (1q, 2p, 6q, 7q, 10p, 10q, 13q, 14q, 18p, 22q) and the terminal bands of 11q and 12p. Twelve RFLP markers were identified and meiotically mapped to the telomeres of 2q, 7q, 8p, and 14q. Chromosome-specific STSs for 27 telomeres were identified from the 196 TYACs. More than 30,000 nucleotides derived from the TYAC vector-insert junction regions or from regions flanking TYAC microsatellites were compared to reported sequences using BLASTN. In addition to identifying homology with previously reported telomere sequences and human repeat elements, gene sequences and a number of ESTs were found to be highly homologous to the TYAC sequences. These genes include human coagulation factor V (F5), Wee1 protein tyrosine kinase (WEE1), neurotropic protein tyrosine kinase type 2 (NTRK2), glutathioneS-transferase (GST1), and β tubulin (TUBB). The TYAC/P1 resource, derivative STSs, and polymorphisms constitute an enabling resource to further studies of telomere structure and function and a means for physical and genetic map integration and closure.  相似文献   

16.
Several recent genetic studies have suggested linkage of Type 2 diabetes (non-insulin-dependent diabetes mellitus) susceptibility to a region of chromosome 20q12-q13.1. To facilitate the identification and cloning of a diabetes susceptibility gene(s) in this region, we have constructed correlated radiation hybrid and YAC/BAC contig physical maps of the region. A high-resolution radiation hybrid map encompassing 9.5 Mb between the PLC and the CEBPB genes was constructed using 68 markers: 25 polymorphic markers, 15 known genes, 21 ESTs, and 7 random genomic sequences. The physical order of the polymorphic markers within this radiation hybrid map is consistent with published genetic maps. A YAC/BAC contig that gives continuous coverage between PLC and CEBPB was also constructed. This contig was constructed from 24 YACs, 34 BACs, and 1 P1 phage clone onto which 71 markers were mapped: 23 polymorphic markers, 12 genes, 24 ESTs, and 12 random genomic sequences. The radiation hybrid map and YAC/BAC physical map enable precise mapping of newly identified transcribed sequences and polymorphic markers that will aid in linkage and linkage disequilibrium studies and facilitate identification and cloning of candidate Type 2 diabetes susceptibility genes residing in 20q12-q13.1.  相似文献   

17.
A comparative study of human chromosome 17 (HSA17) and pig chromosome 12 (SSC12) was conducted using both somatic cell hybrid panel (SCHP) and radiation hybrid (RH) panel analysis. Sequences from an expressed sequence tag (EST) project in pig reproduction were examined and six genes and ESTs originally believed to map to HSA17 were selected for this study. The genes/ESTs were TATA box binding protein-associated factor (TAF2N/RBP56), alpha-2-plasmin inhibitor (SERPINF2/PLI), H3 histone family 3B (H3F3B), aminopeptidase puromycin sensitive (NPEPPS), an expressed sequence tag (ESTMI015) and P311 protein (P311). The SCHP analysis mapped five genes/ESTs (TAF2N, H3F3B, SERPINF2, NPEPPS and ESTMI015) to SSC12q11-q15 and SSC12p11-p15 with 100% concordance, and assigned P311 to SSC2 (1/2q24)-q29 with 100% concordance. Radiation hybrid analysis of all six genes confirmed the SCHP mapping results, with average retention frequency of 25%. Recent human sequence data demonstrated that P311 is actually located on HSA5q. As HSA5q and SSC2q show conserved syntenic regions predicted from bi-directional painting, our P311 mapping data is consistent with these results. An expanded comparative SSC12 RH map integrating the five new type I markers and 23 previously mapped loci was established using a LOD score threshold of 4.8. The gene order of the five genes/ESTs on the SSC12 framework RH map (H3F3B-ESTMI015-NPEPPS-TAF2N-SERPINF2) is identical to the HSA17 GB4 map but with inversion of the map as conventionally drawn.  相似文献   

18.
Despite the presence of several human disease genes on chromosome11q13, few of them have been molecularly cloned. Here, we reportthe construction of a contig map encompassing 11q13.1–q13.3using bacteriophage P1 (P1), bacterial artificial chromosome(BAC), and P1-derived artificial chromosome (PAC). The contigmap comprises 32 P1 clones, 27 BAC clones, 6 PAC clones, and1 YAC clone and spans a 3-Mb region from D11S480 to D11S913.The map encompasses all the candidate loci of Bardet-Biedlesyndrome type I (BBS1) and spinocerebellar ataxia type 5 (SCA5),one-third of the distal region for hereditary paraganglioma2 (PGL2), and one-third of the central region for insulin-dependentdiabetes mellitus 4 (IDDM4). In the process of map construction,61 new sequence-tagged site (STS) markers were developed fromthe Not I linking clones and the termini of clone inserts. Wehave also mapped 30 ESTs on this map. This contig map will facilitatethe isolation of polymorphic markers for a more re.ned analysisof the disease gene region and identi.cation of candidate genesby direct cDNA selection, as well as prediction of gene functionfrom sequence information of these bacterial clones.  相似文献   

19.
Evidence is presented for the assignment of the gene for triose phosphate isomerase to Mus musculus chromosome 6 and tripeptidase-1 to chromosome 10 by synteny testing and chromosome assignment in Chinese hamster X mouse somatic cell hybrid clones. Neither TPI nor TRIP-1 were expressed concordantly with any known isozyme markers in 45 hybrid clones (13 primary and 32 secondary). Karyotypic analysis of 21 clones showed that the expression of TPI and chromosome 6 were concordant in all cases as was expressed of TRIP-1 and chromosome 10. Both chromosomes were previously unmarked by isozymes.  相似文献   

20.
Nineteen cell hybrids were obtained by fusing rabbit (Oryctolagus cuniculus, OCU) fibroblasts and a Chinese hamster cell line HGPRT-. Eleven enzymatic markers were previously investigated (Soulié and Grouchy 1982); seven of these could be assigned (LDHA, LDHB, TPI, PEPB, NP, ITP, and G6PD). Two assignments were uncertain (MDH2 and GUK). Two markers could not be assigned (MDH1 and PGD). Seven further markers were investigated and are the subject of this report. Six could be assigned: GALT to chromosome OCU1, GAPD to OCU4, GPX and ACY to OCU9, PGM1 to OCU13, and GSR to OCU19. One could not be assigned (GPI). MDH2 and GUK were previously considered uncertain. Now MDH2 was found impossible to assign and GUK was mapped on OCU15. These assignments were compared with those known in man, Cebus capucinus, Microcebus murinus, cat, and mouse. It was impossible to assign any enzymatic marker belonging to the ten linkage groups known in the rabbit. The esterase locus could not be investigated since the rabbit enzyme migrates in the same position as the hamster enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号