首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The green shore crab, Carcinus maenas, undergoes on average 6?h periods of emersion during each low-tide cycle during the summer months. Under those conditions, the crab is cut off from its normal water environment and is exposed to potential stress from a suite of environmental and physiological changes: dehydration, compromised gas exchange and resultant internal hypoxia and hypercapnia, thermal stress, and ammonia toxicity. This study examined the comprehensive responses of the green crab in water and to a 6?h emersion period laboratory simulation of a tidal cycle followed by a 1?h re-immersion period, measuring indicators of dehydration, hemolymph osmolality, oxygen uptake, hemolymph acid–base status, heart and ventilatory rate, and hemolymph ammonia and ammonia excretion. Green crabs showed physiological responses of varying magnitude to 6?h of emersion. Individuals were found in the field exclusively under rocks and large clumps of seaweed where temperatures were approximately half those of exposed surfaces and relative humidity was about twice as high as ambient air. During emersion, crabs lost less than 5% of their wet weight, and hemolymph osmolality did not increase significantly. Oxygen uptake continued in air at about 50% of the control, aquatic values; and the gills continued to be ventilated by the scaphognathite, albeit at lower rates. Hemolymph lactate concentrations increased, indicating a shift to a greater reliance on anaerobic metabolism to support energetic needs. A slight acidosis developed in the hemolymph after 1?h of emersion, but it did not increase thereafter. Ammonia concentrations in the hemolymph were unchanged, as ammonia was volatilized by the gills and excreted into the air as NH3 gas. These results show that the green crab copes with emersion by seeking refuge in microhabitats that mitigate the changes in the physical parameters of intertidal emersion. Physiologically, desiccation is avoided, cardio-respiratory processes are maintained at reduced levels, and hemolymph acid–base balance is minimally affected. Ammonia toxicity appears to be avoided by a shift to excreting NH3 gas directly or indirectly to air.  相似文献   

2.
Survival ability of Maia squinado to emersion and subsequent reimmersion was determined in winter and summer conditions. Male spider crabs were less tolerant of emersion than females. Emersion (up to 24 h in summer and to 48 h in winter) induced a marked reduction of nitrogen excretion, especially ammonia excretion. Increase in blood ammonia content was rapid and very high in summer (1750 micromol l(-1)), but non-lethal levels. Estimation of the body ammonia overload showed that only 30% of unexcreted ammonia accumulated in blood. The ammonia release at reimmersion indicated that ammonia also accumulated in other body compartments. Increase in blood urate content, which indirectly reduces ammonia production, was similar at both seasons. Emersed M. squinado was rapidly resorting to anaerobic metabolism, especially in summer when its blood haemocyanin content is low. A strong hyperglycemia was developed in the first 12 h of emersion at both seasons. Mortality occurring beyond 24 h of reimmersion, when the body ammonia overload is cancelled and the recovery of most of blood components is achieved, remains unexplained.  相似文献   

3.
The main objective of this study was to determine whether active NH(4) (+) excretion occurred in the giant mudskipper, Periophthalmodon schlosseri, during emersion. Our results demonstrated that continual ammonia excretion in P. schlosseri during 24 hr of emersion resulted in high concentrations ( approximately 30 mmol l(-1)) of ammonia in fluid collected from the branchial surface. For fish injected intraperitoneally with 8 mumol g(-1) ammonium acetate (CH3COONH4) followed by 24 hr of emersion, the cumulative ammonia excreted was significantly greater than that of the control injected with sodium acetate. More importantly, the ammonia excretion rate at hour 2 in fish injected with CH3COONH4 followed by emersion was greater than that in fish immersed in water as reported elsewhere, with the greatest change in the ammonia excretion rate occurring at hour 2. Assuming that the rate of endogenous ammonia production remained unchanged, 33% of the exogenous ammonia was excreted through the head region, presumably through the gills, during the first 6 hr of emersion. Indeed, at hour 6, the ammonia concentration in the branchial fluid increased to an extraordinarily high concentration of >90 mmol l(-1). Therefore, our results confirm for the first time that P. schlosseri can effectively excrete a high load of ammonia on land, and corroborate the proposition that active NH(4) (+) excretion through its gills contributes in part to its high tolerance of aerial exposure. Only 4.6% of the exogenous ammonia was detoxified to urea. The glutamate contents in the muscle and liver also increased significantly, but the glutamine contents remained unchanged.  相似文献   

4.
Atlantic salmon Salmo salar fry and parr were subjected to 5 min of forced activity and the subsequent changes in oxygen consumption and ammonia excretion rates were evaluated over a 24 h period. In a second experiment, individual Atlantic salmon fry and parr were freeze‐clamped in liquid nitrogen, before, immediately following a 5 min activity period, or after periods of recovery up to 2 h. Samples were analysed for whole body phosphocreatine (PCr), ATP and lactate. Five minutes of forced activity resulted in significant increases in both oxygen consumption and ammonia excretion rates. Changes in the oxygen consumption rates were greater in the parr compared with the fry. In contrast, the post‐exercise ammonia excretion rates were nearly twice as high for the fry compared with the parr. Exercise also caused a marked decrease in PCr levels (c. 47 and 65% in fry and parr, respectively), no change in ATP levels and a significant increase in lactate levels in Atlantic salmon fry and parr. Recovery of PCr occurred quickly (between 15 and 30 min) in fry and parr. Although the post‐activity levels of lactate were lower in fry (c. 3 μmol g?1) compared with parr (c. 14 μmol g?1), lactate levels returned to control levels within 60 min in fry, but it took >2 h for this metabolite to recover in parr. Compared with parr, these findings show that Atlantic salmon fry possess a reduced anaerobic capacity, and these results are consistent with the theoretical and experimental evidence that smaller fish support burst swimming through aerobic processes.  相似文献   

5.
The African sharptooth catfish Clarias gariepinus lives in freshwater, is an obligatory air breather, and exhibits high tolerance of environmental ammonia. This study aimed at elucidating the strategies adopted by C. gariepinus to defend against ammonia toxicity during ammonia exposure. No carbamoyl phosphate synthetase (CPS) I or III activities were detected in the liver or muscle of the adult C. gariepinus. In addition, activities of other ornithine-urea cycle (OUC) enzymes, especially ornithine transcarbamylase, were low in the liver, indicating that adult C. gariepinus does not have a "functional" hepatic OUC. After being exposed to 50 or 100 mM NH4Cl for 5 d, there was no induction of hepatic OUC enzymes and no accumulation of urea in tissues of the experimental animals. In addition, the rate of urea excretion remained low and unchanged. Hence, ammonia exposure did not induce ureogenesis or ureotely in C. gariepinus as suggested elsewhere for another obligatory air-breathing catfish of the same genus, Clarias batrachus, from India. Surprisingly, the local C. batrachus did not possess any detectable CPS I or III activities in the liver or muscle as had been reported for the Indian counterpart. There were no changes in levels of alanine in the muscle, liver, and plasma of C. gariepinus exposed to 50 or 100 mM NH4Cl for 5 d; neither were there any changes in the glutamine levels in these tissues. Yet even after being exposed to 100 mM NH4Cl for 5 d, there was no significant increase in the level of ammonia in the muscle, which constitutes the bulk of the specimen. In addition, the level of ammonia accumulated in the plasma was relatively low compared to other tropical air-breathing fishes. More importantly, for all NH4Cl concentrations tested (10, 50, or 100 mM), the plasma ammonia level was maintained relatively constant (2.2-2.4 mM). These results suggest that C. gariepinus was able to excrete endogenous ammonia and infiltrated exogenous ammonia against a very steep ammonia gradient. When exposed to freshwater (pH 7.0) with or without 10 mM NH4Cl, C. gariepinus was able to excrete ammonia continuously to the external medium for at least 72 h. This was achieved while the plasma NH4+ and NH3 concentrations were significantly lower than those of the external medium. Diffusion trapping of NH3 through boundary layer acidification can be eliminated as the pH of the external medium became more alkaline instead. These results represent the first report on a freshwater fish (C. gariepinus) adopting active excretion of ammonia (probably NH4+) as a major strategy to defend against ammonia toxicity when exposed to environmental ammonia.  相似文献   

6.
Crustacean discards experience stress during commercial fishing operations, due to increased exercise while in the trawl and aerial exposure during sorting of the catch. Physiological stress and recovery were assessed following trawling of two ecologically important decapod species, regularly discarded in the Clyde Nephrops fishery. Haemolymph samples taken from trawled swimming crabs, Liocarcinus depurator, and squat lobsters, Munida rugosa, had significantly higher concentrations of ammonia (0.308 and 0.519 mmol l(-1)), D-glucose (0.14 and 0.097 mmol l(-1)) and L-lactate (6.2 and 0.87 mmol l(-1)) compared with controls, indicating an impairment of ammonia excretion and a switch to anaerobic metabolism. Concurrently, the haemolymph pH of trawled squat lobsters was low (7.47) compared with controls (7.75); however, the reverse trend was found in L. depurator. Initially elevated lactate (7.98 mmol l(-1)) and glucose (0.73 mmol l(-1)) concentrations of trawled and emersed (1 h) L. depurator were restored, 4 h after re-immersion along with pH (7.54). Crabs that had been emersed for 1 h had significantly higher concentrations of glucose (0.2 mmol l(-1)) and lactate (5.14 mmol l(-1)), and had more acidic blood (7.64) than L. depurator subject to 1 h of exercise, indicating that anoxia was the main cause of physiological stress. Crabs and squat lobsters lost 7% and 9% of their initial body wet weight following 1 h of emersion, although blood osmolarities did not change significantly. While all animals survived aerial exposure in our experiments, sorting of the catch on commercial boats takes up to 300 min, which could lead to mortality or sub-lethal chronic biochemical changes that could compromise fitness.  相似文献   

7.
The air-breathing Singhi catfish Heteropneustes fossilis was kept inside moist peat for 1 month mimicking their normal habitat in summer and the role of ureogenesis for their survival in a water-restricted condition was studied. The ammonia excretion rate by the mud-dwelled fish increased transiently between 6 and 12 h of re-immersion in water to approximately between eight and 10-fold, followed by a sharp decrease almost to the normal level at the later part of re-immersion. The urea-N excretion by the mud-dwelled fish increased to approximately 11-fold within 0-3 h of re-immersion, followed by a gradual decrease from 9 h onwards. The rate of urea-N excretion by the mud-dwelled fish, however, remained significantly higher (approx. threefold more) than the control fish even after 36-48 h of re-immersion. Although there was a significant increase of both ammonia and urea levels in the plasma and other tissues (except ammonia in the brain), the level of accumulation of urea was higher than ammonia in the mud-dwelled fish as indicated by the decrease in the ratio of ammonia: urea level in different tissues including the plasma. The activities (units/g tissue and /mg protein) of glutamine synthetase and three enzymes of the urea cycle, carbamyl phosphate synthetase, argininosuccinate synthetase and argininosuccinate lyase increased significantly in most of the tissues (except the brain) of the mud-dwelled fish as compared to the control fish. Higher accumulation of ammonia in vivo in the mud-dwelled Singhi catfish is suggested to be one of the major factors contributing to stimulation of ureogenesis. Due to this physiological adaptive strategy of ureogenesis, possibly along with other physiological adaptation(s), this air-breathing amphibious Singhi catfish is able to survive inside the moist peat for months in a water-restricted condition.  相似文献   

8.
The African sharptooth catfish Clarias gariepinus lives in freshwater, is an obligatory air breather, and can survive on land during drought. The objective of this study was to elucidate how C. gariepinus defends against ammonia toxicity when exposed to terrestrial conditions. During 4 d of aerial exposure, there was no accumulation of urea in its tissues, and the rate of urea excretion remained low. Thus, exposure to terrestrial conditions for 4 d did not induce ureogenesis or ureotely in C. gariepinus. Volatilization of NH(3) was not involved in excreting ammonia during aerial exposure. In addition, there were no changes in levels of alanine in the muscle, liver, and plasma of C. gariepinus; nor were there any changes in the glutamine levels in these tissues. However, there were extraordinarily high levels of ammonia in the muscle (14 micromol g(-1)), liver (18 micromol g(-1)), and brain (11 micromol g(-1)) of fish exposed to terrestrial conditions for 4 d. This is the first report on a fish adopting high tolerance of ammonia in cells and tissues as the single major strategy to defend against ammonia toxicity during aerial exposure. At present, it is uncertain how C. gariepinus tolerates such high levels of ammonia, especially in its brain, but it can be concluded that, contrary to previous reports on two air-breathing catfishes (Clarias batrachus and Heteropneustes fossilis) from India, C. gariepinus does not detoxify ammonia to urea or free amino acids on land.  相似文献   

9.
The effect of tidal emersion on survivorship, photosynthesis and embryonic development was studied in 8 h old zygotes and 7 d old embryos of the intertidal brown alga Pelvetia fastigiata (J. Ag.) DeToni. Zygotes and embryos were outplanted for single low tides in the intertidal zone on the central coast of California (U.S.A.) during June, 1990. Both zygotes and embryos exhibited close to 100% survival when outplanted beneath the canopy of adult P. fastigiata. Embryos (7 d old) also exhibited high survival when outplanted in a red algal turf, the microhabitat where most successful recruitment occurs. However, zygotes (8 h old) experienced high mortality (65–90%) when outplanted in the turf microhabitat. Embryos and zygotes that survived emersion experienced sub-lethal stress that temporarily impaired light-saturated photosynthesis when plants were reimmersed in seawater. The effects of sub-lethal stress were more pronounced in 8 h old zygotes than 7 d embryos, and more severe in the turf microhabitat than beneath the adult Pelvetia canopy. Zygotes outplanted in the red algal turf did not re-establish net photosynthesis until at least 6 h after re-immersion. Photosynthesis was less inhibited in 8 h old zygotes outplanted beneath the adult Pelvetia canopy, and recovered to control (non-emersed) levels within 3 h of re-immersion. Embryos (7 d old) were able to achieve positive net photosynthesis immediately on re-immersion after emersion in the turf or canopy microhabitats. Emersion also retarded the rate of embryonic development in 8 h old zygotes, delaying the formation of primary rhizoids, which help to attach the plant to the substrate. For example, at 19 h post-fertilization, 75% of control (non-emersed) zygotes had developed rhizoids, compared to 3% and 30% for zygotes outplanted in the turf and canopy microhabitats. The different emersion responses of 8 h old zygotes and 7 d old embryos appeared to be related to their ability to tolerate cellular dehydration. Overall, our data suggest that the effects of sub-lethal stresses may have been underestimated in studies of intertidal ecology.  相似文献   

10.
The metabolic characteristics of five muscle groups in the spiny lobster Jasus edwardsii were examined in order to compare their anaerobic and oxidative capacities. Enzyme activities of phosphorylase, phosphofructokinase, pyruvate kinase, and lactate dehydrogenase were highest in abdominal muscles supporting anaerobic burst activity. Hexokinase, citrate synthase, and HOAD activities in the leg and antennal muscles indicated higher aerobic potential. Arginine kinase activities were high in all muscle groups indicating that muscle phosphagens are an important energy reserve. Arginine phosphate concentrations in 4th periopod and abdominal flexor muscle from lobsters sampled in the field were higher than any values from captive animals, and approximately five times those for ATP. Muscle lactates were high in captive animals. Responses to emersion during simulated live transport appear to exploit the capacity for functional anaerobiosis and further differentiated the muscle groups. Abdominal muscles were especially sensitive and after 24 h showed significant increases in lactate, glucose, ADP, and AMP. ATP levels appeared to be maintained by muscle phosphagens and raised doubts about the efficacy of the adenylate energy charge in evaluating the emersion response. Haemolymph glucose, lactic acid, and ammonia peaked after 24 h emersion and were largely restored following re-immersion. We propose that arginine phosphate concentrations in the 4th periopod are an appropriate index of metabolic stress, and could lead to improved commercial handling protocols.  相似文献   

11.
The nitrogen metabolism and excretion patterns of the grunting toadfish Allenbatrachus grunniens and the effects of salinity on these processes were examined. Individuals of A. grunniens were subjected to several experimental treatments, including variable salinity (2 to 30), high pH (8·5 compared to 7·0 for controls), high environmental ammonia (10 mM) and confinement to small water volumes, and measurements were made of activities of selected enzymes of nitrogen metabolism, ammonia and urea excretion rates, and tissue and plasma contents of ammonia, urea and amino acids. Activities of key ornithine‐urea cycle enzymes were rather low ( e.g . liver carbamoyl phosphate synthetase III activity was 0·001 μmols min−1 g−1), and A. grunniens consistently demonstrated a low capacity for urea excretion despite significant elevations of plasma and tissue ammonia contents by the high pH and high ammonia treatments. This species could thus be categorized as ammoniotelic. Total free amino acid contents in plasma and tissues were increased by the high pH and high ammonia treatments, but no patterns were discerned in individual amino acids that would indicate any preferential accumulation ( e.g . alanine and glutamine) as has been noted previously in several semi‐terrestrial fish species. Thus, it appeared that A. grunniens was not unusual in its patterns of nitrogen metabolism and excretion in comparison to other 'typical' teleosts. Furthermore, manipulation of salinity had no major effects on nitrogen excretion in either this species or in comparative studies with the ureotelic gulf toadfish Opsanus beta . The results are discussed in the context of the broader pattern of nitrogen metabolism and excretion in the Batrachoididae.  相似文献   

12.
The effect of salinity and time of exposure on metabolism and growth of juveniles of fat snook, Centropomus parallelus, were investigated. Food conversion efficiency (FCE), specific growth rate (SGR), oxygen consumption, ammonia excretion rate and O:N (oxygen/nitrogen) ratio were assessed on groups of fat-snook (mean weight 2 g) acclimated for 15- and 30-day periods, to 5‰, 20‰ and 30‰ salinities. For 15-day period, differences between FCEs as well as SGRs at different salinities were not significant. For 30-day period, however, these differences were significant between 5‰ and the other salinities, with the highest and lowest values at 5‰ and 30‰, respectively, for both parameters. Salinity and acclimation period exerted significant influence on the oxygen consumption, ammonia excretion and the O:N ratio of juveniles of C. parallelus. The lowest and highest oxygen consumption was at 20‰ for 15- and 30-day period, respectively. Differences in oxygen consumption between fishes maintained at 5‰ and at 30‰ were not significant, at each period, while between those maintained at 5‰ and 20‰, and at 20‰ and 30‰ differences were significant. Ammonia excretion rates were significantly different between all salinities, at each period, and between periods at each salinity, except at 30‰. The highest and lowest rates were found at 5‰ and 30‰, respectively. The highest O:N ratio for 15-day period was at 30‰ with no difference between those at 5‰ and 20‰. For 30-day period, differences of O:N ratio were significant between salinities. The effect of acclimation period on the O:N was significant only at 20‰. Although C. parallelus is a fish species adapted to face a wide variation of environmental salinity, results show that juvenile fishes kept at different salinities, in laboratory, found better condition to efficiently channel the energy of food into growth at 5‰ for both acclimation periods.  相似文献   

13.
Nitrogen excretion by the gulf toadfish (Opsanus beta) is of interest because of its high proportion of urea excretion compared with that of other teleosts. To better understand the factors influencing the timing of nitrogen excretion, the ratio of excreted urea∶ammonia, and the effector molecules regulating these processes, gulf toadfish were subjected to a series of experiments that moved them progressively from internal laboratory to outdoor mesocosm settings while assessing their behavior, nitrogen excretion patterns, levels of plasma hormones/effectors, and other parameters. In confined flux chambers in both laboratory and outdoor settings, toadfish nitrogen excretion was largely observed as urea pulses, with no apparent diel patterns to the pulses. Unrestrained toadfish in mesocosms exhibited distinctly nocturnal behavior, remaining exclusively in shelters during the day but taking several forays out into the mesocosm at night. In contrast to nitrogen excretion patterns in chambers, urea and ammonia were coexcreted in mesocosms and ratios for urea∶ammonia were very close to 1∶1 for both fed and fasted toadfish. The majority of measured excretion (and corresponding declines in plasma urea levels) occurred during two distinct periods of pulsing during daylight hours (0600-1000 and 1600-1800 hours). The declines in plasma urea associated with excretion were preceded by/coincided with declines in plasma cortisol. No day/night or hourly patterns in plasma serotonin (5-hydroxytryptamine [5-HT]) were observed, but there was a strong positive correlation among all samples between plasma urea and 5-HT. There was also a negative correlation between plasma cortisol and 5-HT. As expected for a nocturnally active species, plasma melatonin was significantly lower in daylight hours. A variety of enzyme activities (glutamine synthetase, glutaminase) and mRNA levels (glutamine synthetase, urea transporter, and Rhesus proteins) showed no significant variation over a diel cycle. Unlike prior laboratory studies, our results show that gulf toadfish in a natural setting have a distinctly diurnal pattern of nitrogen excretion and that ammonia and urea are coexcreted. The decline in plasma cortisol associated with urea pulses noted in prior laboratory studies was not as evident in the natural setting.  相似文献   

14.
The purpose of this investigation was to examine the effect of low body glycogen stores on plasma ammonia concentration and sweat ammonia excretion during prolonged, nonexhausting exercise of moderate intensity. On two occasions seven healthy untrained men pedalled on a cycle ergometer for 60 min at 50% of their predetermined maximal O2 uptakes ( max) firstly, following 3 days on a normal mixed diet (N-diet) (60% carbohydrates, 25% fat and 15% protein) and secondly, following 3 days on a low-carbohydrate diet (LC-diet) (less than 5% carbohydrates, 50% fat and 45% protein) of equal energy content. Blood was collected from the antecubital vein immediately before, at 30th and at 60th min of exercise. Sweat was collected from the hypogastric region using gauze pads. It was shown that plasma ammonia concentrations after the LC-diet were higher than after the N-diet at both the 30th and 60th min of exercise. Sweat ammonia concentration and total ammonia loss through the sweat were also higher after the LC-diet. The higher ammonia concentrations in plasma and sweat after the LC-diet would seem to indicate an increased ammonia production, which may be related to reduced initial carbohydrate stores.  相似文献   

15.
Five species of amphibious stichaeoid fishes (four stichaeids, one pholidid) with distinct but overlapping distribution patterns in the rocky intertidal zone of central California were studied in the laboratory with respect to body size and shape, survival out of water, evaporative water loss and water resorption upon re-immersion. Members of all species survived periods of emersion of at least 6 h, but maximum survival times varied with species and body size. Surface area to weight ratios in relation to body length were highest in Xiphister atropurpureus (Kittlitz) and X. mucosus (Girard), lowest in Cebidichthys violaceus (Girard) and Anoplarchus purpurescens Gill and most variable in Xererpes fucorum (Jordan & Gilbert) (the pholidid). Weight-specific water loss (mg · g−1 · h−1) was highest in the two species of Xiphister followed in order by Xererpes fucorum, Cebidichthys violaceus and Anoplarchus purpurescens.

In general, adaptive relationships were found between body size, surface area, tolerance of water loss and intertidal distribution patterns. Among juvenile stichaeoids, for which problems of emersion are most critical, those of Cebidichthys violaceus possess the combination of attributes, including small surface area to weight ratio, high water content and long tolerance of emersion, that should give them an adaptive edge in occupying the upper levels of the shore. In accordance with these characteristics, C. violaceus has the highest, most exposed vertical distribution of the five study species.  相似文献   


16.
Rates of ammonia release from sediments by chironomid larvae   总被引:1,自引:0,他引:1  
SUMMARY. 1. Microcosms of Lake Balaton mud and sterilized sand and aerated water were used to evaluate ammonia increments in the overlying water as influenced by chironomid density and temperature. In the two approaches, the effects of sediment disturbance and metabolic excretion of chironomids were measured.
2. The activity of larvae increased the ammonia content of the overlying water at temperatures above 10°C. A rise of temperature to 20°C resulted in a 5–20-fold increase in ammonia release in both systems with chironomids.
3. At 10°C combined effects of sediment disturbance and of excretion produced lower release rates than did excretion rates alone (mud-water v. sand-water treatments). At higher temperatures (15 and 20°C) release rates of ammonia by sediment disturbance plus excretion were higher than excretion rates alone. Ammonia excretion contributed significantly to the total release at each temperature.
4. Metabolic mineralization of nitrogen compounds appears to be an important mechanism contributing to nitrogen regeneration from aerobic lake sediments. High N:P ratio (14:1) of chironomid excretion materials supports this interpretation.  相似文献   

17.
Bonefish Albula vulpes (n = 7) exercised to exhaustion and air exposed for 1 min as part of a catch‐and‐release angling event were found to excrete both ammonia and urea, but cortisol and lactate were below detectable levels. Urea made up a greater proportion of total nitrogen excretion from these fish at all time points following an angling event. When captive juvenile lemon sharks Negaprion brevirostris (n = 12) were exposed to a 30 s pulse of these chemicals [ammonia (500 mM), cortisol (20 µg l?1), lactate (6 mM) or urea (3 mM)], they showed a significant reduction in the frequency of resting behaviours when exposed to ammonia and urea than when exposed to control water. It appears that products excreted by A. vulpes, particularly ammonia and urea, may provide an olfactory cue for the post‐release predation of A. vulpes by N. brevirostris during catch‐and‐release angling events.  相似文献   

18.
This paper estimated the significance of ammonia excretion by Donax serra Röding in the regeneration of nitrogen for the surf-zone adjacent to a high energy beach. The migrations of D. serra over a tidal cycle were quantified in order to calculate inundation periods for each size class on an exposed beach. The rôle of this animal in surf-zone nitrogen regeneration was then estimated by measuring ammonia excretion rates of individual animals and then calculating NH4-N excretion for the whole population along the shoreline investigated. This gave an estimate of ≈ 300 g NH4-N per m of shoreline per yr using a biomass of 7000 g per m. This quantity is probably sufficient to regenerate the total nitrogen pool of the surf-zone every month.  相似文献   

19.
The nitrogenous excretion rates (total ammonia nitrogen, urea, and primary amines) of plunderfish Harpagifer antarcticus were related significantly to length and to wet mass (mass exponents of 0·94, 1·01, 1·07 and 0·93 for total ammonia nitrogen, urea, primary amines, and total nitrogen, respectively). The routine total ammonia excretion rates [22·23 & 2·0 mg N kg−1 day−1 (mean±S.E.)] of plunderfish measured in Antarctica are 10–69% lower than those of comparable non-polar species. Plunderfish are ammonotelic, but the proportion of the total nitrogenous waste attributable to each category was variable between individuals. On average (ranges in parentheses), total ammonia nitrogen, urea, and primary amines accounted for c .82 (57–97), 13 (2–28), and 5 (0·6–22)%, respectively, of the total nitrogen excreted. Polar fish differ from their non-polar relatives only in the rate, and not the nature, of their nitrogenous waste excretion processes.  相似文献   

20.
Small groups of juvenile Atlantic cod, Gadus morhua L., were kept at 14°C in through-flow tanks and were fed known quantities of a compounded diet of natural food. The cod were fed single and multiple meals with ration size in the range 0.5 to 4.1% of total wet fish body weight. Ammonia production in each feeding experiment was monitored continuously.
For single-meal experiments, significant relationships were derived between ration size and (a) total ammonia excreted, (b) total exogenous ammonia excreted above endogenous excretion levels, (c) duration of the elevated phase of ammonia excretion, (d) maximum rate of ammonia excretion, and (e) time delay after feeding to reach maximum rate of ammonia excretion. Relationships between nitrogen loss as ammonia and nitrogen intake were examined and estimates of endogenous excretion rate and maintenance ration made.
Repetitive feeding resulted in cyclical variation in ammonia excretion. At the lowest ration size, ammonia excretion rates had nearly returned to the pre-feeding level within 24 h. At higher feeding levels, the effect of each successive meal tended to be cumulative, resulting in increasingly higher ammonia excretion rates which only stabilized towards the end of the experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号