首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A simple and effective procedure has been developed for plantlet regeneration from cotyledon-derived callus of the medicinally important herb and ornamental species, Incarvillea sinensis. An average of 18.4 adventitious shoots per explant were obtained from 100% cotyledon explants cultured on half-strength Murashige and Skoog (MS) medium containing 1.0 mg l−1 6-benzylaminopurine for 3 wk, followed by another 4 wk on hormone-free 1/2×MS medium. The cotyledon explants continued to expand and regenerate new shoots upon repeated subculturing onto fresh medium. Most regenerated shoots (66.9%) were rooted on 1/4×MS mediumcontaining 1.0 mg l−1 indole-3-acetic acid, with an average of about 3.8 roots per shoot. Regenerated plants with well developed shoots and roots were successfully acclimatized in soil and were normal phenotypically.  相似文献   

2.
Cell immobilization has been proposed as a useful technique for mass production and efficient purification of secondary metabolites. In this study, we compared the bio-productivity of ligand-free and Ca-alginate-immobilized mulberry cells for rutin and γ-amino butyric acid (GABA). In the leaves of Subong mulberry plants (M. bombycis K.) grown in a greenhouse, GABA accumulated as the leaves aged; a more than a 20-fold increase of GABA was observed in leaves undergoing senescence than in younger leaves. In contrast, more rutin was detected in mature leaves than in young leaves and those undergoing senescence. The production of total proteins in ligand-free leaf callus cells dramatically increased until 6 days after incubation in liquid suspension media (from 6.5 mg/g callus at day 0–14.5 mg/g callus), and by day 15 dropped to levels similar to those seen in the 0-day control. In contrast, immobilized cells showed a slight increase and then an insignificant decrease in protein content during the 15-day incubation period. Interestingly, immobilized mulberry cells more efficiently produced and secreted rutin and GABA into the suspension media than ligand-free cells. KN, a cytokinin, enhanced this production while 2,4-dichlorophenoxyacetic acid(2,4-D), an auxin, alleviated the effect of KN. As a result, incubation of the immobilized Subong cells in a full-strength Murashige and Skoog (MS) liquid medium containing 1 mg/l of 2,4-D and 0.1 mg/l KN, among the hormone combinations in the medium we tested, produced the highest amounts of rutin (8.2 μg/g callus cells) and GABA (305 μg/g callus cells) and secreted the largest amounts into the suspension media.  相似文献   

3.
Hypericum perforatum L. (St. John’s wort) produces a number of phytochemicals having medicinal, anti-microbial, anti-viral and anti-oxidative properties. Plant extracts are generally used for treatment of mild to medium cases of depression. Plant regeneration can be achieved in this species by in vitro culture of a variety of explants. However, there are no reports of regeneration from petal explants. In this report plant regeneration from petal explants of St. John’s wort was evaluated. Petals of various ages were cultured on agarized Murashige and Skoog 1962 (MS) medium supplemented with auxin and cytokinin (kinetin), maintained in the dark and callus and shoot regeneration determined after 28 days. At an auxin to cytokinin ratio of 10:1, callus and shoot formation were induced by all levels of indole-3-acetic acid (IAA), indole-3-butyric acid (IBA) and 1-naphthaleneacetic acid (NAA), while 2,4-dichlorophenoxyacetic acid (2,4-D) induced only callus formation. The optimum level of auxin for shoot regeneration was 1.0 and 0.1 mg/l kinetin, where the regeneration frequency was 100 percent for all three auxins. The highest number of shoots per explant (57.4 and 53.4) was obtained with IAA and IBA, respectively. In the absence of auxin, kinetin levels of 0.1 and 0.25 mg/l induce callus and shoot formation at low frequency but not at lower levels. Callus and shoot formation did not occur in the absence of growth regulators. Petal-derived shoots were successfully rooted on half-strength MS medium without a requirement for exogenous auxin and flowering plants were established under greenhouse conditions. From these results it can be concluded that auxin type is a critical factor for plant regeneration from petal explants of Hypericum perforatum and there is no absolute requirement for high levels of cytokinin.  相似文献   

4.
Summary Shoot tips and leaves excised from in vitro shoot cultures of Salvia nemorosa were evaluated for their organogenic capacity under in vitro conditions. The best shoot proliferation from shoot tips was obtained on Murashige and Skoog (MS) medium supplemented with 8.9 μM 6-benzylaminopurine (BA) and 2.9 μM indole-3-acetic acid (IAA). Leaf lamina and petiole explants formed shoots through organogenesis via callus stage and/or directly from explant tissue. The highest values for shoot regeneration were obtained with 0.9 μM BA and 2.9 μM IAA for lamina explants. No shoot organogenesis was obtained on leaf explants cultured on MS medium supplemented with α-naphthaleneacetic acid (NAA). The regenerated shoots rooted the best on MS medium containing 0.6 μM IAA or 0.5 μM NAA. In vitro-propagated plants were transferred to soil with a survival rate of 85% after 3 mo.  相似文献   

5.
The structural features of flavonoids which are involved in the modulation of auxin distribution in Arabidopsis thaliana were evaluated. An auxin-inducible promoter IAA2 fused to a reporter gene (GUS) was used to monitor the tissue responsiveness to auxins. The following aspects were investigated: 1) the influence of flavonoids (quercetin, naringenin, kaempferol, myricetin and isorhamnetin) on the distribution of indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) in roots and leaves, 2) differences in flavonoid uptake into roots and shoots depending on flavonoid concentration in the medium, and 3) influence of structurally different flavonoids on the gravitropic response and growth of roots. The same flavonoids differently affected IAA and IBA distribution in leaves and roots. There were several structural requirements for the flavonoids which resulted in the changes of auxin response/distribution. Great differences between the ability of shoots and roots to take up quercetin were showed. Also, flavonoids influenced gravitropism and root growth of Arabidopsis seedlings in a structure-dependent manner.  相似文献   

6.
A method for plant regeneration in Robinia pseudoacacia L. from cell suspension culture was established. Non regenerative friable callus from hypocotyls and cotyledon explants from in vitro raised seedling induced on solid Murashige and Skoog (MS) medium supplemented with 0.05 mg dm−3 2,4-dichlorophenoxyacetic acid (2,4-D) was used for initiation of cell suspension cultures on same MS medium but without agar. Single cells were isolated after 3 d and the optimum cell density was 1–3 × 104 cells per cm3 of the liquid MS medium. Plating efficiency was 29.6 % and callus formed within 4 weeks was subcultured and transferred to solid MS medium supplemented with 0.6 mg dm−3 benzyladenine (BA) along with 0.05 mg dm−3 α-naphthalene-1-acetic acid (NAA) for the induction of adventitious bud primordia. The shoots developed were isolated and re-cultured on MS medium containing 0.6 mg dm−3 BA. These microshoots after dipping in 1–2 cm3 of 10 mg dm−3 indole-3-butyric acid (IBA) for 24 h in dark were cultured on half strength solid MS medium supplemented with 0.05 % charcoal and showed 80–82 % rooting within 4 weeks.  相似文献   

7.
A regeneration and transformation system has been developed using organogenic calluses derived from soybean axillary nodes as the starting explants. Leaf-node or cotyledonary-node explants were prepared from 7 to 8-d-old seedlings. Callus was induced on medium containing either Murashige and Skoog (MS) salts or modified Finer and Nagasawa (FNL) salts and B5 vitamins with various concentrations of benzylamino purine (BA) and thidiazuron (TDZ). The combination of BA and TDZ had a synergistic effect on callus induction. Shoot differentiation from the callus occurred once the callus was transferred to medium containing a low concentration of BA. Subsequently, shoots were elongated on medium containing indole-3-acetic acid (IAA), zeatin riboside, and gibberellic acid (GA). Plant regeneration from callus occurred 90 ∼ 120 d after the callus was cultured on shoot induction medium. Both the primary callus and the proliferated callus were used as explants for Agrobacterium-mediated transformation. The calluses were inoculated with A. tumefaciens harboring a binary vector with the bar gene as the selectable marker gene and the gusINT gene for GUS expression. Usually 60–100% of the callus showed transient GUS expression 5 d after inoculation. Infected calluses were then selected on media amended with various concentrations of glufosinate. Transgenic soybean plants have been regenerated and established in the greenhouse. GUS expression was exhibited in various tissues and plant organs, including leaf, stem, and roots. Southern and T1 plant segregation analysis of transgenic events showed that transgenes were integrated into the soybean genome with a copy number ranging from 1–5 copies.  相似文献   

8.
Filipendula ulmaria (L.) Maxim (meadowsweet) is a medicinal plant that is claimed to have several biological activities, including anti-tumor, anti-carcinogenic, anti-oxidant, anti-coagulant, anti-ulcerogenic, anti-microbial, anti-arthritic, and immunomodulatory properties. This report describes, for the first time, an efficient plant regeneration system for F. ulmaria via adventitious shoot development from leaf, petiole, and root explants cultured on Murashige and Skoog’s minimal organics medium containing different concentrations of thidiazuron (TDZ), benzyladenine, and kinetin either alone or in combination with different auxins. Relatively extensive/prolific shoot regeneration was observed in all three explant types with TDZ in combination with indole-3-acetic acid (IAA). Gibberellic acid (GA3), TDZ, and IAA combinations were also tested. The best shoot proliferation was observed among root explants cultured on media supplemented with 0.45 μM TDZ + 2.85 μM IAA + 1.44 μM GA3. Regenerated shoots were transferred to rooting media containing different concentrations of either IAA, indole-3-butyric acid (IBA), naphthalene acetic acid, or 2,4-dichlorophenoxyacetic acid. Most shoots developed roots on medium with 2.46 μM IBA. Rooted explants were transferred to vermiculite in Magenta containers for a 2-wk acclimatization period and then finally to plastic pots containing potting soil. The plantlets in soil were kept in growth chambers for 2 wk before transferring to greenhouse conditions.  相似文献   

9.
Studies on rooting of microshoots of smokebush (Cotinus coggygria Mill, var. Royal Purple), a woody ornamental, were carried out in vitro. Microshoots were rooted in a mixed-auxin regime (indole 3-acetic acid, indole butyric acid [IBA], and naphthalene acetic acid) or singly in the above auxins and the 2,4 dichlorophenoxyacetic acid (2,4-D) over a wide concentration range. Indole butyric acid at 10 μM proved to be the most suitable treatment, producing less basal callus, 100% rooting, and earlier root emergence than the other treatments. No roots were formed with 2,4-D. A 6-day root induction period was obtained with 10 μM of IBA. Histological studies revealed increased mitotic activity after 3 d in culture in the medullary ray cells, which led to root primordium formation, several of which were formed simultaneously around the base of the explant. The vascular tissues of these primordia connected to those of the explant, and roots began to emerge from the base by day 10. Thus, direct rhizogenesis occurred with the IBA treatment, as opposed to the roots that were formed in the basal callus under the mixed-auxin regime.  相似文献   

10.
Summary Shoot cultures and callus cultures from roots and leaves of Hemidesmus indicus R. Br (Asclepiadaceae) were established on Murashige and Skoog medium with various hormonal combinations. The production of antioxidants (lupeol, vanillin, and rutin) in shoot cultures, callus cultures derived from leaf cells and root cells, was compared with root and aerial portions of the parent plant. Shoot cultures and leaf callus cultures produced more antioxidants than root callus cultures. In vitro culture of this species might ofter an alternative method for production of these important pharmaccuticals, which would reduce the collection pressure on this rare plant.  相似文献   

11.
An efficient system for inducing somatic embryogenesis in Panax notoginseng was established using shaker flasks and bioreactor cultures; furthermore, regenerated plantlets were successfully transferred to ex vitro soil conditions. Embryogenic callus was induced from segments of adventitious roots incubated on Murashige and Skoog (MS) medium containing 1.0 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) after 5 weeks of culturing. The highest frequency (100%) of somatic embryogenesis, with a mean of 32.7 somatic embryos per callus, was obtained on embryogenic callus incubated on a medium containing 0.5 mg/L 2,4-D. To scale-up somatic embryo formation, 10 g (~1.65 × 104) of early globular-stage somatic embryos were incubated in a 3 L airlift bioreactor containing 1.5 L 1/2 MS medium without plant growth regulators (PGRs) for a period of 4 weeks; these globular-stage somatic embryos then developed into cotyledonary embryos. When maintained on PGR-free medium, the cotyledonary embryos developed roots but did not develop shoots. However, when they were treated with gibberellic acid (GA3), they continued to germinate and transformed into plantlets after 2 weeks of culture. Plantlets with well-developed shoots and roots were transferred to an autoclaved vermiculite and perlite mixture, acclimatized for a period of 3 months and successfully transferred to forest mountain soil. Following overwintering, these plants produced new growth.  相似文献   

12.
An efficient in vitro propagation of kava (Piper methysticum) was established. Utilizing 15-d-old tender shoots from dormant auxiliary buds as explants, significant induction of vigorous aseptic cluster shoots was achieved in Murashige and Skoog (MS) medium containing 0.5 mg dm−3 6-benzyladenine (BA), 0.5 mg dm−3 indole-3-acetic acid (IAA), and antibiotics after 30 d. In vitro rooting was achieved at 100 % efficiency in MS medium containing 0.75 to 1.00 mg dm−3 IAA or indole-3-butyric acid and 3 % sucrose. The most robust and long roots were observed in medium with IBA. Moreover, the embryonic callus was induced from petioles in MS medium supplemented with 1.0 mg dm−3 BA and 0.1 mg dm−3 IAA, of which 70 % differentiated into shoots in the presence of 1.0 mg dm−3 BA and 0.5 mg dm−3 IAA.  相似文献   

13.
Abstract   The rooting capacity of microshoots derived from two mature Eucalyptus urophylla X Eucalyptus grandis half-sib clones kept for 3 y under intensive micropropagation was assessed in different in vitro conditions. A first set of experiments established that clone 147 microshoots rooted earlier and in greater proportions, while producing more adventitious roots overall than their homologs from clone 149. Modifying the composition of the basal 1/2-MS-derived rooting medium by 1/4-MS or Knop macronutrients, or reducing sucrose concentration to 10 g l−1 did not enhance the rooting rates. However, together with the growth regulators added, they had a significant effect on the number of adventitious roots formed. With rooting rates reaching 81%, the higher rootability of clone 147 over clone 149 was further confirmed by the second set of experiments with significant effects of the various auxins tested and strong clone × auxin interactions on the proportions of rooted microshoots and on the number of adventitious roots. The best rooting scores were given by 5 μM indole-3-butyric acid (IBA) and 12.5 μM 1-naphthaleneacetic acid (NAA), whereas the microshoots exposed to 5 or 12.5 μM indole-3-acetic acid (IAA) were less responsive. Lower light intensities did not improve significantly root capacities, although differences might exist according to the genotype. Overall, root and shoot elongation was stimulated by light. At the end of the experiment, the rooted microshoots were markedly taller than the non-rooted ones, with significant influences of auxins and light intensity, and to a lesser extent, of the genotypes.  相似文献   

14.
Persian poppy (Papaver bracteatum Lindl.) is an important commercial source of medicinal opiates and related compounds. In this research, calli were induced from seeds, roots, cotyledons and hypocotyls of P. bracteatum at a high efficiency. The optimized callus induction media consisted of the Murashige and Skoog (MS) basic media supplemented with 1.0 mg/L 2, 4-dichlorophenoxyacetic acid (2,4-D), 0.1 mg/L kinetin and 15 mg/L ascorbic acid. The concentrations of 2,4-D and ascorbic acid were found critical to callus induction and proliferation. Subsequent subcultures resulted in excellent callus proliferation. Ascorbic acid at concentration 15 mg/L increased the callus proliferation significantly. Maximum callus growth was achieved when the explants were incubated at 25°C. MS salts at full strength were found inhibitory for callus induction, while ľ MS salts were found to favor callus induction. Shoot regeneration of calli in vitro was achieved on ľ MS medium containing 0.5 mg/L benzylamine purine and 1.0 mg/L naphthalene acetic acid. Analysis of alkaloid extracts from Persian poppy tissues by high-performance liquid chromatography showed that thebaine accumulated in the tissues of plants. The thebaine alkaloid profile of the Persian poppy is a well-defined model to evaluate the potential for metabolic engineering of thebaine production in P. bracteatum.  相似文献   

15.
Two protocols were developed for the efficient regeneration of Sinningia speciosa from leaf explants via two developmental pathways. The first method involved formation of callus and buds, followed by subsequent root growth, in Murashige and Skoog medium (MS) containing 2.0 mg l−1 6-benzylaminopurine (BA) and 0.2 mg l−1 α-naphthalene acetic acid (NAA), with a regeneration efficiency of 99.0%. The second method involved producing callus and roots, followed by subsequent formation of buds, in MS medium supplemented with 1.0–5.0 mg l−1 NAA, and resulted in a regeneration efficiency of 90.4%. Our experiments indicate that the root-first pathway resulted in a lower plant regeneration efficiency. Through five continual generations using the buds-first method, a total of 215 regenerated plants were obtained in the last generation, and eight exhibited a phenotype we named tricussate whorled phyllotaxis (twp). Six of the regenerated twp variant plants maintained their tricussate whorled phyllotaxis phenotype, showing no other abnormalities, while one reverted to a wild type before flowering and another formed two rounds of sepals. Physiological analysis revealed that the twp plants responded differently than wild type to exogenous NAA and 2,3,5-triiodobenzoic acid (TIBA), while high-performance liquid chromatography (HPLC) analysis showed that the levels of endogenous indole-3-acetic acid (IAA) and gibberellin (GA) were lower in twp than wild-type plants. These results suggest that the formation of the twp mutant may be related to phytohormones and that the twp variant could be an important material for investigating the molecular mechanism of plant phyllotaxis patterning.  相似文献   

16.
This report deals with micropropagation of the critically endangered and endemic Turkish shrub, Thermopsis turcica using callus, root and cotyledonary explants. Callus cultures were initiated from root and cotyledon explants on MS medium supplemented with 0.5–20 μM NAA or 2,4-D. The root explants were found to be better in terms of quick responding and callusing percentages as compared to the cotyledons. Organogenic callus production with adventitious roots and shoots were obtained on MS medium with only NAA. The calli obtained with NAA, root and cotyledonary explants were cultured with BA and kinetin (2–8 μM) alone or in combination with a low level (0.5 μM) of 2,4-D or NAA. The best regeneration of shoots from root explants was observed on hormone-free MS medium. NAA with BA or kinetin in the medium improved shoot induction from the calli obtained with NAA. Maximum percentage of shoots (93.3%), maximum number of shoots (6.2) and maximun length of shoots (8.22 cm) were achieved from cotyledonary explants at 4 μM BA and 0.5 μM NAA. The presence of 0.5 μM or higher levels of 2,4-D in shoot induction medium inhibited the regeneration in T. turcica explants. 83% of in vitro rooting was attained on pulsed-IBA treated shoots. The regenerated plants with well developed shoots and roots were successfully acclimatized. Application of this study’s results has the potential to conserve T. turcica from extinction.  相似文献   

17.
A genetic transformation system has been developed for callus cells of Crataegus aronia using Agrobacterium tumefaciens. Callus culture was established from internodal stem segments incubated on Murashige and Skoog (MS) medium supplemented with 5 mg l−1 Indole-3-butyric acid (IBA) and 0.5 mg l−1 6-benzyladenine (BA). In order to optimize the callus culture system with respect to callus growth and coloration, different types and concentrations of plant growth regulators were tested. Results indicated that the best average fresh weight of red colored callus was obtained on MS medium supplemented with 2 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 1.5 mg l−1 kinetin (Kin) (callus maintenance medium). Callus cells were co-cultivated with Agrobacterium harboring the binary plasmid pCAMBIA1302 carrying the mgfp5 and hygromycin phosphotransferase (hptII) genes conferring green fluorescent protein (GFP) activity and hygromycin resistance, respectively. Putative transgenic calli were obtained 4 weeks after incubation of the co-cultivated explants onto maintenance medium supplemented with 50 mg l−1 hygromycin. Molecular analysis confirmed the integration of the transgenes in transformed callus. To our knowledge, this is the first time to report an Agrobacterium-mediated transformation system in Crataegus aronia.  相似文献   

18.
Summary Somatic embryo (bipolar) or shoot (monopolar) morphogenesis in mesophyll cells of Euphorbia nivulia Buch.-Ham in vitro was dependent on the type of auxin supplementing Murashige and Skoog (MS) medium containing benzyladenine. Direct in vitro morphogenesis, i.e., organogenesis, and somatic embryogenesis were significantly influenced by seasonal growth of the donor plant, explant position (proximal, mid, and distal), and light. Explants collected in march/April were superior to July/August material. Proximal explants underwent morphogenesis more readily than mid- and tip-derived explants. Incubation in the light favored morphogenesis while darkness was inhibitory. Kinetin (Kn) was also inhibitory to morphogenesis. MS medium enriched with different levels of N6-benzyladenine (BA) alone, or in combination with α-naphthaleneacetic acid (NAA) or indole-3-acetic acid (IAA), induced adventitious shoots directly. Explants collected in March/April cultured on medium with 13.3 μM BA and 2.69 μM NAA developed the highest number of shoots, a mean of 15.2 shoots per proximal explant. Developed shoots rooted the best on half-strength MS medium with 2.46 μM indole-3-butyric acid, which developed a mean of 5.2 roots per shoot. Rooted healthy shoots could be transplanted to small pots, with an 80% survival rate. Addition of 2,4-dichlorophenoxyacetic acid (2.4-D) to BA-supplemented medium was obligatory to develop somatic embryos. MS medium containing 2.26 μM 2,4-D and 4.44 μM BA induced a mean of 44.8 somatic embryos per proximal explant. The embryos passed through distinct stages of embryogenesis, namely globular, heart, torpedo, and early cotyledonary. The embryos (88%) underwent maturation on half-strength MS medium with 2.89 μM gibberellic acid (GA3), and its subsequent transfer on half-strength MS basal medium in light conditions facilitated 80% conversion of embryos to plantlets. Direct shoots or embryos were originated from the mesophyll cells. Somatic embryo development was concurrent with the independent origin of vasculature in the bulbous basal portion. The survival rate of embryo-derived plants was 90%.  相似文献   

19.
Embryogenic callus was initiated by culturing in vitro taro corm slices on agar-solidified half-strength MS medium containing 2.0 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) for 20 days followed by transfer to 1.0 mg/L thidiazuron (TDZ). Callus was subsequently proliferated on solid medium containing 1.0 mg/L TDZ, 0.5 mg/L 2,4-D and 800 mg/L glutamine before transfer to liquid medium containing the same components but with reduced glutamine (100 mg/L). After 3 months in liquid culture on an orbital shaker, cytoplasmically dense cell aggregates began to form. Somatic embryogenesis was induced by plating suspension cells onto solid media containing reduced levels of hormones (0.1 mg/L TDZ, 0.05 mg/L 2,4-D), high concentrations of sucrose (40–50 g/L) and biotin (1.0 mg/L). Embryo maturation and germination was then induced on media containing 0.05 mg/L benzyladenine (BA) and 0.1 mg/L indole-3-acetic acid (IAA). Histological studies of the developing embryos revealed the presence of typical shoot and root poles suggesting that these structures were true somatic embryos. The rate of somatic embryos formation was 500–3,000 per mL settled cell volume while approximately 60% of the embryos regenerated into plants.  相似文献   

20.
An efficient micropropagation system for mining ecotype Sedum alfredii Hance, a newly identified Zn/Cd hyperaccumulator, was developed. Frequency of callus induction reached up to 70% from leaves incubated on Murashige and Skoog (MS) medium supplemented with 1.0 mg l−1 2,4-dichlorophenoxy acetic acid (2,4-D) and 0.5 mg l−1 6-benzyladenine (BA), and 83% from internodal stem segments grown on MS medium with 0.1 mg l−1 2,4-D and 0.1 mg l−1 BA. Callus proliferated rapidly on MS medium containing 0.2 mg l−1 2,4-D and 0.05 mg l−1 thidiazuron. The highest number of adventitious buds per callus (17.3) and frequency of shoot regeneration (93%) were obtained when calli were grown on MS medium supplemented with 2.0 mg l−1 BA and 0.3 mg l−1 α-naphthalene acetic acid (NAA). Elongation of shoots was achieved when these were incubated on MS medium containing 3.0 mg l−1 gibberellic acid. Induction of roots was highest (21.4 roots per shoot) when shoots were transferred to MS medium containing 2.0 mg l−1 indole 3-butyric acid rather than either indole 3-acetic acid or NAA. When these in vitro plants were acclimatized and transferred to the greenhouse, and grown in hydroponic solutions containing 200 μM cadmium (Cd), they exhibited high efficiency of Cd transport, from roots to shoots, and hyperaccumulation of Cd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号