首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 331 毫秒
1.
Localization properties of fluorescence cytochemical enzyme procedures   总被引:1,自引:0,他引:1  
A K Raap 《Histochemistry》1986,84(4-6):317-321
Fluorescence enzyme cytochemical procedures will contribute significantly to biomedical problems where knowledge of the enzymic composition of individual cells is important. Compared with the number of absorbance enzyme cytochemical methods, relatively few fluorescence procedures have been reported. In this paper, the merits of the described methods are discussed. A distinction is made between methods with and without a capture reaction. Only a few methods satisfy the requirement of accurate localization of the final product and high signal to noise ratios. Thus, there still is a need for valid fluorescence cytochemical enzyme methods. It is concluded that the bottle neck for valid fluorescence cytochemical enzyme methods is the development of efficient fluorogenic capture reactions for the primary enzyme products.  相似文献   

2.
Summary This paper deals with the progress made over the last few years in our understanding of enzyme cytochemical staining methods as studied using a fundamental approach with the aid of a model system of thin gel films. Although model films with a matrix of polyacrylamide have been mostly used, the properties and possible applications of other matrices are also reviewed. The chemical aspects of the entrapment of enzyme molecules into a matrix are summarized. Special attention has been paid in model film studies to the principles of the trapping reaction of a diffusable precursor resulting from the enzymatic conversion of a substrate. They are considered here as they concern the cytochemical demonstration of acid phosphatase activity with a lead salt. The effect of fixatives on different enzyme activities, the diffusion rate of substrates and chromogenic compounds to the enzyme site, and enzyme kinetics under cytochemical conditions are also discussed, since they are factors which influence the final results of the staining procedures. The advantage of model film studies in enabling the direct correlation of cytochemical and biochemical results is outlined with special reference to the cytochemical determination of glucose-6-phosphate dehydrogenase with Tetra Nitro BT. A method for determining enzyme activities in the soluble fraction of isolated cells after incorporation in model films is described for the first time. This method has proved to be highly appropriate for microscopical observations of glucose-6-phosphate dehydrogenase activity in single cells, because it results in a good morphology and no formazan precipitaties outside the cells. On the other hand, this type of model film forms a bridge between fundamental model film studies using purified enzyme and quantitative enzyme cytochemistry performedin situ.  相似文献   

3.
A sensitive staining procedure for glucose oxidase (GOD) as marker in immunohistology is described. The cytochemical procedure involves a two-step enzyme method in which GOD and horseradish peroxidase (HRP) are coimmobilized onto the same cellular sites by immunological bridging or by the principle of avidin-biotin interaction. In this coupled enzyme technique, H2O2 generated during GOD reaction is the substrate for HRP and is utilized for the oxidation of chromogens such as 3,3'-diaminobenzidine or 3-amino-9-ethylcarbazole. Due to the immobilization of the capture enzyme HRP in close proximity to the marker enzyme (GOD), more intense and specific staining is produced than can be obtained with soluble HRP as coupling enzyme in the substrate medium. Indirect antibody labelled and antibody bridge techniques including the avidin (streptavidin)-biotin principle have proven the usefulness of this GOD labelling procedure for antigen localization in paraffin sections. Antigens such as IgA in tonsil, alpha-fetoprotein in liver and tissue polypeptide antigen in mammary gland served as models. The immobilized two-step enzyme procedures have the same order of sensitivity and specificity as comparable immunoperoxidase methods. The coupled GOD-HRP principle can be superior to conventional immunoperoxidase labelling for the localization of biomolecules in tissue preparations rich in endogenous peroxidase activities.  相似文献   

4.
In situ hybridization (ISH) is a powerful technique for localizing specific nucleic acid sequences (DNA, RNA) in microscopic preparations of tissues, cells, chromosomes, and linear DNA fibers. To date, a wide variety of research and diagnostic applications of ISH have been described, making the technique an integral part of studies concerning gene mapping, gene expression, RNA processing and transport, the three-dimensional organization of the nucleus, tumor genetics, microbial infections, and prenatal diagnosis. In this review, I first describe the ISH procedure in short and then focus on the currently available non-radioactive probe-labeling and cytochemical detection methodologies that are utilized to visualize one or multiple different nucleic acid targets in situ with different colors. Special emphasis is placed on the procedures applying fluorescence and brightfield microscopy, the simultaneous detection of nucleic acids and proteins by combined ISH and immunocytochemistry, and, in addition, on the recent progress that has been made with the introduction of signal amplification procedures to increase the detection sensitivity of ISH. Finally, a comparison of fluorescence, enzyme cytochemical, and colloidal gold silver probe detection systems will be presented, and possible future directions of in situ nucleic acid detection will be discussed. Accepted: 9 June 1999  相似文献   

5.
Summary An overview is given of the different non-radioactive cytochemical detection methodologies that are currently utilized to localize nucleic acid sequences in chromosomes, cells and tissue sections. Dependent on the reporter molecule (fluorochrome, enzyme or hapten) that is used to modify the appropriate nucleic acid probe, and the sensitivity that is required, the in situ hybridized sequences can be detected either directly after hybridization or indirectly, using cytochemical detection and amplification layers. These may then contain antibody and/or avidin molecules conjugated to fluorochromes, enzymes or colloidial gold particles. Since the choice of a suitable probe-labelling method in combination with a fluorescence, enzyme cytochemical or immunogold-silver detection procedure is often determined by the user's own practical experience and applications, the different detection methodologies are compared with each other in detail with respect to sensitivity, resolution, applicability for multiple probe detection, and signal evaluation. Furthermore, procedures are reviewed for the combination of in situ hybridization with immunocytochemical detection of proteins and/or incorporated bromodeoxyuridine, which allow the simultaneous visualization of genomic phenotypic and/or cell cycle parameters in the same sample. Possible improvements with respect to sensitivity, specificity and multiplicity of the detection methods, which may be interesting for one's own experimental design, are finally being discussed.  相似文献   

6.
The presence and activity of alkaline phosphatase in SAOS-2 and TE-85 human osteosarcoma cells grown in culture were examined at the ultrastructural level. A monoclonal antibody raised against purified human bone osteosarcoma alkaline phosphatase was used to localize the enzyme in cultures of the osteosarcoma cells. Similar cultures were analyzed for alkaline phosphatase activity using an enzyme cytochemical method with cerium as the capture agent. Alkaline phosphatase was immunolocalized at the light microscopic level in an osteogenic sarcoma and ultrastructurally on the SAOS-2 cell membrane and the enclosing membrane of extracellular vesicular structures close to the cells. In contrast, the TE-85 cells were characterized by the absence of all but a few traces of immunolabeling at the cell surface. Enzyme cytochemical studies revealed strong alkaline phosphatase activity on the outer surface of the SAOS-2 cell membrane. Much lower enzyme activity was observed in the TE-85 cells. The results support biochemical data from previous studies and confirm that SAOS-2 cells have a significantly greater concentration of alkaline phosphatase at the plasma membrane.  相似文献   

7.
We describe a new freeze-fracture cytochemical technique consisting of combined immunocytochemistry and enzyme cytochemistry. This technique reveals the relationship between molecules in biological membranes by double labeling with two different cytochemical markers (i.e., immunogold probes and cerium). In this method, antigens were detected with specific primary antibodies and appropriate secondary immunoprobes. Subsequently, alkaline phosphates activity was detected with cerium as the capture agent on the same replicas. Octyl-glucoside (OG) digestion before the cytochemical reactions was crucial to the success of this combined method. OG is an efficient detergent and OG digestion can preserve both immunocytochemical antigenicity and enzyme activity on replicas. As an initial examination, we applied this technique to the study of glycosyl-phosphatidyl-inositol-anchored proteins and adhesion molecules in human neutrophils. The method described here should serve as a unique additional approach for the study of topology and dynamics of molecules in biomembranes.  相似文献   

8.
Summary A model system is described for the study of capture reactions for diffusable compounds in enzyme cytochemistry. The model, which allows the investigation of the influence of the composition of the cytochemical medium, the enzymatic activity, and the dimensions of the enzymatic site on the capture reaction, consists of very thin homogeneous layers of enzyme (0.01–0.1 m thick) on glass, which are incubated in the cytochemical medium. The fraction of the total amount of liberated product precipitated in the enzyme layer is dependent not only on the trapping efficiency of the cytochemical medium but also on the concentration of the primary reaction product that can be built up in the enzyme layer. Calculations were performed to determine the steady-state concentration of the primary reaction product that can be built up in the enzyme layer. Acid phosphatase was used as enzyme. The problems associated with the model and its applicability to other types of cytochemical reactions are discussed.  相似文献   

9.
Summary A sensitive staining procedure for glucose oxidase (GOD) as marker in immunohistology is described. The cytochemical procedure involves a two-step enzyme method in which GOD and horseradish peroxidase (HRP) are coimmobilized onto the same cellular sites by immunological bridging or by the principle of avidin-biotin interaction. In this coupled enzyme technique, H2O2 generated during GOD reaction is the substrate for HRP and is utilized for the oxidation of chromogens such as 3,3-diaminobenzidine or 3-amino-9-ethylcarbazole. Due to the immobilization of the capture enzyme HRP in close proximity to the marker enzyme (GOD), more intense and specific staining is produced than can be obtained with soluble HRP as coupling enzyme in the substrate medium. Indirect antibody labelled and antibody bridge techniques including the avidin (streptavidin)-biotin principle have proven the usefulness of this GOD labelling procedure for antigen localization in paraffin sections. Antigens such as IgA in tonsil, alpha-feroprotein in liver and tissue polypeptide antigen in mainmary gland served as models. The immobilized twostep enzyme procedures have the same order of sensitivity and specificity as comparable immunoperoxidase methods. The coupled GOD-HRP principle can be superior to conventional immunoperoxidase labelling for the localization of biomolecules in tissue preparations rich in endogenous peroxidase activities.  相似文献   

10.
Cell preparations in cytochemistry are conventionally analyzed with transmitted light after fixation and reaction with agents such as azo-coupling dyes. With cell suspensions stained with fluorescent cytochemical dyes, cells can also be analyzed and sorted by flow cytometry. We have exploited the intense red fluorescence of Fast Red Violet LB generated in cytochemical reactions to perform flow cytometric analyses of alkaline phosphatase (AP) expression in rat bone marrow stromal cells. By modifying staining protocols of single-cell suspensions, we demonstrate that in comparison to staining with Fast Red TR, the method is specific, can distinguish among various levels of enzyme expression within the whole population, and permits enzyme kinetic studies of heterogeneous cell populations. The method was applied to study the effect of the glucocorticoid dexamethasone (Dx) on cell proliferation and AP expression. In low AP-expressing cells, Dx treatment at 10(-8) M increased the [3H]-thymidine labeling index from 3.85% to 5.24% (p less than 0.01). In contrast, high AP-expressing cells were unlabeled by [3H]-thymidine. The staining and analytical methods reported here facilitate the detection, isolation, and quantification of subpopulations of bone marrow stromal cells that express alkaline phosphatase activity. These experiments demonstrate the value of flow cytometry as an adjunct to conventional cytochemical methods.  相似文献   

11.
Summary Cerium was applied for the ultrastructural, cytochemical localization of adenylate cyclase (EC 4.6.1.1.). The enzyme activity was stimulated with norepinephrine, prenalterol and choleratoxin in the brown fat cells of newborn rats. The final reaction product was observed in the plasmalemmas of the stimulated adipocytes. The precipitate was finely crystalline, easily visible in the electron microscope and in the X-ray microprobe analysis it yielded cerium and phosphate peaks, respectively. The use of cerium offers a new tool valid for the cytochemical localization of adenylate cyclase enzyme related to the membrane receptors.This study was supported by the grant from Reino Lahtikari Foundation  相似文献   

12.
Cytochemical demonstration of adenylate cyclase activity with cerium   总被引:1,自引:0,他引:1  
Cerium was applied for the ultrastructural, cytochemical localization of adenylate cyclase (EC 4.6.1.1.). The enzyme activity was stimulated with norepinephrine, prenalterol and cholera toxin in the brown fat cells of newborn rats. The final reaction product was observed in the plasmalemmas of the stimulated adipocytes. The precipitate was finely crystalline, easily visible in the electron microscope and in the X-ray microprobe analysis it yielded cerium and phosphate peaks, respectively. The use of cerium offers a new tool valid for the cytochemical localization of adenylate cyclase enzyme related to the membrane receptors.  相似文献   

13.
Summary A model system of polyacrylamide films containing the Triton extract of rat brain homogenate was applied to investigate quantitatively some aspects of three methods for the cytochemical demonstration of acetylcholinesterase activity (Lewis 1961; Karnovsky and Roots 1964; Tsuji 1974).Biochemical determinations showed that about 90% of the acetylcholinesterase activity originally present in the Triton extract were still detectable in the films. The relationship of the formation of cuprous thiocholine iodide in the case of the methods of Lewis (1961) or Tsuji (1974) and of cupric ferrocyanide at the reaction of Karnovsky and Roots (1964) to either enzyme concentration or incubation time were tested in detail. The results showed that for the method of Tsuji and, with some restrictions, also for the method of Karnovsky and Roots a linearity exists in these two respects. In the case of the Lewis technique, an approximate linearity between the amount of reaction product and incubation time could only be found from 90 min onward, but no linearity was detected in relation to the enzyme concentration. At low enzyme concentrations, too little white precipitate was formed in comparison to higher ones. Therefore it is suggested that this technique, as compared to the methods of Tsuji and Karnovsky and Roots, probably is less suitable as a quantitative cytochemical method.This word was performed while one of us (Dr. Andrä) was in receipt of a visitor grant from the Netherlands Organization for the Advancement of Pure Research (ZWO)  相似文献   

14.
Erythrocyte ghosts containing varying amounts of alkaline phosphatase were used to study the localization mechanisms of three metal salt and one azo method for this enzyme. For the azo method, the minimal amount of alkaline phosphatase that can be visualized within the ghosts proved only to be limited by the optical properties of the azo compound. In contrast, for the metal salt methods, a certain threshold activity had to be present in the ghosts in order to obtain correct localization of the final reaction product. The localization properties of both azo and metal salt methods conformed to the theories of cytochemical enzyme localization presented to date. By determining the rate constant of the capture reaction and the diffusion constant of the primary product, the localization properties of the azo method could be predicted. Some remaining discrepancies between theory and practice are discussed.  相似文献   

15.
Summary Polyamines are low molecular weight organic cations, necessary for cell proliferation and implicated in numerous biochemical events. Their light microscopical distribution has previously been studied by the use of two fluorescence cytochemical methods. With the aid of an antibody recognizing the two main polyamines, spermidine and spermine, we now report on their immunocytochemical localization in animal tissues. Polyamine immunocytochemistry was found to require very well controlled conditions of fixation in order to prevent diffusion, loss and redistribution of endogenous polyamines. Moreover, in certain cellular compartments, polyamine immunoreactivity was masked by proteins, necessitating proteolytic pretreatment of sections prior to staining. The fluorescence cytochemical methods, employing low molecular weight reagents, did not require such unmasking. The results of the optimized immunocytochemical procedure were in complete agreement with the results obtained by the fluorescence cytochemical methods. Although fluorescence cytochemistry, is simpler and quicker to perform than immunocytochemistry, the latter technique may be extended to studies of polyamines at the ultrastructural level.  相似文献   

16.
The correct localization of oxidative enzymes using cytochemical tetrazolium methods, in which low molecular weight electron carriers such as NAD(P)H and reduced phenazine methosulphate (PMSH) are used, can be endangered by the escape of the reduced intermediates before they react to form the insoluble formazan at the true enzyme-containing sites. To investigate this phenomenon, the glucose-6-phosphate dehydrogenase reaction was studied in fixed erythrocytes which, because of their microscopic dimensions, are well-suited for studying the loss of intermediates. A mixture of active and heat-inactivated fixed erythrocytes was incubated in a PMS-supplemented medium for glucose-6-phosphate dehydrogenase. The cytophotometric histograms showed that the final formazan precipitate was equally distributed over both active and inactivated cells. When bovine serum albumin was added to the medium, all the formazan was found to be bound to this protein and the erythrocytes remained essentially unstained. The false localization in this system could be explained by an unfavourable balance between the capture of electrons carried by NADPH within the erythrocyte and the diffusion of NADPH out of the erythrocyte. The rate constant of NADPH oxidation was determined, as was also the diffusion constant of NADPH in a protein matrix. Substituting the data obtained into formulae derived from the enzyme cytochemical localization theory of Holt & O'Sullivan (1958), it was calculated that the capture reaction was highly deficient and, theoretically, less than 1% of the total amount of formazan produced was localized within the erythrocyte which explains the false localization observed. The importance of these findings for the cytochemical demonstration of NAD(P)+-dependent dehydrogenases in cells and electropherograms is briefly discussed.  相似文献   

17.
We localized alkaline phosphatase in the metaphyses of fetal bovine tibial bone by use of avidin-biotin-immunoperoxidase and immunogold-silver staining procedures. Low melting-point, paraffin-embedded sections of periodate lysine-paraformaldehyde-fixed undecalcified bone were used for immunostaining. We suggest that the combination of intact embryonic bone with this fixative and the immunohistochemical procedures used in this study may have helped to preserve antigenicity and thus to improve the efficiency of immunolabeling. Similar patterns of alkaline phosphatase localization were produced by the immunoperoxidase and immunogold-silver staining methods. The latter, although free of immunoreagents such as diaminobenzidine, must be monitored closely to avoid nonspecific staining during the silver enhancement procedure. Both methods revealed a concentration of the enzyme in osteoblasts and in areas of osteoid that lined the bone trabeculae. The results support the findings of earlier enzyme cytochemical studies in which osteoblasts were shown to have significant alkaline phosphatase activity.  相似文献   

18.
A review is presented of some methods used to prepare cytologic specimens for analytical and/or automated studies, with the steps of the procedures detailed in appendices. The preparation of the cell monolayers required for optimal automated cell image analysis and classification, e.g., by the Cytoscan 110, is discussed, as is the preparation of poly-L-lysine-coated slides used in the production of monolayered specimens. These monolayers, which can be prepared from a variety of specimens, are also useful for cytochemical and immunocytochemical studies and DNA ploidy analysis. For DNA analysis, a modified gallocyanin chrome alum staining procedure is described as a stoichiometric alternative to the time-consuming Feulgen reaction. The hydrolysis technique required by the latter method is also detailed. The freeze-fracturing technique for the enhancement of monoclonal antibody immunocytochemical staining of detectable antigens is described, along with an indirect immunoalkaline phosphatase staining method. The use of enzyme cytochemical reactions for glucose 6 phosphate dehydrogenase and lysosomal naphthylamidase is also presented.  相似文献   

19.
Rhodamine B staining in conjunction with fluorescence microscopy is shown to demonstrate Mallory bodies. Mallory body morphology, localization, and distribution in hepatocytes from griseofulvin-fed mice, human hepatoma, and human alcoholics were similar to those observed in the same tissues after conventional staining methods for Mallory bodies. The presence of these inclusions was further confirmed by specific cytochemical localization with indirect immunoperoxidase labeling, horseradish peroxidase labeling, and electron microscopy. Other tinctorial or histochemical procedures previously used for keratin or prekeratin (modified Mallory stain, Kreyberg method, Pauly method for histidine) also stained Mallory bodies for study with white light microscopy but with decreasing sensitivity respectively. Mallory bodies from mouse and human liver both appear to contain a keratin-like moiety. This entity may be simply, rapidly, and permanently stained with rhodamine B, and selectively and reproducibly demonstrated with fluorescence microscopy.  相似文献   

20.
We have further developed a method for the detection of different enzyme cytochemical reaction products by means of reflection contrast microscopy (RCM). By embedding these enzyme precipitates in a protein matrix, we were able to prevent the reaction products from dissolving in immersion oil, which is required for RCM analysis. The applicability of the RCM procedure is, therefore, extended to a range of cytochemical enzyme precipitation methods, which normally result in oil soluble reaction products. To test their usefulness, these enzyme precipitates have been used in single- as well as double-label in situ hybridization (ISH) procedures to visualize a number of DNA target sequences by several different reflection colours, i.e. white, yellow and red. Three repetitive DNA probes for the (sub)centromeric regions of chromosomes 1, 7 and 17, as well as a repetitive DNA probe for the telomeric region of chromosome 1, and two cosmid DNA probes (40 kb each) for both arms of chromosome 11 could be detected with high efficiency in both interphase and metaphase preparations. Moreover the enzyme precipitates were shown to be stable upon exposure to excitation light or upon storage. It may be concluded that these findings render RCM a sensitive method for the visualization of multiple targets in biological specimens.Presented in part at the 9th International Congress of Histochemistry and Cytochemistry, 30 August – 5 September 1992, Maastricht, The Netherlands (Speel et al. 1992c)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号