首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
In the visual system, neurons often fire in synchrony, and it is believed that synchronous activities of group neurons are more efficient than single cell response in transmitting neural signals to down-stream neurons. However, whether dynamic natural stimuli are encoded by dynamic spatiotemporal firing patterns of synchronous group neurons still needs to be investigated. In this paper we recorded the activities of population ganglion cells in bullfrog retina in response to time-varying natural images (natural scene movie) using multi-electrode arrays. In response to some different brief section pairs of the movie, synchronous groups of retinal ganglion cells (RGCs) fired with similar but different spike events. We attempted to discriminate the movie sections based on temporal firing patterns of single cells and spatiotemporal firing patterns of the synchronous groups of RGCs characterized by a measurement of subsequence distribution discrepancy. The discrimination performance was assessed by a classification method based on Support Vector Machines. Our results show that different movie sections of the natural movie elicited reliable dynamic spatiotemporal activity patterns of the synchronous RGCs, which are more efficient in discriminating different movie sections than the temporal patterns of the single cells’ spike events. These results suggest that, during natural vision, the down-stream neurons may decode the visual information from the dynamic spatiotemporal patterns of the synchronous group of RGCs’ activities.  相似文献   

2.
Bölinger D  Gollisch T 《Neuron》2012,73(2):333-346
Neurons often integrate information from multiple parallel signaling streams. How a neuron combines these inputs largely determines its computational role in signal processing. Experimental assessment of neuronal signal integration, however, is often confounded by cell-intrinsic nonlinear processes that arise after signal integration has taken place. To overcome this problem and determine how ganglion cells in the salamander retina integrate visual contrast over space, we used automated online analysis of recorded spike trains and closed-loop control of the visual stimuli to identify different stimulus patterns that give the same neuronal response. These iso-response stimuli revealed a threshold-quadratic transformation as a fundamental nonlinearity within the receptive field center. Moreover, for a subset of ganglion cells, the method revealed an additional dynamic nonlinearity that renders these cells particularly sensitive to spatially homogeneous stimuli. This function is shown to arise from a local inhibition-mediated dynamic gain control mechanism.  相似文献   

3.
4.
The spike activity of single neurons of the primary visual cortex (V1) becomes more selective and reliable in response to wide-field natural scenes compared to smaller stimuli confined to the classical receptive field (RF). However, it is largely unknown what aspects of natural scenes increase the selectivity of V1 neurons. One hypothesis is that modulation by surround interaction is highly sensitive to small changes in spatiotemporal aspects of RF surround. Such a fine-tuned modulation would enable single neurons to hold information about spatiotemporal sequences of oriented stimuli, which extends the role of V1 neurons as a simple spatiotemporal filter confined to the RF. In the current study, we examined the hypothesis in the V1 of awake behaving monkeys, by testing whether the spike response of single V1 neurons is modulated by temporal interval of spatiotemporal stimulus sequence encompassing inside and outside the RF. We used two identical Gabor stimuli that were sequentially presented with a variable stimulus onset asynchrony (SOA): the preceding one (S1) outside the RF and the following one (S2) in the RF. This stimulus configuration enabled us to examine the spatiotemporal selectivity of response modulation from a focal surround region. Although S1 alone did not evoke spike responses, visual response to S2 was modulated for SOA in the range of tens of milliseconds. These results suggest that V1 neurons participate in processing spatiotemporal sequences of oriented stimuli extending outside the RF.  相似文献   

5.
We have studied the encoding of spatial pattern information by complex cells in the primary visual cortex of awake monkeys. Three models for the conditional probabilities of different stimuli, given the neuronal response, were fit and compared using cross-validation. For our data, a feed-forward neural network proved to be the best of these models.The information carried by a cell about a stimulus set can be calculated from the estimated conditional probabilities. We performed a spatial spectroscopy of the encoding, examining how the transmitted information varies with both the average coarseness of the stimulus set and the coarseness differences within it. We find that each neuron encodes information about many features at multiple scales. Our data do not appear to allow a characterization of these variations in terms of the detection of simple single features such as oriented bars.  相似文献   

6.
Understanding how populations of neurons encode sensory information is a major goal of systems neuroscience. Attempts to answer this question have focused on responses measured over several hundred milliseconds, a duration much longer than that frequently used by animals to make decisions about the environment. How reliably sensory information is encoded on briefer time scales, and how best to extract this information, is unknown. Although it has been proposed that neuronal response latency provides a major cue for fast decisions in the visual system, this hypothesis has not been tested systematically and in a quantitative manner. Here we use a simple 'race to threshold' readout mechanism to quantify the information content of spike time latency of primary visual (V1) cortical cells to stimulus orientation. We find that many V1 cells show pronounced tuning of their spike latency to stimulus orientation and that almost as much information can be extracted from spike latencies as from firing rates measured over much longer durations. To extract this information, stimulus onset must be estimated accurately. We show that the responses of cells with weak tuning of spike latency can provide a reliable onset detector. We find that spike latency information can be pooled from a large neuronal population, provided that the decision threshold is scaled linearly with the population size, yielding a processing time of the order of a few tens of milliseconds. Our results provide a novel mechanism for extracting information from neuronal populations over the very brief time scales in which behavioral judgments must sometimes be made.  相似文献   

7.
Eye movements modulate visual receptive fields of V4 neurons   总被引:11,自引:0,他引:11  
The receptive field, defined as the spatiotemporal selectivity of neurons to sensory stimuli, is central to our understanding of the neuronal mechanisms of perception. However, despite the fact that eye movements are critical during normal vision, the influence of eye movements on the structure of receptive fields has never been characterized. Here, we map the receptive fields of macaque area V4 neurons during saccadic eye movements and find that receptive fields are remarkably dynamic. Specifically, before the initiation of a saccadic eye movement, receptive fields shrink and shift towards the saccade target. These spatiotemporal dynamics may enhance information processing of relevant stimuli during the scanning of a visual scene, thereby assisting the selection of saccade targets and accelerating the analysis of the visual scene during free viewing.  相似文献   

8.
A query learning algorithm based on hidden Markov models (HMMs) isdeveloped to design experiments for string analysis and prediction of MHCclass I binding peptides. Query learning is introduced to aim at reducingthe number of peptide binding data for training of HMMs. A multiple numberof HMMs, which will collectively serve as a committee, are trained withbinding data and used for prediction in real-number values. The universeof peptides is randomly sampled and subjected to judgement by the HMMs.Peptides whose prediction is least consistent among committee HMMs aretested by experiment. By iterating the feedback cycle of computationalanalysis and experiment the most wanted information is effectivelyextracted. After 7 rounds of active learning with 181 peptides in all,predictive performance of the algorithm surpassed the so far bestperforming matrix based prediction. Moreover, by combining the bothmethods binder peptides (log Kd < -6) could be predicted with84% accuracy. Parameter distribution of the HMMs that can be inspectedvisually after training further offers a glimpse of dynamic specificity ofthe MHC molecules.  相似文献   

9.
 Synchronous network excitation is believed to play an outstanding role in neuronal information processing. Due to the stochastic nature of the contributing neurons, however, those synchronized states are difficult to detect in electrode recordings. We present a framework and a model for the identification of such network states and of their dynamics in a specific experimental situation. Our approach operationalizes the notion of neuronal groups forming assemblies via synchronization based on experimentally obtained spike trains. The dynamics of such groups is reflected in the sequence of synchronized states, which we describe as a renewal dynamics. We furthermore introduce a rate function which is dependent on the internal network phase that quantifies the activity of neurons contributing to the observed spike train. This constitutes a hidden state model which is formally equivalent to a hidden Markov model, and all its parameters can be accurately determined from the experimental time series using the Baum-Welch algorithm. We apply our method to recordings from the cat visual cortex which exhibit oscillations and synchronizations. The parameters obtained for the hidden state model uncover characteristic properties of the system including synchronization, oscillation, switching, background activity and correlations. In applications involving multielectrode recordings, the extracted models quantify the extent of assembly formation and can be used for a temporally precise localization of system states underlying a specific spike train. Received: 30 March 1993/Accepted in revised form: 16 April 1994  相似文献   

10.
Local Field Potentials (LFPs) integrate multiple neuronal events like synaptic inputs and intracellular potentials. LFP spatiotemporal features are particularly relevant in view of their applications both in research (e.g. for understanding brain rhythms, inter-areal neural communication and neuronal coding) and in the clinics (e.g. for improving invasive Brain-Machine Interface devices). However the relation between LFPs and spikes is complex and not fully understood. As spikes represent the fundamental currency of neuronal communication this gap in knowledge strongly limits our comprehension of neuronal phenomena underlying LFPs. We investigated the LFP-spike relation during tactile stimulation in primary somatosensory (S-I) cortex in the rat. First we quantified how reliably LFPs and spikes code for a stimulus occurrence. Then we used the information obtained from our analyses to design a predictive model for spike occurrence based on LFP inputs. The model was endowed with a flexible meta-structure whose exact form, both in parameters and structure, was estimated by using a multi-objective optimization strategy. Our method provided a set of nonlinear simple equations that maximized the match between models and true neurons in terms of spike timings and Peri Stimulus Time Histograms. We found that both LFPs and spikes can code for stimulus occurrence with millisecond precision, showing, however, high variability. Spike patterns were predicted significantly above chance for 75% of the neurons analysed. Crucially, the level of prediction accuracy depended on the reliability in coding for the stimulus occurrence. The best predictions were obtained when both spikes and LFPs were highly responsive to the stimuli. Spike reliability is known to depend on neuron intrinsic properties (i.e. on channel noise) and on spontaneous local network fluctuations. Our results suggest that the latter, measured through the LFP response variability, play a dominant role.  相似文献   

11.
While sensory neurons carry behaviorally relevant information in responses that often extend over hundreds of milliseconds, the key units of neural information likely consist of much shorter and temporally precise spike patterns. The mechanisms and temporal reference frames by which sensory networks partition responses into these shorter units of information remain unknown. One hypothesis holds that slow oscillations provide a network-intrinsic reference to temporally partitioned spike trains without exploiting the millisecond-precise alignment of spikes to sensory stimuli. We tested this hypothesis on neural responses recorded in visual and auditory cortices of macaque monkeys in response to natural stimuli. Comparing different schemes for response partitioning revealed that theta band oscillations provide a temporal reference that permits extracting significantly more information than can be obtained from spike counts, and sometimes almost as much information as obtained by partitioning spike trains using precisely stimulus-locked time bins. We further tested the robustness of these partitioning schemes to temporal uncertainty in the decoding process and to noise in the sensory input. This revealed that partitioning using an oscillatory reference provides greater robustness than partitioning using precisely stimulus-locked time bins. Overall, these results provide a computational proof of concept for the hypothesis that slow rhythmic network activity may serve as internal reference frame for information coding in sensory cortices and they foster the notion that slow oscillations serve as key elements for the computations underlying perception.  相似文献   

12.
Unsupervised segmentation of continuous genomic data   总被引:2,自引:0,他引:2  
The advent of high-density, high-volume genomic data has created the need for tools to summarize large datasets at multiple scales. HMMSeg is a command-line utility for the scale-specific segmentation of continuous genomic data using hidden Markov models (HMMs). Scale specificity is achieved by an optional wavelet-based smoothing operation. HMMSeg is capable of handling multiple datasets simultaneously, rendering it ideal for integrative analysis of expression, phylogenetic and functional genomic data. AVAILABILITY: http://noble.gs.washington.edu/proj/hmmseg  相似文献   

13.
We propose a model for the neuronal implementation of selective visual attention based on temporal correlation among groups of neurons. Neurons in primary visual cortex respond to visual stimuli with a Poisson distributed spike train with an appropriate, stimulus-dependent mean firing rate. The spike trains of neurons whose receptive fields donot overlap with the focus of attention are distributed according to homogeneous (time-independent) Poisson process with no correlation between action potentials of different neurons. In contrast, spike trains of neurons with receptive fields within the focus of attention are distributed according to non-homogeneous (time-dependent) Poisson processes. Since the short-term average spike rates of all neurons with receptive fields in the focus of attention covary, correlations between these spike trains are introduced which are detected by inhibitory interneurons in V4. These cells, modeled as modified integrate-and-fire neurons, function as coincidence detectors and suppress the response of V4 cells associated with non-attended visual stimuli. The model reproduces quantitatively experimental data obtained in cortical area V4 of monkey by Moran and Desimone (1985).  相似文献   

14.
Encoding synaptic inputs as a train of action potentials is a fundamental function of nerve cells. Although spike trains recorded in vivo have been shown to be highly variable, it is unclear whether variability in spike timing represents faithful encoding of temporally varying synaptic inputs or noise inherent in the spike encoding mechanism. It has been reported that spike timing variability is more pronounced for constant, unvarying inputs than for inputs with rich temporal structure. This could have significant implications for the nature of neural coding, particularly if precise timing of spikes and temporal synchrony between neurons is used to represent information in the nervous system. To study the potential functional role of spike timing variability, we estimate the fraction of spike timing variability which conveys information about the input for two types of noisy spike encoders--an integrate and fire model with randomly chosen thresholds and a model of a patch of neuronal membrane containing stochastic Na(+) and K(+) channels obeying Hodgkin-Huxley kinetics. The quality of signal encoding is assessed by reconstructing the input stimuli from the output spike trains using optimal linear mean square estimation. A comparison of the estimation performance of noisy neuronal models of spike generation enables us to assess the impact of neuronal noise on the efficacy of neural coding. The results for both models suggest that spike timing variability reduces the ability of spike trains to encode rapid time-varying stimuli. Moreover, contrary to expectations based on earlier studies, we find that the noisy spike encoding models encode slowly varying stimuli more effectively than rapidly varying ones.  相似文献   

15.

Background

Conventional methods for spike train analysis are predominantly based on the rate function. Additionally, many experiments have utilized a temporal coding mechanism. Several techniques have been used for analyzing these two sources of information separately, but using both sources in a single framework remains a challenging problem. Here, an innovative technique is proposed for spike train analysis that considers both rate and temporal information.

Methodology/Principal Findings

Point process modeling approach is used to estimate the stimulus conditional distribution, based on observation of repeated trials. The extended Kalman filter is applied for estimation of the parameters in a parametric model. The marked point process strategy is used in order to extend this model from a single neuron to an entire neuronal population. Each spike train is transformed into a binary vector and then projected from the observation space onto the likelihood space. This projection generates a newly structured space that integrates temporal and rate information, thus improving performance of distribution-based classifiers. In this space, the stimulus-specific information is used as a distance metric between two stimuli. To illustrate the advantages of the proposed technique, spiking activity of inferior temporal cortex neurons in the macaque monkey are analyzed in both the observation and likelihood spaces. Based on goodness-of-fit, performance of the estimation method is demonstrated and the results are subsequently compared with the firing rate-based framework.

Conclusions/Significance

From both rate and temporal information integration and improvement in the neural discrimination of stimuli, it may be concluded that the likelihood space generates a more accurate representation of stimulus space. Further, an understanding of the neuronal mechanism devoted to visual object categorization may be addressed in this framework as well.  相似文献   

16.
神经元能够将不同时空模式的突触输入转化为时序精确的动作电位输出,这种灵活、可靠的信息编码方式是神经集群在动态环境或特定任务下产生所需活动模式的重要基础。动作电位的产生遵循全或无规律,只有当细胞膜电压达到放电阈值时,神经元才产生动作电位。放电阈值在细胞内和细胞间具有高度可变性,具体动态依赖于刺激输入和放电历史。特别是,放电阈值对动作电位起始前的膜电压变化十分敏感,这种状态依赖性产生的生物物理根源包括Na+失活和K+激活。在绝大多数神经元中,动作电位的触发位置是轴突起始端,这个位置处的阈值可变性是决定神经元对时空输入转化规律的关键因素。但是,电生理实验中动作电位的记录位置却通常是胞体或近端树突,此处的阈值可变性高于轴突起始端,而其产生的重要根源是轴突动作电位的反向传播。基于胞体测量的相关研究显示,放电阈值动态能够增强神经元的时间编码、特征选择、增益调控和同时侦测能力本文首先介绍放电阈值的概念及量化方法,然后详细梳理近年来国内外关于放电阈值可变性及产生根源的研究进展,在此基础上归纳总结放电阈值可变性对神经元编码的重要性,最后对未来放电阈值的研究方向进行展望。  相似文献   

17.
SUMMARY: Hidden Markov models (HMMs) are widely used for biological sequence analysis because of their ability to incorporate biological information in their structure. An automatic means of optimizing the structure of HMMs would be highly desirable. However, this raises two important issues; first, the new HMMs should be biologically interpretable, and second, we need to control the complexity of the HMM so that it has good generalization performance on unseen sequences. In this paper, we explore the possibility of using a genetic algorithm (GA) for optimizing the HMM structure. GAs are sufficiently flexible to allow incorporation of other techniques such as Baum-Welch training within their evolutionary cycle. Furthermore, operators that alter the structure of HMMs can be designed to favour interpretable and simple structures. In this paper, a training strategy using GAs is proposed, and it is tested on finding HMM structures for the promoter and coding region of the bacterium Campylobacter jejuni. The proposed GA for hidden Markov models (GA-HMM) allows, HMMs with different numbers of states to evolve. To prevent over-fitting, a separate dataset is used for comparing the performance of the HMMs to that used for the Baum-Welch training. The GA-HMM was capable of finding an HMM comparable to a hand-coded HMM designed for the same task, which has been published previously.  相似文献   

18.
Correlation between spike trains or neurons sometimes indicates certain neural coding rules in the visual system. In this paper, the relationship between spike timing correlation and pattern correlation is discussed, and their ability to represent stimulus features is compared to examine their coding strategies not only in individual neurons but also in population. Two kinds of stimuli, natural movies and checkerboard, are used to arouse firing activities in chicken retinal ganglion cells. The spike timing correlation and pattern correlation are calculated by cross-correlation function and Lempel–Ziv distance respectively. According to the correlation values, it is demonstrated that spike trains with similar spike patterns are not necessarily concerted in firing time. Moreover, spike pattern correlation values between individual neurons’ responses reflect the difference of natural movies and checkerboard; neurons cooperate with each other with higher pattern correlation values which represent spatiotemporal correlations during response to natural movies. Spike timing does not reflect stimulus features as obvious as spike patterns, caused by their particular coding properties or physiological foundation. As a result, separating the pattern correlation out of traditional timing correlation concept uncover additional insight in neural coding.  相似文献   

19.
Understanding how, where, and when animals move is a central problem in marine ecology and conservation. Key to improving our knowledge about what drives animal movement is the rising deployment of telemetry devices on a range of free‐roaming species. An increasingly popular way of gaining meaningful inference from an animal's recorded movements is the application of hidden Markov models (HMMs), which allow for the identification of latent behavioral states in the movement paths of individuals. However, the use of HMMs to explore the population‐level consequences of movement is often limited by model complexity and insufficient sample sizes. Here, we introduce an alternative approach to current practices and provide evidence of how the inclusion of prior information in model structure can simplify the application of HMMs to multiple animal movement paths with two clear benefits: (a) consistent state allocation and (b) increases in effective sample size. To demonstrate the utility of our approach, we apply HMMs and adapted HMMs to over 100 multivariate movement paths consisting of conditionally dependent daily horizontal and vertical movements in two species of demersal fish: Atlantic cod (Gadus morhua; n = 46) and European plaice (Pleuronectes platessa; n = 61). We identify latent states corresponding to two main underlying behaviors: resident and migrating. As our analysis considers a relatively large sample size and states are allocated consistently, we use collective model output to investigate state‐dependent spatiotemporal trends at the individual and population levels. In particular, we show how both species shift their movement behaviors on a seasonal basis and demonstrate population space use patterns that are consistent with previous individual‐level studies. Tagging studies are increasingly being used to inform stock assessment models, spatial management strategies, and monitoring of marine fish populations. Our approach provides a promising way of adding value to tagging studies because inferences about movement behavior can be gained from a larger proportion of datasets, making tagging studies more relevant to management and more cost‐effective.  相似文献   

20.
Array-based comparative genomic hybridization (Array-CGH) is an important technology in molecular biology for the detection of DNA copy number polymorphisms between closely related genomes. Hidden Markov Models (HMMs) are popular tools for the analysis of Array-CGH data, but current methods are only based on first-order HMMs having constrained abilities to model spatial dependencies between measurements of closely adjacent chromosomal regions. Here, we develop parsimonious higher-order HMMs enabling the interpolation between a mixture model ignoring spatial dependencies and a higher-order HMM exhaustively modeling spatial dependencies. We apply parsimonious higher-order HMMs to the analysis of Array-CGH data of the accessions C24 and Col-0 of the model plant Arabidopsis thaliana. We compare these models against first-order HMMs and other existing methods using a reference of known deletions and sequence deviations. We find that parsimonious higher-order HMMs clearly improve the identification of these polymorphisms. Moreover, we perform a functional analysis of identified polymorphisms revealing novel details of genomic differences between C24 and Col-0. Additional model evaluations are done on widely considered Array-CGH data of human cell lines indicating that parsimonious HMMs are also well-suited for the analysis of non-plant specific data. All these results indicate that parsimonious higher-order HMMs are useful for Array-CGH analyses. An implementation of parsimonious higher-order HMMs is available as part of the open source Java library Jstacs (www.jstacs.de/index.php/PHHMM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号