首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 595 毫秒
1.
Suuroia T  Aunapuu M  Arend A  Sépp E 《Tsitologiia》2002,44(7):656-660
The ultrastructure of oviduct epithelium of clinically healthy cows and 15 sows was investigated using scanning and transmission electron microscopy. In all parts of the oviduct, ciliated and non-ciliated epithelial cells are present, but their number varies in both the investigated animals in different regions of the oviduct, depending on the phase of the estrous cycle. In addition to ciliated cells with numerous cilia on their luminal surface, so-called pale ciliary cells were found in all parts of the oviduct of cows and sows. The cytoplasm of these cells is electron-lucent, their luminal surface carries few cilia and short microvilli. The apical cytoplasm contains species specific secretory granules, which means that these cells have features characteristic of both secretory and ciliated cells. It is suggested that the pale ciliated and non-ciliated secretory cells are functional stages of the same tubar epithelium cell, and that the transformation between these two cell types is regulated by functional requirements of the organ in different phases of the estrous cycle.  相似文献   

2.
Morphometric, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) investigations have displayed regional differences in the mare oviductal epithelium. The entire mucosa of the oviduct was lined with a pseudostratified epithelium, which consisted of two distinct cell types, ciliated and non-ciliated. Ciliated cells were predominant in the three different segments of the oviduct and their percentage increased from fimbriae to ampulla and significantly decreased in the isthmus. SEM revealed in the infundibulum finger-like mucosal folds, some of them interconnected, in the ampulla numerous and elaborated branched folds of the mucosa, whereas the isthmus displayed a narrow lumen, short and non-branched mucosal folds. In the ampulla and isthmus the majority of non-ciliated cells showed apical blebs provided or not of short microvilli. TEM displayed different ultrastructural features of ciliated and non-ciliated cells along the oviduct. Isthmus ciliated cells presented a more electron-dense cytoplasm than in infundibulum and ampulla cells and its cilia were enclosed in an amorphous matrix. The non-ciliated cells of infundibulum did not contain secretory granules but some apical endocytic vesicles and microvilli coated by a well developed glycocalyx. Non-ciliated cells of ampulla and isthmus contained secretory granules. Apical protrusions of ampulla displayed two types of secretory granules as well as occasional electron-lucent vesicles. Isthmus non-ciliated cells showed either electron-lucent or electron-dense cytoplasm and not all contained apical protrusions. The electron-dense non-ciliated cells displayed microvilli coated with a well developed glycocalyx. Three types of granules were observed in the isthmus non-ciliated cells. The regional differences observed along the epithelium lining the mare oviduct suggest that the epithelium of the each segment is involved in the production of a distinctive microenvironment with a unique biochemical milieu related to its functional role.  相似文献   

3.
Summary Changes occurring in the epithelium covering bronchus-associated lymphoid tissue (BALT) in the rat after several intratracheal administrations of horseradish peroxidase (HRP) were studied using morphological and ultrastructural methods. The epithelium is invaded by W3/ 25-positive (T-helper) lymphocytes, the BALT epithelial cells become Ia-positive and develop microvilli; there is an apparent loss of cilia. The number of non-ciliated cells in stimulated BALT increases. The non-ciliated cells can be subdivided into two cell types, one with electron-dense cytoplasm and cytoplasmic granules and the other without granules. The electron-density of the latter cell type is intermediate between that of the ciliated cells and that of the granulecontaining non-ciliated cells. The granule-containing cell types may be responsible for the uptake of antigens, while the other non-ciliated cell may be involved in the production of the secretory component and the passage of secretory IgA.Supported by a research grant from the Nederlands Astma Fonds  相似文献   

4.
Intratracheal administration in rabbits of a detergent solution (Blue Perlan) determined the progressive swelling of bronchiolar epithelial cells, mainly of non-ciliated secretory ones, with hypertrophy of cytoplasms, frequent bleb ruptures and partial cell necroses. Mucoprotein synthesis was not enhanced. Ultrastructurally, the non-ciliated Clara cells were predominating; their cytoplasms were hypertrophied, prominent in bronchiolar lumina, and contained a few mitochondria and numerous dark-stained secretory granules with a thin membrane; glycogen was present in cytosol, and the apical zones of cytoplasms were locally balloonized; nuclei were chromatin-monomorphous and had an evident membrane. Disrupted blebs presented the same granules and glycogenrich structure as the cytoplasms. Intermingled ciliated cells presented small mitochondria, sometimes modified, and some secretory granules; cilia and basal corpuscles were rarely damaged. Some microvilli intermingled among cilia, but they were extremely rare in non-ciliated secretory hypertrophied cells. Some light junctions were observed between bronchiolar cell cytoplasms. The evolution to partial necrotizing bronchiolitis was obvious mainly after the third intratracheal injection of the detergent solution.  相似文献   

5.
The epithelium of the hepatic region of the intestine in Saccoglossus mereschkowskii, a representative of enteropneusts (Enteropneusta, Hemichordata), a group located at the base of Chordata, has been studied by using electron microscopy. The ultrastructure of ciliated and granular epithelial cells, elements of the intraepithelial nerve layer, and intercellular junctions are characterized. The data on the details of the structure of the ciliary apparatus and the system of ciliary rootlets are presented. Justification is provided for the presence of a complicated construction in the ciliated cells, a supportive carcass of cilia that performs a mechanical stabilizing function, and possibly the synchronization of the ciliary movement. The existence of cilia with two centrioles is considered as adaptation to the high functional load on the ciliary apparatus. Well-developed bundles of myofilaments have been revealed in the cytoplasm of the basal parts of ciliated cells, which characterizes these cells as epitheliomuscular. Peculiarities indicating the role of ciliated cells in absorption are described, as well as the capability of these cells for balloon-like secretion. Data are presented on the accumulation of reserved nutritional substances in the cell cytoplasm in the form of lipids and glycogen. With respect to their function, ciliated cells are determined as the ciliated secretory-absorptive epitheliomuscular cells. The location of secretory granules in both apical and basal parts of granular cells indicates the exocrine-endocrine function of these cells. There are no typical endocrine cells in the intestinal epithelium of S. mereschkowskii. Several types of granules are described in the cytoplasm of nerve fibers. Junctions between nerve fibers and basal parts of ciliated and granular epithelial cells have been revealed; the neural regulation of the contractile and secretory functions of epithelial cells is assumed. The intestinal epithelium of enteropneusts is presumed to contain a regulatory neuroendocrine system composed of receptor cells of the open type, secretory endocrine-like cells, and of nerve elements of the nervous layer.  相似文献   

6.
The secretory processes in the shell gland of laying chickens were the subject of this study. Three cell types contribute secretory material to the forming egg: ciliated and non-ciliated columnar cells of the uterine surface epithelium, and cells of tubular glands in the mucosa. The ciliated cells as well as the non-ciliated cells have microvilli, which undergo changes in form and extent during the secretory cycle. At the final stages of shell formation they resemble stereocilia. It is postulated that the microvilli of both cells are active in the production of the cuticle of the shell. The ciliated cell which has both cilia and microvilli manufactures secretory granules which arise from the Golgi complex in varying amounts throughout the egg laying cycle. Granule production reaches its greatest intensity during the early stages of shell deposition. The ciliated cell probably supplies proteinaceous material to the matrix of the forming egg shell. The non-ciliated cell has only microvilli. Secretory granules, containing an acid mucopolysaccharide, arise from the Golgi complex. Some granules are extruded into the uterine lumen where they supply the egg shell with organic matrix. Others migrate towards the supranuclear zone. Here a number of them disintegrate. This is accompanied by the formation of a large membraneless space, which is termed “vacuoloid.” Subsequently the vacuoloid regresses and during regression an extensive rough endoplasmic reticulum with numerous polyribosomes of spiral configuration appears. It is suggested that material in the vacuoloid originating from the disintegrating granules is resynthesized and utilized for the formation of secretory product. The uterine tubular gland cells have irregular, frondlike microvilli. During egg shell deposition, these microvilli form large blebs and are probably related to the elaboration of a watery, calcium-containing fluid.  相似文献   

7.
The morphology and fine structure of female Intoshia variabili, new combination for Rhopalura variabiliAlexandrov & Sljusarev, 1992, were studied with transmission electron microscopy. The body surface is covered with a 3-layered cuticula, under which is a layer of ciliated + non-ciliated cells arranged in alternating rings around the body. Ciliated cells have lateral extensions that intercalate with the non-ciliated cells. The kinetosome of each cilium has two longitudinally oriented cross-striated rootlets. The outer surface of the ciliated cells is covered with small tubercles, and the cytoplasm of these cells contains granules, vacuoles, mitochondria, fibrillar structures and lamellary bodies. A band of dense fibrils passes through the upper part of each ring of cells, going from one cell junction to another, encircling the entire body. Between the layer of ciliated + non–ciliated cells and the oocytes, elongated contractile cells from 4–5 longitudinal columns and 1 ring, the latter at the level of ciliated rings 7–9. The contractile cells contain thick and thin longitudinally oriented fibrils. The oocytes contain a large nucleus, numerous mitochondria, electron–dense granules and 1–2 spherical structures. An anteriorly situated, ciliated goblet–like receptor, not described for any other orthonectids, consists of three closely apposed cells, the upper part of which contains densely packed cilia. The genital pore opens through a non–ciliated cell and is surrounded by several cells with granules.  相似文献   

8.
The spatangoid echinoid Echinocardium cordatum possesses specialized penicillate podia that handle sediment particles during burrowing and feeding. Epidermal complexes, which occur on podial surfaces directly contacting the sediment, each comprise four cells: a non-ciliated secretory cell containing granules rich in mucopolysaccharides (NCS cell), a ciliated secretory cell containing granules of unknown composition (CS cell), and two ciliated non-secretory cells (CNS cells). The cilium of the CS cell is subcuticular whereas that of each CNS cell traverses the cuticle. We propose that these four cells constitute a sensory-secretory complex wherein the ciliated cells are sensory cells and the secretory cells function for adhesion and de-adhesion. More exactly, an NCS cell adhesive and a CS cell de-adhesive would be sequential and would be initiated by two successive stimulations transduced by cilia when the podium touches the sediment. Cilia that first contact the sediment are those protruding through the cuticle from the CNS cells. Their stimulation would result in the secretion of an adhesive material by the NCS cells. Subsequently, the subcuticular cilia of CS cells would be stimulated when the podial digitations closely squeeze the substrate, and this would induce the secretion of a de-adhesive. These two antagonistic secretions would allow the podium to pick up and discharge sediment repetitively during burrowing and feeding.  相似文献   

9.
Summary Electron microscopical studies were made of the thyroid gland of an adult lamprey, Lampetra japonica, in the upstream migration period.The thyroid consists of many usual follicles containing the colloid in their lumina, and a large parafollicle without colloid. The paper concerns only the usual follicle.The follicle cells found in the usual follicle wall are classified into three types; 1. a non-ciliated taller cell, 2. a ciliated taller one, and 3. a non-ciliated cuboidal one. From their cytoplasmic fine structure, it is considered that all these cells are essentially identical and differences among them are due to their functional state.All these type cells are characterized by irregularly developed interdigitations and aggregates of tonofilaments throughout the cytoplasm, especially in the perinuclear region. Although the rough-surfaced endoplasmic reticulum and the Golgi apparatus are fairly well developed in the first and second type cells, the cisternae are not so large-vacuolated but flattened, and the cytoplasm is more compact as compared with that of the higher vertebrate. In the third type cell, the cytomembranes are poorly developed.Large dense inclusion-bodies consisting of heterogeneously dense materials, of lamellar structures, and of less dense vacuoles, which are found often in taller follicle cells, are also characteristic for the lamprey thyroid. The body which might be intimately related to the Golgi apparatus is considered to be a kind of lysosomes and it perhaps corresponds to the yellow pigment observed by light microscopy.In the apical part of the cytoplasm in taller cells, there are three kinds of granules or vesicles; numerous small vesicles considered to be derived from the Golgi apparatus, a few small dense granules which seem to originate from the Golgi region, and a few large less-dense granules.In the third type cell, the cytomembranes are not so well developed as those of the first and second type cells. The large heterogeneously dense bodies and the cytoplasmic granules are very few in number.Around the follicle of the lamprey thyroid, there are a dense basement membrane and a relatively compact connective tissue with few blood capillaries. Characteristic fat cells are found in the connective tissue.  相似文献   

10.
Abstract. Corticium candelabrum is a homosclerophorid sponge widespread along the rocky Mediterranean sublittoral. Scanning and transmission electron microscopy were used to describe the gametes and larval development. The species is hermaphroditic. Oocytes and spermatocytes are clearly differentiated in April. Embryos develop from June to July when the larvae are released spontaneously. Spermatic cysts originate from choanocyte chambers and spermatogonia from choanocytes by choanocyte mitosis. Oocytes have a nucleolate nucleus and a cytoplasm filled with yolk granules and some lipids. Embryos are surrounded by firmly interlaced follicular cells from the parental tissue. A thin collagen layer lies below the follicular cells. The blastocoel is formed by migration of blastomeres to the morula periphery. Collagen is spread through the whole blastocoel in the embryo, but is organized in a dense layer (basal lamina) separating cells from the blastocoel in the larva. The larva is a typical cinctoblastula. The pseudostratified larval epithelium is formed by ciliated cells. The basal zone of the ciliated cells contains lipid inclusions and some yolk granules; the intermediate zone is occupied by the nucleus; and the apical zone contains abundant electron-lucent vesicles and gives rise to cilia with a single cross-striated rootlet. Numerous paracrystalline structures are contained in vacuoles within both apical and basal zones of the ciliated cells. Several slightly differentiated cell types are present in different parts of the larva. Most cells are ciliated, and show ultrastructural particularities depending on their location in the larvae (antero-lateral, intermediate, and posterior regions). A few smaller cells are non-ciliated. Several features of the C. candelabrum larva seem to support the previously proposed paraphyletic position of homoscleromorphs with respect to the other demosponges.  相似文献   

11.
The normal parathyroids of six humans and a Virginia deer were studied by light and electron microscopy. The parenchyma of the deer parathyroid is composed of uniform chief cells, which contained 100 to 400 mµ electron-opaque, membrane-limited granules, presumed to be secretory granules, in addition to the usual cytoplasmic organelles. Desmosomes are present between adjacent cells, and rare cilia are observed protruding from the chief cells into the intercellular space. The human parathyroids contain chief cells in two phases—active and inactive—as well as oxyphil cells. Active chief cells have a large Golgi apparatus, sparse glycogen, numerous secretory granules, and rare cilia. Inactive chief cells contain a small Golgi apparatus, abundant glycogen, and few secretory granules. Both forms have the usual cytoplasmic organelles and, between adjacent cells, desmosomes. Oxyphil cell cytoplasm is composed of tightly packed mitochondria and glycogen granules, with rare secretory granules. Cells with cytoplasmic characteristics intermediate between chief and oxyphil cells, possibly representing transitional cells, have been observed. Secretory granules of both man and deer are composed of 100 to 200 A particles and short rods, and the granules develop from prosecretory granules in the Golgi region of the cell. The human secretory granules are smaller and more variable in shape than those of the deer. The granules are iron and chrome alum hematoxylin-positive, argyrophilic, and aldehyde fuchsin-positive, permitting light microscopic identification. They are also found in the capillary endothelial cells of the parathyroid and in its surrounding connective tissue. The secretory granules of the parathyroid cells can thus be followed from their formation in the Golgi apparatus almost to their extrusion into the blood stream.  相似文献   

12.
In order to elucidate the problem of which cells are involved in calcium transport and to estimate the role of mitochondria in calcium transport in the avian shell gland, the fine structure and the Ca-ATPase, succinate dehydrogenase (SDH) and nicotinamide adenine dinucleotide (NAD+)-dependent isocitrate dehydrogenase (NAD+-ICDH) activity of the shell gland of egg-laying Japanese quails were examined. The surface epithelial cells, consisting of ciliated cells with cilia and microvilli and non-ciliated cells with microvilli, had many large and electron-dense granules. The tubular-gland cells occupied the proprial layer and lacked secretory granules. When an egg was in the shell gland, the well-developed mitochondria of tubular-gland cells characteristically tended to accumulate in the apical cytoplasm, while they were scattered throughout the cytoplasm when an egg was not in the shell gland. Intense Ca-ATPase activity was found on the microvilli of tubular-gland cells, and moderate activity was found on the lateral-cell surface. In the surface epithelial cells, the basolateral cell surface showed moderate enzymatic activity. Both SDH and NAD+-ICDH activity were found in tubular-gland cells when an egg was in the shell gland. These results strongly suggest that calcium for eggshell calcification is actively transported by the tubular-gland (depending on Ca-ATPase activity) and that the mitochondria of gland cells may play an important role in this process as an energy source.  相似文献   

13.
Summary Coronal podia of Sphaerechinus granularis are anchoring (adhering) appendages involved in either locomotion or capture of drift materials. Adhesion is not due to the presumed sucker action of the disc but relies entirely on secretions of the disc epidermis. Peristomeal podia function in wrapping together food particles or food fragments in an adhesive material thus facilitating their capture by the Aristotle's lantern. In both types of podia, the disc epidermis is made up of four cell types: non-ciliated secretory cells (NCS cells) that contain graules whose content is at least partly mucopolysaccharidic in nature, ciliated secretory cells (CS cells) containing granules of unknown nature, ciliated non-secretory cells (CNS cells) and support cells. The cilia of CS cells are subeuticular whereas those of CNS cells, although also short and rigid, traverse the cuticle and protrude in the outer medium. All these cells are presumably involved in an adhesive/de-adhesive process functioning as a duogland adhesive system. Adhesive secretion would be produced by NCS cells and de-adhesive secretion by CS cells. These secretions would be controlled through stimulations by the two types of ciliated cells (receptor cells) which presumably interact with the secretory cells by way of the nerve plexus. This model of adhesion/de-adhesion fits well with the activities of both coronal and peristomeal podia. The secretion of NCS cells would make up a bridge of adhesive material between a podium and the substratum (coronal podia) or would coat and gather food particles (peristomeal podia), respectively. The de-adhesive material enclosed in the granules of CS cells would allow the podia (either coronal or peristomeal) to easily become detached from the substratum and to always remain clear of any particles.Research Assistant, National Fund for Scientific Research (Belgium)  相似文献   

14.
We investigated the oligosaccharide sequence of glycoconjugates, mainly sialoglycoconjugates, in the horse oviductal ampulla during oestrus by means of lectin and pre-lectin methods such as the KOH-neuraminidase procedure to remove sialic acid residues and incubation with N-glycosidase F to cleave N-linked glycans. Ciliated cells displayed N-linked oligosaccharides throughout the cytoplasm. The cilia glycocalyx expressed both N- and O-linked (mucin-type) oligosaccharides, both showing a high variety of terminal sequences. In the most non-ciliated cells, the whole cytoplasm contained N-linked oligosaccharides with terminal alphaGal as well as mucin-type glycans with terminal Forssman pentasaccharides. In a few scattered non-ciliated cells, the whole cytoplasm displayed sialylated N-linked oligosaccharides with terminal Neu5Ac-GalNAc and O-linked glycans terminating with neutral and/or alphaGalNAc, Neu5Ac alpha2,6Gal/GalNAc, Neu5AcGal beta1,3GalNAc. Supra-nuclear granules, probably Golgi zones, of non-ciliated cells showed mainly O-linked glycans rich in sialic acid residues. The luminal surface of non-ciliated cells showed N-linked oligosaccharides, containing terminal/internal alphaMan/alphaGlc, betaGlcNAc and terminal alphaGal, as well as mucin-type oligosaccharides terminating with a large variety of either neutral saccharides or sialylated sequences. Apical protrusions containing O-linked oligosaccharides with terminal Forssman pentasaccharide, Neu5Ac-Gal beta1,4GlcNAc, Neu5Ac-GalNAc were seen in non-ciliated cells scattered along the epithelium. These findings show the presence of sialoglycoconjugates in the oviductal ampulla epithelium of the mare and the existence of different lectin binding profiles between ciliated and non-ciliated (secretory) cells, as well as the presence of non-ciliated cell sub-types which might determine functional differences along the ampullary epithelium of mare oviduct.  相似文献   

15.
Summary Ductuli efferentes epithelium of the hamster consists of a single layer of cells resting upon a typical basement membrane. Two cell types, ciliated and non-ciliated, which are held together by a junctional complex, are distinguished in this epithelium.The ciliated cells present numerous cilia having prominent basal bodies. These lie in the apical cytoplasm surrounded by a feltwork of filaments. Throughout the cell dense particles of the glycogen type are abundant.The non-ciliated cells are interspersed among the others without regular sequence. They are consistently more numerous toward the ductus epididymidis. The luminal surface shows a variable number of microvilli, canaliculi and vesicles. Colloidal mercuric sulfide (SHg) was injected into the rete testis as particulate tracer material, in order to identify the cellular type specializing in absorption and to study the mechanism of transport of these particles. Particles of the tracer were selectively incorporated into non-ciliated cells (apical vesicles, canaliculi and vacuoles). The functional significance of these morphological and experimental findings is discussed.Supported by the Population Council, grant M-63.121 and M-64.109 and by School grant from the Rockefeller Foundation, New York, which are gratefully acknowledged.Fellow of Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.  相似文献   

16.
Human deep posterior lingual glands (von Ebner's glands) are located beneath the circumvallate papillae. They are formed by tubuloalveolar adenomeres, intercalated ducts and excretory ducts coming together in the main excretory duct. The tubuloalveolar cells, pyramid-shaped, show large and dense secretory granules (clear cored) throughout the cytoplasm, rare basal folds and packed cisternae of rough endoplasmic reticulum (RER) at the basal pole. The columnar cells of the intercalated ducts are arranged in a monolayer. They are characterized by dense, clear-core secretory granules (mostly in the apical cytoplasm), a basal nucleus, well-developed RER and Golgi apparatus, and thin filaments distributed in supra- and perinuclear cytoplasm. Striated ducts are absent. Excretory ducts, coming together in the main duct, are lined by a bistratified epithelium. The inner layer consists of columnar cells showing bundles of tonofilaments with scarce secretory activity. The outer layer is composed of basal cells lying on the basal lamina. The main excretory duct, which opens at the bottom of the vallum, shows a stratified epithelium. The outer side is composed of 2-3 layers of malpighian cells lying on the basal lamina. The inner side consists of a single layer of cuboidal-columnar cells with dense apical granules and well-developed organelles synthesizing and condensing secretions. These cells interpolate with goblet cells, rare mitochondria-rich cells, ciliated cells and numerous small globous cells showing a clear matrix and lacking secretory granules. The cilia show a 9 + 2 microtubular structure with basal bodies provided with striated rootlets. Myoepithelial cells surround with their processes the basal portions of the secretory cells and the intercalated ducts. The conclusions concern some comparative aspects and some hypothesis on the functional role of goblet cells, ciliated cells and epithelial cells lining the different ducts, also in relation to the final secretory product.  相似文献   

17.
Ng WK 《Acta cytologica》2001,45(4):627-630
BACKGROUND: Arias-Stella reaction is commonly encountered in the endometrium during the gestational period and puerperium. Similar changes in the tubal epithelium are exceedingly rare. The cytologic findings of this phenomenon have never been described before. CASE: Cytologic findings of Arias-Stella changes in the lining cells of a left paratubal cyst in a 41-year-old woman were examined. The smears showed occasional small clusters or isolated tubal epithelial cells consisting of a mixture of ciliated and secretory cells. Some of the ciliated cells showed a marked increase in nuclear and cytoplasmic volume and possessed coarse chromatin, prominent, angulated nucleoli, dense, amphophilic cytoplasm; and a discrete cell membrane. The nuclear membrane was still thin and regular, and these cells were mitotically inactive. The preservation of apical cilia in some of them ensured their benign nature. In some areas, clusters of secretory cells with an increase in both nuclear and cytoplasmic volume and ample, clear cytoplasm were also found. There were small, monolayered sheets of regular and benign-looking epithelial cells with a honeycomb arrangement, suggesting that the Arias-Stella atypia was focal. CONCLUSION: In view of the presence of scattered giant cells with coarse chromatin and angulated macronucleoli, a false positive cytologic diagnosis of malignancy can be made if one does not pay attention to the coexistence of apical cilia and other subtle changes, including the usual nuclear/cytoplasmic ratio, thin and regular nuclear membrane and absence of mitotic activity.  相似文献   

18.
Summary In order to elucidate the problem of which cells are involved in calcium transport and to estimate the role of mitochondria in calcium transport in the avian shell gland, the fine structure and the Ca-ATPase, succinate dehydrogenase (SDH) and nicotinamide adenine dinucleotide (NAD+)-dependent isocitrate dehydrogenase (NAD+-ICDH) activity of the shell gland of egg-laying Japanese quails were examined. The surface epithelial cells, consisting of ciliated cells with cilia and microvilli and non-ciliated cells with microvilli, had many large and electron-dense granules. The tubular-gland cells occupied the proprial layer and lacked secretory granules. When an egg was in the shell gland, the well-developed mitochondria of tubular-gland cells characteristically tended to accumulate in the apical cytoplasm, while they were scattered throughout the cytoplasm when an egg was not in the shell gland. Intense Ca-ATPase activity was found on the microvilli of tubular-gland cells, and moderate activity was found on the lateral-cell surface. In the surface epithelial cells, the basolateral cell surface showed moderate enzymatic activity. Both SDH and NAD+-ICDH activity were found in tubular-gland cells when an egg was in the shell gland. These results strongly suggest that calcium for eggshell calcification is actively transported by the tubular-gland (depending on Ca-ATPase activity) and that the mitochondria of gland cells may play an important role in this process as an energy source.  相似文献   

19.
Stoliarova MV 《Tsitologiia》2011,53(5):433-443
Epithelium of the hepatic region of the intestine in Saccoglossus mereschkowskii, a representative of enteropneusts (Enteropneusta, Hemichordata) standing at the base of Chordata, has been investigated using electron microscope. The ultrastructure of ciliated and granular epithelial cells, elements of the intraepithelial nerve layer, and intercellular junctions have been characterized. The data concerning details of the organization of the ciliary apparatus and rootlets system are presented. It is justified the presence of complicated supporting construction of cilia which performs a mechanical stabilizing function and possibly also provide synchronization of ciliary movements. The presence of cilia with two centrioles is considered as an adaptation to high functional load on ciliary apparatus. Well developed bundles of myofilaments are found in the cytoplasm of the basal portions of ciliary cells that characterizes these cells as myoepithelial. The features indicating the role of ciliary cells in absorption are described. The capability of these cells to balloon-like secretion is considered. Data on the accumulation of food reserves in the form of lipid droplets and glycogen in the cell cytoplasm are presented. Ciliated cells are characterized by their function as ciliated secretory-absorptive myoepithelial cells. Based on the location of secretory granules both in the apical and basal portions of granular cells, an exocrine-endocrine function of these cells has been suggested. Typical endocrine cells in the intestinal epithelium of S. mereschkowskii are absent. Several types of granules in the nerve fibers cytoplasm are described. Junctions between the nerve fibers and basal portions of ciliary and granular epithelial cells are found. Nerve regulation of contractile and secretory functions of epithelial cells is supposed. The presence of the regulatory nerve-endocrine system that includes receptor cells of open type, secretory endocrine-like cells and nerve elements of nerve layer is supposed in the intestinal epithelium of enteropneusts.  相似文献   

20.
The organization of the oesophagus in the budding styelid ascidian, Polyandrocarpa misakiensis, is described. The oesophagus consists of external and internal epithelium, and there are loose connective tissue, blood sinuses, and a muscular layer between them. The internal epithelium is simple columnar, except for the bottom of three folds. The external epithelium is simple squamous. The internal epithelium contains four cell types, i.e., ciliated mucous cells, band cells, endocrine cells, and undifferentiated cells. The ciliated mucous cells have apical cilia and microvilli, and two types of mucous vesicle. The band cells also have apical cilia and electron-dense granules in the apical cytoplasm. The endocrine cells are bottle-shaped, and have electron-dense granules both above and below the nucleus. The undifferentiated cells form pseudostratified epithelium at the bottom of each fold, and they have nuclei with prominent nucleoli. One type of coelomic cell, which has retractile cytoplasm, often migrates in the internal epithelium. Near the stomach, there are many darkly stained round cells clustered around the posterior end of the oesophagus. These two types of coelomic cells may be involved in the defense mechanism against the invasion of foreign organisms. The basic organization of the oesophagus of P. misakiensis is similar to those of other ascidians. However, the presence of three folds is a characteristic of a solitary species, rather than of a colonial species. Although ascidians are chordate invertebrates, the organization of their oesophagus is not very complex, which might reflect their life style.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号