首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
The influence of acclimation to seawater (SW) and growth hormone (GH) administration on immune functions was examined in the rainbow trout (Oncorhynchus mykiss). After 3 days acclimation to dilute SW (12 parts per thousand, ppt), an increase in plasma lysozyme activity was observed compared to the fish kept in fresh water (FW). No change was seen in plasma immunoglobulin M (IgM) levels. When they were transferred from dilute SW to full-strength SW (29 ppt) after a single intra-peritoneal injection of ovine or salmon GH, plasma sodium levels of GH-treated fish were significantly lower than those of the control fish injected with Ringer's solution 24 h after the transfer. The plasma level of IgM was not influenced by GH injection in the fish kept in FW nor in those transferred to SW. The administration of GH increased plasma lysozyme activity in the fish in FW, but no further increase was seen after SW transfer. The production of superoxide anions in peripheral blood leucocytes was stimulated by GH in both FW and SW. These results suggest that GH is involved in the stimulation of the non-specific immune functions in SW-acclimated salmonids.  相似文献   

2.
Summary Parr and smolt sea water acclimated coho salmon,Oncorhynchus kisutch were subjected to gradual and direct transfers to fresh water. Plasma osmotic pressure, Na+, K+, Ca++ and Mg++ were similar in freshwater (FW) fish and seawater (SW) transferred controls for the 24 h following transfer. In spite of the similarity in osmotic pressure and ion levels, plasma cortisol concentrations were significantly increased immediately following salinity change while both pituitary and plasma prolactin decreased indicating enhanced secretion by the pituitary and clearance from the blood. In vitro experiments showed greater incorporation of tritiated leucine into prolactin (PRL) cells immediately after transfer to FW while prolactin injections into intact fish lowered activity in rostral pars distalis (RPD) cells as measured by the same technique, providing evidence of hormonal feedback. These experiments show that the increased synthesis and release of PRL that occurs in coho following movement into FW is not obviously correlated with plasma osmotic pressure, Na+ or Ca++ concentrations as has been observed in other species of teleosts.Abbreviations FW freshwater - SW seawater - PRL prolactin - RPD rostral pars distalis  相似文献   

3.
We isolated the warm temperature acclimation-related protein 65-kDa (Wap65) cDNA from the liver of black porgy and investigated the expression by increasing water temperature in black porgy, Acanthopagrus schlegeli. Black porgy Wap65 full-length cDNA consists of 1,338 nucleotides, including an open reading frame, predicted to encode a protein of 425 amino acids and showed high homology to pufferfish (79%), Medaka (73%), carp (70%), and goldfish (68%) Wap65. Increase in water temperature (20 degrees C --> 30 degrees C; 1 degrees C/day) induced the rise of Wap65 mRNA expression in liver of black porgy. Also, the levels of cortisol and glucose in plasma were significantly higher at 30 degrees C than at 20 degrees C. To determine the high water temperature stressor specificity of the induction of Wap65, black porgy were transferred from seawater (SW) to freshwater (FW) for 24 hr. Wap65 expression was not detected when the fish were transferred from SW to FW (in fish transferred from SW to FW), although the levels of cortisol and glucose in plasma were increased. These results suggest that increase in Wap65 gene is related to high water temperature stress and play important roles in high water temperature environment of black porgy.  相似文献   

4.
When the stenohaline catfish Heteropneustes fossilis was transferred from fresh water (FW) to 30% seawater (SW), the Na(+)/K(+)-ATPase activity significantly increased in the kidney, while in gills it remained more or less constant. A reverse pattern was observed for succinic dehydrogenase (SDH) activity inasmuch as it significantly increased in gills and remained unchanged in the kidney. Plasma osmolality significantly increased within 3 days of transfer to 30% SW and remained significantly higher throughout the duration of experiment. These results suggest that catfish gills may not be able to reverse their function from salt uptake in FW to salt excretion at higher salinity, and that the elimination of monovalent as well as divalent ions is performed by the kidney but not the gills. The significant decline in plasma cortisol (F) levels following transfer to higher salinity may not be due to reduced production but rather to an enhanced utilization and clearance rate, a conclusion supported by the fact that exogenous administration of cortisol acetate (FA) resulted in significant increases in branchial and renal Na(+)/K(+)-ATPase in FW and 30% SW. FA also improved the plasma osmotic regulatory ability of the catfish, possibly due to a change in branchial function from salt-absorption to salt excretion, as was evident from a significant increase in branchial Na(+)/K(+)-ATPase activity in the fish in 30% SW pretreated with FA for 5 days. Consistently higher levels of plasma thyroxine (T4) following transfer to higher salinity suggest the involvement of this hormone at higher salinity.  相似文献   

5.
The metabolic aspects of ionic and osmotic regulation in fish are not well understood. The objective of this study was to examine changes in carbohydrate metabolism during seawater (SW) acclimation in the euryhaline tilapia (Oreochromis mossambicus). Hepatic activities of three key enzymes of the intermediary metabolism, phosphofructokinase, glycogen phosphorylase and glucose 6-phosphate dehydrogenase, together with glycogen content and plasma glucose concentration were measured at 0, 0.5, 1, 2, 3, 6, 12, 24, 48 and 96 h after the direct transfer of tilapia from fresh water (FW) to 70% SW. Plasma growth hormone, prolactin177 and prolactin188, Na+ and Cl concentrations were also measured. Plasma Na+ and Cl levels were highest at 12 h, but returned to FW levels at 24 h after transfer, suggesting the tilapia were able to osmoregulate within 24 h after transfer. Plasma glucose levels were significantly higher in 70% SW than in FW during the course of acclimation, especially in the early stages. Hepatic enzyme activities and glycogen content did not change significantly during the acclimation period. Our results suggest the possibility that glucose is an important energy source for osmoregulation during the acclimation to hyperosmotic environments in O. mossambicus.  相似文献   

6.
Repeated blood withdrawal (5% of estimated blood volume at 0, 1, 4, 8, 24, 48 and 76 h) from tilapia acclimated to fresh water (FW) resulted in a marked increase in plasma levels of prolactin (PRL) during the first 8 h, reaching a peak above 300 ng/ml after 4 h. The increase in plasma PRL levels was significant except for the level after 72 h. A slight but significant decrease in plasma osmolality was observed at all time points after the blood withdrawal. Repeated blood withdrawal from fish acclimated to seawater (SW) resulted in a marked increase in plasma osmolality after 4 and 8 h. A significant increase was observed in plasma growth hormone (GH) in the fish in SW until the end of the experiment, but there was no change in plasma PRL. Plasma levels of cortisol were significantly higher in the fish in SW than in those in FW during the first 24 h. Blood withdrawal resulted in a significant reduction in hematocrit values in both FW- and SW-adapted fish, suggesting hemodilution. In a separate experiment, a single blood withdrawal (20% of total blood) stimulated drinking after 5 h, regardless of whether the fish were held in FW or SW. Plasma PRL level was also elevated following a single blood withdrawal in the fish acclimated to FW, but not in the fish in SW. Intraperitoneal injection of ANG II (1.0 microg/g) into the fish in FW significantly increased plasma PRL levels after 1 h. Activation of the renin-angiotensin system after blood withdrawal and the dipsogenic action of angiotensin II (ANG II) are well established in fish. The reduction in plasma osmolality after repeated blood withdrawal in FW and the increased osmolality in SW suggest that blood volume is restored, at least in part, by drinking environmental water. These results suggest that the marked increase in PRL concentration after blood withdrawal from the fish in FW is due, at least in part, to a facilitative effect between ANG II and reduced plasma osmolality.  相似文献   

7.
This study assessed the endocrine and ionoregulatory responses by tilapia (Oreochromis mossambicus) to disturbances of hydromineral balance during confinement and handling. In fresh water (FW), confinement and handling for 0.5, 1, 2 and 6 h produced elevations in plasma cortisol and glucose; a reduction in plasma osmolality was observed at 6 h. Elevations in plasma prolactins (PRL177 and PRL188) accompanied this fall in osmolality while no effect upon growth hormone (GH) was evident; an increase in insulin-like growth-factor I (IGF-I) occurred at 0.5 h. In seawater (SW), confinement and handling increased plasma osmolality and glucose between 0.5 and 6 h; no effect on plasma cortisol was seen due to variable control levels. Concurrently, both PRLs were reduced in stressed fish with only transient changes in the GH/IGF-I axis. Next, the branchial expression of Na+/K+/2Cl? cotransporter (NKCC) and Na+/Cl? cotransporter (NCC) was characterized following confinement and handling for 6 h. In SW, NKCC mRNA levels increased in stressed fish concurrently with elevated plasma osmolality and diminished gill Na+, K+-ATPase activity; NCC was unchanged in stressed fish irrespective of salinity. Taken together, PRL and NKCC participate in restoring osmotic balance during acute stress while the GH/IGF-I axis displays only modest responses.  相似文献   

8.
Evidence of smolting was studied in Danish hatchery-reared brown trout Salmo trutta L. Twenty-four hour seawater (SW) challenge tests (28‰, 10°C) at regular intervals showed that maximal hypo-osmoregulatory ability developed within a 3–4-week period in March and April. The improved ability to regulate plasma osmolality, muscle water content and plasma total [Mg] developed asynchronously, indicating that developmental changes in the gill, the gastrointestinal system and the kidney may not necessarily concur during smolting. Gill Na+, K+-ATPase activity peaked in April at the time of optimal hypo-osmoregulatory ability. Na+, K+-ATPase a -subunit mRNA level in gills was unchanged from January until April, but decreased in May in parallel with a decrease in the activity of the enzyme. In the middle region of the intestine, Na+, K+-ATPase activity increased in February and remained high until April. In the posterior region of the intestine, the activity was stable from January until April after which it decreased. In vitro fluid transport capacitity, Jv, in the middle intestine fluctuated throughout the spring. In the posterior intestine, Jv was low until late March, when it increased fivefold until early May. Drinking rate in fish transferred to SW for 24 h surged during spring. Na+, K+-ATPase activity in the pyloric caeca was elevated from March until May, and increased in response to SW transfer in June, suggesting a hypo-osmoregulatory function of the pyloric caeca. Plasma GH levels surged in FW trout during spring, concurring with the increase in gill Na+, K+-ATPase activity and SW tolerance, but peaked in May when gill Na+, K+-ATPase activity and SW tolerance were regressing. GH levels were generally low in SW-challenged fish, and there was no consistent effect of 24-h SW exposure on GH levels. In wild anadromous trout, gill Na+, K+-ATPase activity varied seasonally as in hatchery-reared fish, but peaked at higher levels suggesting a more intense smolting in fish living in their natural environment.  相似文献   

9.
The Mozambique tilapia, Oreochromis mossambicus, is capable of surviving a wide range of salinities and temperatures. The present study was undertaken to investigate the influence of environmental salinity and temperature on osmoregulatory ability, organic osmolytes and plasma hormone profiles in the tilapia. Fish were acclimated to fresh water (FW), seawater (SW) or double-strength seawater (200% SW) at 20, 28 or 35 degrees C for 7 days. Plasma osmolality increased significantly as environmental salinity and temperature increased. Marked increases in gill Na(+), K(+)-ATPase activity were observed at all temperatures in the fish acclimated to 200% SW. By contrast, Na(+), K(+)-ATPase activity was not affected by temperature at any salinity. Plasma glucose levels increased significantly with the increase in salinity and temperature. Significant correlations were observed between plasma glucose and osmolality. In brain and kidney, content of myo-inositol increased in parallel with plasma osmolality. In muscle and liver, there were similar increases in glycine and taurine, respectively. Glucose content in liver decreased significantly in the fish in 200% SW. Plasma prolactin levels decreased significantly after acclimation to SW or 200% SW. Plasma levels of cortisol and growth hormone were highly variable, and no consistent effect of salinity or temperature was observed. Although there was no significant difference among fish acclimated to different salinity at 20 degrees C, plasma IGF-I levels at 28 degrees C increased significantly with the increase in salinity. Highest levels of IGF-I were observed in SW fish at 35 degrees C. These results indicate that alterations in gill Na(+), K(+)-ATPase activity and glucose metabolism, the accumulation of organic osmolytes in some organs as well as plasma profiles of osmoregulatory hormones are sensitive to salinity and temperature acclimation in tilapia.  相似文献   

10.
Although accumulating evidence has confirmed the important roles of thyroid hormone (T3) and its receptors (TRs) in tumor progression, the specific functions of TRs in carcinogenesis remain unclear. In the present study, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) was directly upregulated by T3 in TR-overexpressing hepatoma cell lines. TRAIL is an apoptotic inducer, but it can nonetheless trigger non-apoptotic signals favoring tumorigenesis in apoptosis-resistant cancer cells. We found that TR-overexpressing hepatoma cells treated with T3 were apoptosis resistant, even when TRAIL was upregulated. This apoptotic resistance may be attributable to simultaneous upregulation of Bcl-xL by T3, because (1) knockdown of T3-induced Bcl-xL expression suppressed T3-mediated protection against apoptosis, and (2) overexpression of Bcl-xL further protected hepatoma cells from TRAIL-induced apoptotic death, consequently leading to TRAIL-promoted metastasis of hepatoma cells. Moreover, T3-enhanced metastasis in vivo was repressed by the treatment of TRAIL-blocking antibody. Notably, TRAIL was highly expressed in a subset of hepatocellular carcinoma (HCC) patients, and this high-level expression was significantly correlated with that of TRs in these HCC tissues. Together, our findings provide evidence for the existence of a novel mechanistic link between increased TR and TRAIL levels in HCC. Thus, TRs induce TRAIL expression, and TRAIL thus synthesized acts in concert with simultaneously synthesized Bcl-xL to promote metastasis, but not apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号