首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.

Dried shells of Terebratalia transversa, Laqueus californianus, Hemithyris psittacea, and T. unguicula and alcohol‐soaked, tissue‐lined shells of Terebratulina retusa, Dallina septigera, Cryphus vitreus, and Liothyrella uva were crushed in an apparatus that facilitated measurement of the force (newtons) against the valves at the instant of fracture. The results revealed that the costate shells of T. transversa and T. retusa were the strongest. Force is correlated with valve thickness, but not with size (length). When normalized for valve thickness, the force required to fracture shells is correlated with shell biconvexity (height/length) among pooled species of dried specimens. Geniculate specimens of T. retusa were not stronger than the intraspecific variants with a constant radius of curvature to their valves.

The percent‐frequency of plicate, spinose, lamellose and rugate genera increase significantly in the successive stages, Caradocian (Late Ordovician) through Famennian (Late Devonian) at the expense of smooth to costellate genera. The percent‐frequency of rectimarginate (central fold lacking) genera also decreases appreciably in this time frame. These morphologic trends, in combination with the experimental crushing data, support the hypothesis that selection favored species with such anti‐predatory adaptations during a time of escalation of shell‐crushing predators.  相似文献   

2.
Oxygen and the regulation of nitrogen fixation in legume nodules   总被引:3,自引:0,他引:3  
In N2-fixing legume nodules, O2 is required in large amounts for aerobic respiration, yet nitrogenase, the bacterial enzyme that fixes N2, is O2 labile. A high rate of O2 consumptition and a cortical barrier to gas diffusion work together to maintain a low, non-inhibitory O2 concentration in the central, infected zone of the nodule. At this low O2 concentration, cytosolic leghemoglobin is required to facilitate the diffusion of O2 through the infected cell to the bacteria. The resistance of the cortical diffusion barrier is variable and is used by legume nodules to regulate the O2 concentration in the infected cells such that it limits aerobic respiration and N2 fixation at all times. The resistance of the diffusion barrier and therefore the degree of O2 limitation seems to be regulated in response to changes in the O2 concentration of the central infected zone, the supply of phloem sap to the nodule, and the rate of N assimilation into the end products of fixation.  相似文献   

3.
Rates of oxygen consumption were measured in the geothermal, hot spring fish, Oreochromis alcalicus grahami by stopped flow respirometry. At 37° C, routine oxygen consumption followed the allometric relationship: V o2=0.738 M 0.75, where V o2 is ml O2 h −1 and M is body mass (g). This represents a routine metabolic rate for a 10 g fish at 37° C of 0.415 ml O2 g−1 h −1 (16.4 μmol O2 g −1 h −1). Acutely increasing the temperature from 37 to 42° C significantly elevated the rate of O2 consumption from 0.739 to 0.970 ml O2 g −1 h −1 ( Q 10=l.72). In the field, O. a. grahami was observed to be 'gulping' air from the surface of the water especially in hot springs that exceeded 40° C. O. a. grahami may utilize aerial respiration when O2 requirements are high.  相似文献   

4.
Cells of the green alga Selenastrum minutum display a high capacity for extra-mitochondrial O2 consumption in the presence of effectors such as salicylhydroxamic acid and/or NADH. We provide evidence that this O2 consumption is mediated by extracellular peroxidase. Peroxidase capacity, measured as the potential for stimulation of O2 consumption by a combination of salicylhydroxamic acid and NADH, changed over a 10-day time course. Maximal stimulation of O2 consumption occurred at day three, at which point the capacity for peroxidase-mediated O2 consumption was three-to four-fold higher than that of the control O2 consumption rate. Peroxidase-mediated O2 consumption was sensitive to inhibition by 50 m M ascorbate and by cyanide. Cyanide titration curves indicated that O2 consumption by peroxidase was much more sensitive to inhibition by cyanide than was O2 consumption by cytochrome oxidase (I50 < 1.6 μ M and I50= 18.3 μ M cyanide, respectively). By using evidence from a combination of cyanide titration curves and ascorbate inhibition, we concluded that despite a large capacity for peroxidase-mediated O2 consumption, peroxidase did not measurably contribute to control rates of O2 consumption. In the absence of effectors, O2 consumption was mediated primarily by cytochrome oxidase.  相似文献   

5.
Abstract Two denitrifying bacteria ( Pseudomonas chlororaphis and P. aureofaciens ) and a plant (barley, Hordeum vulgare ) were used to study the effect of O2 concentration on denitrification and NO3 uptake by roots under well-defined aeration conditions. Bacterial cells in the early stationary phase were kept in a chemostat vessel with vigorous stirring and thus a uniform O2 concentration in the solution. Both Pseudomonads lacked N2O reductase and so total denitrification could be directly measured as N2O production.
Denitrification decreased to 6–13% of the anaerobic rate at 0.01% O2 saturation (0.14 μM O2) and was totally inhibited at 0.04% O2 saturation (0.56 μM O2). In this well-mixed system denitrification was 10-times more oxygen sensitive than stated in earlier reports. Uptake of nitrate by plants was measured in the same system under light. The NO3 uptake rate decreased gradually from a maximum in 21% O2-saturated medium (air saturated) to zero at 1.6% O2 saturation (22.4 μM O2). Owing to the very different non-overlapping oxygen requirements of the two processes, direct competition for nitrate between plant roots and denitrifying bacteria cannot occur.  相似文献   

6.
Rates of CO2 production and O2 consumption from aged disks of carrot ( Daucus carota L.) root tissues were measured for 4 h after they were transferred from 21% to 0, 1, 2, 4 or 8% O2 in gas mixtures. A transient peak in the rate of CO2 production started 5 to 7 min after transfer to 2% or lower O2 mixtures and peaked at 50 min. After the peaks in CO2 production from the 0, 1 and 2% O2 treatments and after the stable production from the 4 and 8% O2 treatments, the rate of CO2 production from all low O2 treatments started to decline at 50 min, reaching stable rates by 160 to 240 min. Concentrations of lactate and ethanol that were significantly higher than the 21% O2 controls had started to accumulate in disks between 10 and 50 min after exposure to atmospheres containing 2% or less O2. Production of CO2 started to increase 5 to 7 min after transfer to 0, 1 and 2% O2, while the initial decline and then rise in pH and the accumulation of ethanol did not occur until 30 min after the change in atmosphere. Ethanol accumulation paralleled the increase in pH; first at 0.4 μmol g−1 h−1 from 30 to 60 min as the pH shifted from 5.97 to 6.11, and then at 0.08 μmol g−1 h−1 from 60 to 100 min as the pH stablized around 6.12. The peak at 50 min in CO2 production roughly coincided with the shift from the rapid to the slow change in pH and ethanol accumulation.  相似文献   

7.
We present, for the first time, the oxygen response kinetics of mitochondrial respiration measured in intact leaves (sunflower and aspen). Low O2 concentrations in N2 (9–1500 ppm) were preset in a flow-through gas exchange measurement system, and the decrease in O2 concentration and the increase in CO2 concentration as result of leaf respiration were measured by a zirconium cell O2 analyser and infrared-absorption CO2 analyser, respectively. The low O2 concentrations little influenced the rate of CO2 evolution during the 60-s exposure. The initial slope of the O2 uptake curve on the dissolved O2 concentration basis was relatively constant in leaves of a single species, 1.5 mm s−1 in sunflower and 1.8 mm s−1 in aspen. The apparent K 0.5(O2) values ranged from 0.33 to 0.67 μ M in sunflower and from 0.33 to 1.1 μ M in aspen, mainly because of the variation of the maximum rate, V max (leaf temperature 22°C). The initial slope of the O2 response of respiration characterizes the catalytic efficiency of terminal oxidases, an important parameter of the respiratory machinery in leaves. The plateau of the response characterizes the activity of the mitochondrial electron transport chain and is subject to regulations in accordance with the necessity for ATP production. The relatively low oxygen conductivity of terminal oxidases means that in leaves, less than 10% of the photosynthetic oxygen can be reassimilated by mitochondria.  相似文献   

8.
Nitrogenase (N2ase; EC 1.18.6.1) activity (H2 evolution) and root respiration (CO2 evolution) were measured under either N2:O2 or Ar:O2 gas mixtures in intact nodulated roots from white clover ( Trifolium repens L.) plants grown either as spaced or as dense stands. The short-term nitrate (5 m M ) inhibition of N2-fixation was promoted by competition for light between clover shoots, which reduced CO2 net assimilation rate. Oxygen-diffusion permeability of the nodule declined during nitrate treatment but after nitrate removal from the liquid medium its recovery parallelled that of nitrogenase activity. Rhizosphere pO2 was increased from 20 to 80 kPa under N2:O2. A simple mono-exponential model, fitted to the nodule permeability response to pO2, indicated NO3 induced changes in minimum and maximum nodule O2-diffusion permeability. Peak H2 production rates at 80 kPa O2 and in Ar:O2 were close to the pre-decline rates at 20 kPa O2. At the end of the nitrate treatment, this O2-induced recovery in nitrogenase activity reached 71 and 82%; for clover plants from spaced and dense stands, respectively. The respective roles of oxygen diffusion and phloem supply for the short-term inhibition of nitrogenase activity in nitrate-treated clovers are discussed.  相似文献   

9.
Abstract The extent of recovery of nitrogenase activity of Gloeothece transferred from an atmosphere of O2 to air depended on the duration of exposure to O2. Activity recovered at increasing rates after up to 24 h exposure to O2 and a lag before detection of activity, present after short (1 h) exposure times, disappeared with longer exposures. Synthesis of nitrogenase de novo was implicated, since chloramphenicol, tetracycline, or repressive levels of NH+4, prevented recovery of activity. Specific radioimmunoassay of the rate of synthesis of the MoFe protein of nitrogenase under O2 correlated well with the activity measurements, and indicate that a shift from air to O2 only transiently represses nitrogenase synthesis.  相似文献   

10.
Abstract. A model is developed for photosynthesis and photorespiration in C3 plants, using an equation for the multisubslrate ordered reaction of ribulose 1,5-bisphosphalc carboxylase-oxygenase (Farazdaghi & Edwards, 1988). The model examines net CO2 fixation with O2 inhibition, and mutual inhibition when equilibrium exists between carboxylation and oxygenation (at the CO2 compensation point). It is based on the stoichiometry of energy requirements and O2, and CO2 exchange in the cycles, the quantum efficiency for RuBP generation, the maximum capacity for RuBP generation, the carboxylation efficiency with respect to [CO2], and the oxygenation efficiency with respect to [O2]. With increasing concentrations of CO2 above the CO2 compensation point, decreasing quantum flux density, or decreasing O2, simulations show that the rate of photorespiration progressively decreases. The two components of O2 inhibition of photosynthesis change disproportionately with increasing CO2 concentration. According to the model, the energy utilized during photosynthesis at the CO2 compensation point is about half that under atmospheric conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号