首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Among the isozymes of carbonic anhydrase, isozyme III is the least efficient in the catalysis of the hydration of CO2 and was previously thought to be unaffected by proton transfer from buffers to the active site. We report that buffers of small size, especially imidazole, increase the rate of catalysis by human carbonic anhydrase III (HCA III) of (1) 18O exchange between HCO3- and water measured by membrane-inlet mass spectrometry and (2) the dehydration of HCO3- measured by stopped-flow spectrophotometry. Imidazole enhanced the rate of release of 18O-labeled water from the active site of wild-type carbonic anhydrase III and caused a much greater enhancement, up to 20-fold, for the K64H, R67H, and R67N mutants of this isozyme. Imidazole had no effect on the rate of interconversion of CO2 and HCO3- at chemical equilibrium. Steady-state measurements showed that the addition of imidazole resulted in increases in the turnover number (kcat) for the hydration of CO2 catalyzed by HCA III and for the dehydration of HCO3- catalyzed by R67N HCA III. These results are consistent with the transfer of a proton from the imidazolium cation to the zinc-bound hydroxide at the active site, a step required to regenerate the active form of enzyme in the catalytic cycle. Like isozyme II of carbonic anhydrase, isozyme III can be enhanced in catalytic rate by the presence of small molecule buffers in solution.  相似文献   

2.
The buffering capacity (beta) of rainbow trout (Oncorhynchus mykiss) plasma was manipulated prior to intravascular injection of bovine carbonic anhydrase to test the idea that proton (H+) availability limits the catalysed dehydration of HCO3- within the extracellular compartment. An extracorporeal blood shunt was employed to continuously monitor blood gases in vivo in fish exhibiting normal plasma beta (-3.9+/-0.3 mmol 1(-1) pH unit(-1)), and in fish with experimentally (using N-[2-hydroxyethyl]piperazine-N'-[2-ethanesulfonic acid]) elevated plasma beta (-12.1+/-1.1 mmol 1(-1) pH unit(-1)). An injection of 5 mg kg(-1) carbonic anhydrase equally reduced (after 90 min) the arterial partial pressure of CO2 in trout with regular (-0.23+/-0.05 Torr) or high (-0.20+/-0.05 Torr) plasma beta; saline injection was without effect. Because ventilation and venous blood gases were unaffected by carbonic anhydrase, the effect of extracellular carbonic anhydrase in lowering arterial partial pressure of CO2 was likely caused solely by a specific enhancement of CO2 excretion owing to acceleration of HCO3- dehydration within the plasma. The lowering of arterial partial pressure of CO2 in trout after injection of exogenous carbonic anhydrase provides the first in vivo evidence that the accessibility of plasma HCO3- to red blood cell carbonic anhydrase constrains CO2 excretion under resting conditions. Because the velocity of red blood cell Cl-/HCO3- exchange governs HCO3- accessibility to red blood cell carbonic anhydrase, the present study also provides evidence that CO2 excretion at rest is limited by the relatively slow rate of Cl-/HCO3- exchange. The effect of carbonic anhydrase in lowering arterial partial pressure of CO2 was unrelated to plasma buffering capacity. While these data could suggest that H+ availability does not limit extracellular HCO3- dehydration in vivo at resting rates of CO2 excretion, it is more likely that the degree to which plasma beta was elevated in the present study was insufficient to drive a substantially increased component of HCO3- dehydration through the plasma.  相似文献   

3.
P Paneth  M H O'Leary 《Biochemistry》1987,26(6):1728-1731
The carbon kinetic isotope effect on the enzymatic dehydration of HCO3- ion is k12/k13 = 1.011 and is independent, within experimental error, of the addition of sucrose, substitution of D2O for H2O, and substitution of enzyme-bound Zn2+ by Co2+. These results are consistent with a ping-pong mechanism in which proton transfer between enzyme and solvent is separated from HCO3- dehydration. For the dehydration half-reaction, diffusional processes are severalfold faster than dehydration, and the rate-determining step is the dehydration itself. The intrinsic isotope effect is approximately 1.011, indicating that hydration of CO2 occurs by reaction of zinc-bound OH-, rather than zinc-bound H2O.  相似文献   

4.
Rates of CO2/HCO-3 exchange, catalyzed by human carbonic anhydrase I (or B) at chemical equilibrium, were estimated from the nuclear magnetic resonance linewidths of 13C-labeled substrates. The results show that the maximal exchange rate constant is independent of pH in the range 5.7-8.0, whereas the apparent substrate dissociation constant depends on pH. Exchange proceeds rapidly in the absence of added buffers, and the addition of buffers has negligible effects on exchange rates. Exchange is equally rapid with 1H2O or 2H2O as solvents. Chloride ions inhibit CO2/HCO-3 exchange competitively. The maximal exchange rates obtained with human carbonic anhydrase I are 50 times slower than those obtained with human isoenzyme II (or C). From a comparison of the exchange kinetics with the steady-state kinetics of CO2 hydration and HCO-3 dehydration it is tentatively concluded that the transfer of H+ between active site and medium proceeds with rates of similar magnitudes in the two isoenzymes, whereas the central catalytic step, the interconversion of enzyme-bound CO2 and HCO-3, is much slower in isoenzyme I than in isoenzyme II.  相似文献   

5.
Steady-state and equilibrium kinetic properties of native bovine carbonic anhydrase III (carbonate hydrolyase, EC 4.2.1.1) and a derivative modified with methyl methanethiosulfonate were investigated. The modified enzyme has a markedly increased CO2 hydration activity compared to the native form with a 3-times higher value of kcat and a 6-10-times higher value of kcat/Km. Qualitatively, the activated enzyme shows the same kinetic behavior as native isoenzyme III. This is reflected in similar pH dependences of the kinetic parameters for CO2 hydration, similar solvent hydrogen isotope effects on these parameters, similar deviations from Michaelis-Menten kinetics for the HCO3- dehydration reaction, and similar behavior of the kinetics of CO2/HCO3- exchange at chemical equilibrium as measured by a 13C-NMR magnetization transfer technique. It is concluded that the conversion of -SH groups to -S-S-CH3 moieties does not change the catalytic mechanism, but leads to an increased rate of CO2/HCO3- interconversion as well as to an increased rate of proton transfer between the active site and the reaction medium.  相似文献   

6.
The active sites of carbonic anhydrases I contain a unique histidine residue at sequence position 200. To test the hypothesis that His200 is essential for the isoenzyme-specific catalytic and inhibitor-binding properties of carbonic anhydrases I, a variant of human carbonic anhydrase II, having His200 for Thr200, was prepared by oligonucleotide-directed mutagenesis. The variant has a circular dichroic spectrum that is indistinguishable from that of the parent enzyme. The kinetics of CO2 hydration and HCO3- dehydration has been investigated. The results show that the amino acid substitution has led to changes of catalytic parameters as well as Ki values for anion inhibition in the expected directions towards the values for isoenzyme I. However, the maximal 4-nitrophenyl acetate hydrolase activity of the variant is higher than for any naturally occurring carbonic anhydrase studied so far. A detailed analysis of the kinetic observations suggests that the modification has resulted in a change of the step that limits the maximal rate of CO2 hydration at saturating buffer concentrations. This rate-limiting step is an intramolecular proton transfer in unmodified isoenzyme II and, presumably, HCO3- dissociation in the variant and in human isoenzyme I. A free-energy profile for the dominating pathway of CO2 hydration at high pH was constructed. The results suggest that the major effect of His200 is a stabilization of the enzyme-HCO3- complex by about 7.5 kJ/mol (variant) and 6.1 kJ/mol (human isoenzyme I) relative to unmodified isoenzyme II, while proton transfer between the metal site and the reaction medium is only marginally affected by the amino acid replacement.  相似文献   

7.
1. The steady-state kinetics of the interconversion of CO2 and HCO3 catalyzed by human carbonic anhydrase C was studied using 1H2O and 2H2O as solvents. The pH-independent parts of the parameters k(cat) and Km are 3-4 times larger in 1H2O than in 2H2O for both directions of the reaction, while the ratios k(cat)/Km show much smaller isotope effects. With either CO2 or HCO3 as substrate the major pH dependence is observed in k(cat), while Km appears independent of pH. The pKa value characterizing the pH-rate profiles is approximately 0.5 unit larger in 2H2O than in 1H2O. 2. The hydrolysis of p-nitrophenyl acetate catalyzed by human carbonic anhudrase C is approximately 35% faster in 2H2O than in 1H2O. In both solvents the pKa values of the pH-rate profiles are similar to those observed for the CO2-HCO3 interconversion. 3. It is tentatively proposed that the rate-limiting step at saturating concentrations of CO2 or HCO3 is an intramolecular proton transfer between two ionizing groups in the active site. It cannot be decided whether the transformation between enzyme-bound CO2 and HCO3 involves a proton trnasfer or not.  相似文献   

8.
The beta-class carbonic anhydrase from the archaeon Methanobacterium thermoautotrophicum (Cab) was structurally and kinetically characterized. Analytical ultracentrifugation experiments show that Cab is a tetramer. Circular dichroism studies of Cab and the Spinacia oleracea (spinach) beta-class carbonic anhydrase indicate that the secondary structure of the beta-class enzymes is predominantly alpha-helical, unlike that of the alpha- or gamma-class enzymes. Extended X-ray absorption fine structure results indicate the active zinc site of Cab is coordinated by two sulfur and two O/N ligands, with the possibility that one of the O/N ligands is derived from histidine and the other from water. Both the steady-state parameters k(cat) and k(cat)/K(m) for CO(2) hydration are pH dependent. The steady-state parameter k(cat) is buffer-dependent in a saturable manner at both pH 8.5 and 6.5, and the analysis suggested a ping-pong mechanism in which buffer is the second substrate. At saturating buffer conditions and pH 8.5, k(cat) is 2.1-fold higher in H(2)O than in D(2)O, consistent with an intramolecular proton transfer step being rate contributing. The steady-state parameter k(cat)/K(m) is not dependent on buffer, and no solvent hydrogen isotope effect was observed. The results suggest a zinc hydroxide mechanism for Cab. The overall results indicate that prokaryotic beta-class carbonic anhydrases have fundamental characteristics similar to the eukaryotic beta-class enzymes and firmly establish that the alpha-, beta-, and gamma-classes are convergently evolved enzymes that, although structurally distinct, are functionally equivalent.  相似文献   

9.
Incubation of carbonic anhydrase II with acrolein results in a rapid, time-dependent loss of all but approximately 3-6% of the original catalytic activity toward CO2 hydration and HCO3- dehydration, with the inactivation rate being first-order in both acrolein and the enzyme. The pH dependence of the inactivation rate constant can be adequately described with a function incorporating a pK alpha of 7.15 and a maximal value for kinact [corrected] of 26.2 M-1 min-1, indicating that at least one of the catalytically essential residues that ionizes at this pH is involved in the modification scheme. The amount of residual CO2 hydratase activity is proportional to the molar excess of acrolein over carbonic anhydrase II with 5 histidyl and 3 lysyl residues being subject to alkylation under conditions where [acrolein] to [carbonic anhydrase II] ratio is greater than 100. Because all lysyl residues were shown previously to be amidinated without detectable loss of activity, it was assumed that the modification of one (or more) of the histidines was primarily responsible for the observed inactivation. The number of modified histidyl residues could be related to residual activity by using the statistical analysis of Tsou (Tsou, C.-L. (1962) Sci. Sin. (Engl. Ed.) 11, 1535-1558) which indicates that one essential histidine reacts approximately four times faster than the other (histidyl) residues. In sharp contrast with the phenomenon observed in connection with CO2 hydration and HCO3- dehydration, acrolein improves the catalytic efficiency of the enzyme toward p-nitrophenyl acetate hydrolysis and acetaldehyde hydration, with the relative activity increasing by approximately 12 and 34%, respectively. The widely differing effects imparted by the same reagent represent the first step toward differential control of the specificity of carbonic anhydrase II.  相似文献   

10.
We have cloned and overexpressed a truncated, recombinant form of beta-carbonic anhydrase from Arabidopsis thaliana. The wild-type enzyme and two site-directed variants, H216N and Y212F, have been kinetically characterized both at steady state by stopped-flow spectrophotometry and at chemical equilibrium by (18)O isotope exchange methods. The wild-type enzyme has a maximal k(cat) for CO2 hydration of 320 ms(-1) and is rate limited by proton transfer involving two residues with apparent pK(a) values of 6.0 and 8.7. The mutant enzyme H216N has a maximal k(cat) at high pH that is 43% that of wild type, but is only 5% that of wild type at pH 7.0. (18)O exchange studies reveal that the effect of the mutations H216N or Y212F is primarily on proton transfer steps in the catalytic mechanism and not in the rate of CO2-HCO3- exchange. These results suggest that residues His-216 and Tyr-212 are both important for efficient proton transfer in A. thaliana carbonic anhydrase.  相似文献   

11.
The importance of perfusate nonbicarbonate buffer capacity (beta nonHCO3) to intracapillary CO2-HCO3(-)-H+ reactions was assessed by theoretical analysis of CO2 exchange in saline-perfused pulmonary capillaries. Time courses for perfusate PCO2, [HCO3-], and [H+] were computed for capillaries containing different activities of luminal vascular carbonic anhydrase and different amounts of perfusate nonbicarbonate buffers. Mobilization of perfusate HCO3- toward CO2 during capillary transit is determined by the availability of HCO3- and H+. A supply of protons from the nonbicarbonate buffer pool is necessary to maintain a high rate of HCO3- dehydration. The analyses indicate that beta nonHCO3 has marked nonlinear effects on transcapillary CO2 exchange and intravascular pH equilibration. These nonlinear effects differ from those previously computed for CO2 reactions in an open system because the present model system consists of a sequential combination of open (within capillary proper) and closed (within postcapillary vasculature) systems. The role of luminal vascular carbonic anhydrase in capillary CO2 reactions is strongly dependent on beta nonHCO3. Perfusate nonbicarbonate buffer capacity must be considered when the results of experimental studies of transcapillary CO2 exchange and/or intravascular pH equilibration are interpreted.  相似文献   

12.
Tu C  Rowlett RS  Tripp BC  Ferry JG  Silverman DN 《Biochemistry》2002,41(51):15429-15435
Catalysis of the dehydration of HCO(3)(-) by carbonic anhydrase requires proton transfer from solution to the zinc-bound hydroxide. Carbonic anhydrases in each of the alpha, beta, and gamma classes, examples of convergent evolution, appear to have a side chain extending into the active site cavity that acts as a proton shuttle to facilitate this proton transfer, with His 64 being the most prominent example in the alpha class. We have investigated chemical rescue of mutants in two of these classes in which a proton shuttle has been replaced with a residue that does not transfer protons: H216N carbonic anhydrase from Arabidopsis thaliana (beta class) and E84A carbonic anhydrase from the archeon Methanosarcina thermophila (gamma class). A series of structurally homologous imidazole and pyridine buffers were used as proton acceptors in the activation of CO(2) hydration at steady state and as proton donors of the exchange of (18)O between CO(2) and water at chemical equilibrium. Free energy plots of the rate constants for this intermolecular proton transfer as a function of the difference in pK(a) of donor and acceptor showed extensive curvature, indicating a small intrinsic kinetic barrier for the proton transfers. Application of Marcus rate theory allowed quantitative estimates of the intrinsic kinetic barrier which were near 0.3 kcal/mol with work functions in the range of 7-11 kcal/mol for mutants in the beta and gamma class, similar to results obtained for mutants of carbonic anhydrase in the alpha class. The low values of the intrinsic kinetic barrier for all three classes of carbonic anhydrase reflect proton transfer processes that are consistent with a model of very rapid proton transfer through a flexible matrix of hydrogen-bonded solvent structures sequestered within the active sites of the carbonic anhydrases.  相似文献   

13.
Steady-state kinetic studies of the bovine carbonic anhydrase B-catalyzed hydration of CO2, dehydration of HCO3-, and hydrolysis of p-nitrophenylacetate were made in glycerol/water solvents of increased viscosity in order that the effect of diffusion-control on the substrate association reactions could be determined. The minimum association rate constants (kmin = V/(Km[E0])) were obtained at low substrate concentrations. The esterase activity did not depend upon the solvent viscosity. However, both the CO2 hydration and HCO3- dehydration reactions depended upon the solvent viscosity consistent with partial diffusion control. Thus both chemical activation and diffusion control processes contribute to the observed kmin. In low-viscosity aqueous solutions both hydration and dehydration are largely controlled by chemical activation. However, at higher viscosities, equal to that found in the interior of the erythrocyte, both reactions are largely diffusion controlled. This result can be interpreted to mean that carbonic anhydrase is a highly evolved enzyme that has approached its maximum efficiency. The extent of diffusion control observed rules out H2CO3 as a significant reactant with the enzyme. Several models that yield minimum steric requirements for access of substrate to the active site are examined. Minimum steric constraints are less for the smaller CO2. The slower esterase reaction is not influenced by diffusion.  相似文献   

14.
Using stopped flow methods, we have measured the steady state rate constants and the inhibition by N3- and I- of the hydration of CO2 catalyzed by carbonic anhydrase III from cat muscle. Also, using fluorescence quenching of the enzyme at 330 nm, we have measured the binding of the sulfonamide chlorzolamide to cat carbonic anhydrase III. Inhibition by the anions was uncompetitive at pH 6.0 and was mixed at higher values of pH. The inhibition constant of azide was independent of pH between 6.0 and 7.5 with a value of KIintercept = 2 X 10(-5) M; the binding constant of chlorzolamide to cat carbonic anhydrase III was also independent of pH in the range of 6.0 to 7.5 with a value Kdiss = 2 X 10(-6) M. Both of these values increased as pH increased above 8. There was a competition between chlorzolamide and the anions N-3 and OCN- for binding sites on cat carbonic anhydrase III. The pH profiles for the kinetic constants and the uncompetitive inhibition at pH 6.0 can be explained by an activity-controlling group in cat carbonic anhydrase III with a pKa less than 6. Moreover, the data suggest that like isozyme II, cat isozyme III is limited in rate by a step occurring outside the actual interconversion of CO2 and HCO3- and involving a change in bonding to hydrogen exchangeable with solvent water.  相似文献   

15.
The hydration of CO2 catalyzed by human carbonic anhydrase II (HCA II) is accompanied by proton transfer from the zinc-bound water of the enzyme to solution. We have replaced the proton shuttling residue His 64 with Ala and placed cysteine residues within the active-site cavity by mutating sites Trp 5, Asn 62, Ile 91, and Phe 131. These mutants were modified at the single inserted cysteine with imidazole analogs to introduce new potential shuttle groups. Catalysis by these modified mutants was determined by stopped-flow and 18O-exchange methods. Specificity in proton transfer was demonstrated; only modifications of the Cys 131-containing mutant showed enhancement in the proton transfer step of catalysis compared with unmodified Cys 131-containing mutant. Modifications at other sites resulted in up to 3-fold enhancement in rates of CO2 hydration, with apparent second-order rate constants near 350 microM(-1) s(-1). These are among the largest values of kcat/Km observed for a carbonic anhydrase.  相似文献   

16.
Lung carbonic anhydrase (CA) participates directly in plasma CO2-HCO3(-)-H+ reactions. To characterize pulmonary CA activity in situ, CO2 excretion and capillary pH equilibration were examined in isolated saline-perfused rat lungs. Isolated lungs were perfused at 25, 30, and 37 degrees C with solutions containing various concentrations of HCO3- and a CA inhibitor, acetazolamide (ACTZ). Total CO2 excretion was partitioned into those fractions attributable to dissolved CO2, uncatalyzed HCO3- dehydration, and catalyzed HCO3- dehydration. Approximately 60% of the total CO2 excretion at each temperature was attributable to CA-catalyzed HCO3- dehydration. Inhibition of pulmonary CA diminished CO2 excretion and produced significant postcapillary perfusate pH disequilibria, the magnitude and time course of which were dependent on temperature and the extent of CA inhibition. The half time for pH equilibration increased from approximately 5 s at 37 degrees C to 14 s at 25 degrees C. For the HCO3- dehydration reaction, pulmonary CA in situ displayed an apparent inhibition constant for ACTZ of 0.9-2.2 microM, a Michaelis-Menten constant of 90 mM, a maximal reaction velocity of 9 mM/s, and an apparent activation energy of 3.0 kcal/mol.  相似文献   

17.
A method has been developed for the positional 13C isotope analysis of pyruvate and acetate by stepwise quantitative degradation. On its base, the kinetic isotope effects on the pyruvate dehydrogenase reaction (enzymes from Escherichia coli and Saccharomyces cerevisiae) for both of the carbon atoms involved in the bond scission (double isotope effect determination) and on C-3 of pyruvate have been determined. The experimental k12/k13 values with the enzyme from E. coli on C-1 and C-2 of pyruvate are 1.0093 +/- 0.0007 and 1.0213 +/- 0.0017, respectively, and, with the enzyme from S. cerevisiae, the values are 1.0238 +/- 0.0013 and 1.0254 +/- 0.0016, respectively. A secondary isotope effect of 1.0031 +/- 0.0009 on C-3 (CH3-group) was found with both enzymes. The size of the isotope on C-1 indicates that decarboxylation is more rate-determining with the yeast enzyme than with the enzyme from E. coli, although it is not the entirely rate-limiting step in the overall reaction sequence. Assuming appropriate values for the intrinsic isotope effect on the decarboxylation step (k3) and the equilibrium isotope effect on the reversible substrate binding (k1, k2), one can calculate values for the partitioning factor R (k3/k2: E. coli enzyme 4.67, S. cerevisiae enzyme 1.14) and the intrinsic isotope effects related to the carbonyl-C (k1/k'1 = 1.019; k3/k'3 = 1.033). The isotope fractionation at C-2 of pyruvate gives strong evidence that the well known relative carbon-13 depletion in lipids from biological material is mainly caused by the isotope effect on the pyruvate dehydrogenase reaction. In addition, our results indicate an alternating 13C abundance in fatty acids, that has already been verified in some cases.  相似文献   

18.
Data are presented that support a nonenzymic mechanism for the staining obtained with the cobalt-bicarbonate method. The biochemically inactive apocarbonic anhydrase and Cu+2 apocarbonic anhydrase stain positively and this stain is inhibited by acetazolamide. The staining of the acetazolamide resistant carbonic anhydrase of male rat liver is inhibited by 10-6 M acetazolamide, at which concentration no biochemical inhibition is observed. There is no correlation between the biochemical and histochemical inhibitory potencies of a number of sulfonamides. The nonsulfonamide inhibitor, KCNO, does not inhibit staining. When incubations are performed in media exposed to atmospheres of increasing CO2 content, staining is not abolished until the atmospheric pCO2 approaches that generated by the medium itself. This finding renders the carbonic anhydrase catalyzed dehydration of HCO3- an improbable reaction for the staining. Studies with modified media show differences in staining patterns and in sensitivity to acetazolamide inhibition which question the specificity of the method for carbonic anhydrase.  相似文献   

19.
We report three experiments which show that the hydrolysis of 4-nitrophenyl acetate catalyzed by carbonic anhydrase III from bovine skeletal muscle occurs at a site on the enzyme different than the active site for CO2 hydration. This is in contrast with isozymes I and II of carbonic anhydrase for which the sites of 4-nitrophenyl acetate hydrolysis and CO2 hydration are the same. The pH profile of kcat/Km for hydrolysis of 4-nitrophenyl acetate was roughly described by the ionization of a group with pKa 6.5, whereas kcat/Km for CO2 hydration catalyzed by isozyme III was independent of pH in the range of pH 6.0-8.5. The apoenzyme of carbonic anhydrase III, which is inactive in the catalytic hydration of CO2, was found to be as active in the hydrolysis of 4-nitrophenyl acetate as native isozyme III. Concentrations of N-3 and OCN- and the sulfonamides methazolamide and chlorzolamide which inhibited CO2 hydration did not affect catalytic hydrolysis of 4-nitrophenyl acetate by carbonic anhydrase III.  相似文献   

20.
Human carbonic anhydrase Ⅱ is one of the most efficient one in carbonic anhydrase isozymes, which catalyzes the reversible hydration dehydration of CO2 and water : CO2 + H2O\ HCO3- + H+. It is found in virtually every tissueand cell type, and involves in many human physiological and pathological processes, such as human acid-base balance, glaucoma, osteoporosis, and cancer. Since discovered in 1940, carbonic anhydrase Ⅱ has been an important drug target with more attention. Up to now, many inhibitors were discovered including some clinical therapeutic drugs. This paper reviewed recent developments in structures, functions and inhibitors of human carbonic anhydrase Ⅱ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号