首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
何世颖  顾宁 《生物磁学》2006,6(1):19-21
趋磁性细菌是一种由于体内含有对磁场具有敏感性的磁小体,而能够沿着磁力线运动的特殊细菌,本文综述了趋磁细菌的分布、分类、特性、磁小体研究以及趋磁细菌在生物导航方面的研究进展.  相似文献   

2.
趋磁细菌及其应用于生物导航的研究进展   总被引:2,自引:2,他引:0       下载免费PDF全文
趋磁性细菌是一种由于体内含有对磁场具有敏感性的磁小体,而能够沿着磁力线运动的特殊细菌,本文综述了趋磁细菌的分布、分类、特性、磁小体研究以及趋磁细菌在生物导航方面的研究进展。  相似文献   

3.
Acidthiobacillus ferrooxidans中磁小体的提取   总被引:1,自引:0,他引:1  
At.f和趋磁细菌在生理特性和生长环境有一定的相似性,而且镜检发现At.f具有趋磁性,所以本文采用了趋磁细菌中磁小体的提取方法尝试提取At.f中的磁小体,用超声波破碎At.f后,以磁铁吸取其体内的磁性颗粒,经过检测,发现其体内确实存在含铁元素的磁性颗粒。提取粗样品经过电镜分析,证实其体内存在着少量由脂质包裹的磁小体。磁小体悬浮液经过蔗糖密度梯度离心纯化后,对其作透射电镜,可以清晰的看到磁小体。实验结果表明,At.f体内存在少量的磁小体,正是由于磁小体的存在,才使得At.f在外加磁场作用下发生磁生物效应。这是首次发现从酸性矿坑水分离的At.f具有趋磁性,并从中提取到了磁小体,可以利用At.f的趋磁性将其按照不同磁性进行分离,从而获得活性高的、对不同磁性矿物有特异性的高效浸矿菌种。  相似文献   

4.
趋磁细菌的磁小体   总被引:4,自引:0,他引:4  
趋磁细菌是一类对磁场有趋向性反应的细菌,其菌体能吸收外界环境中铁元素并在体内合成包裹有膜的纳米磁性颗粒Fe3O4或Fe3O3S4晶体即磁小体。综述了趋磁细菌的磁小体生物矿化的条件,以及趋磁细菌的铁离子吸收、磁小体囊泡的形成、铁离子的转运到磁小体囊泡及囊泡中受控的Fe3O4生物矿化的分子生物学和生物化学等方面的研究进展,重点介绍了趋磁细菌磁小体合成机制的研究进展及未来研究磁小体的发展方向。  相似文献   

5.
趋磁细菌(MTB)依赖于体内磁小体结构在磁场中取向,多个磁小体以一定的组 织形式排列是形成菌体内生物磁罗盘的重要环节.多数趋磁细菌中磁小体成链排列,有效增加了细胞磁偶极矩,从而使菌体表现出在环境磁场中定向的能力.趋磁螺菌M. magneticum AMB-1和M. gryphiswaldense MSR-1中磁小体均沿细胞长轴形成一条磁 小体链.通过对相关基因突变体表型的研究,结合对磁小体链形成过程的实时动态观 察,人们已初步了解MamJ、MamK和MamA等基因在磁小体链装配和维护过程中的功能.本文介绍了近年来趋磁螺菌磁小体链装配过程中重要功能性基因的研究进展,并重点分析了AMB-1和MSR-1中磁小体链装配的差异.  相似文献   

6.
刘召明  林敏  杨雪  汲霞 《生物工程学报》2021,37(9):3190-3200
提高抗肿瘤药物的靶向性是肿瘤治疗、降低药物副作用的重要手段。在肿瘤组织内部由于癌细胞的快速增殖致使其形成低氧区,低氧区会对多种肿瘤治疗方案产生耐受。趋磁细菌 (Magnetotactic bacteria, MTB) 是一类能在细胞内产生外包生物膜、纳米尺寸、单磁畴磁铁矿 (Fe3O4) 或硫铁矿 (Fe3S4) 晶体颗粒-磁小体的微生物的统称。在磁场的作用下,趋磁细菌可凭借鞭毛运动至厌氧区。趋磁细菌在动物体内毒性较低且生物相容性良好,其磁小体与人工合成的磁性纳米材料相比优势显著。文中在介绍趋磁细菌及其磁小体生物学特点、理化性能的基础上,综述了趋磁细菌作为载体偶联药物进入肿瘤内部,并通过感受低氧信号定位于肿瘤低氧区,以及趋磁细菌竞争肿瘤细胞铁源的研究进展,总结了磁小体运载化疗药物、抗体、DNA疫苗靶向结合肿瘤的研究进展,分析了趋磁细菌及磁小体肿瘤治疗中面临的问题,并对趋磁细菌和磁小体在肿瘤治疗中的应用进行了展望。  相似文献   

7.
趋磁细菌可在环境中吸收大量铁并在细胞内合成纳米级磁性颗粒—磁小体。比较几种趋磁细菌基因组特征,针对磁小体岛及与磁小体合成相关基因功能特点等方面,综述了当前磁小体合成机制的研究进展。  相似文献   

8.
近年来,趋磁细菌及其生物自身合成的磁小体由于良好的生物安全性逐渐被人们所认识,并被用于生物工程和医学应用研究。与人工化学合成磁性纳米颗粒相比,从趋磁细菌中提取的磁小体具有生物膜包被、生物相容性高、粒径均一及磁性高等优势。趋磁细菌因磁小体在其胞内呈链状排列,具有沿磁场方向泳动的能力,也被应用于各种应用研究。因此,综述了趋磁细菌及磁小体特性,并就最近的研究进展重点综述趋磁细菌和磁小体在生物工程及医学应用等领域的最新研究进展。  相似文献   

9.
趋磁细菌是一类可以沿磁场方向进行运动的微生物统称,在细胞内合成由生物膜包被、链状排列、纳米级、单磁畴的磁铁矿 (Fe3O4) 或胶黄铁矿 (Fe3S4) 的磁小体颗粒。趋磁细菌在自然界分布广泛且多样性丰富,不仅在水环境和沉积环境的铁、硫、碳、氮、磷等元素生物地球化学循环中发挥重要作用,而且在污染治理、疾病诊断和治疗等方面有较好的应用。趋磁细菌磁小体由生物膜包被并在细胞调控下合成,是一类新型的生物源磁性纳米材料。相比常规化学合成的磁性纳米颗粒,磁小体具有大小均一、生物相容性高、兼具化学修饰和基因工程修饰功能等特点,在磁性分离、固定化酶、食品检测、环境监测、医学诊断、磁共振成像、磁热疗和靶向治疗等方面具有广阔的应用前景。在介绍趋磁细菌多样性研究的基础上,综述了趋磁细菌和磁小体的制备、修饰及其应用的最新进展,并对未来的研究进行了展望。  相似文献   

10.
趋磁细菌是一种对磁场有趋向性反应的细菌,其原因是它们体内能合成一种特殊的细胞器-磁小体;由于磁小体有着大小合适,磁性强,表面易修饰等诸多优点,在诸多领域,尤其是医学领域有广泛的应用和广阔的前景.本文主要就从环境中区分和分离趋磁细菌;对其不同培养条件的优化与选择;从细菌体内提取磁小体并加以纯化;将不同药物偶联于磁小体之上的方法及其在医学上如,制造磁性细胞,磁分离技术,生物传感与检测技术,并将其作为靶向药物的载体,肿瘤治疗,基因治疗等方面的应用现状和前景作简要论述.  相似文献   

11.
Magnetotactic bacteria orient and migrate along geomagnetic field lines. This ability is based on intracellular magnetic structures, the magnetosomes, which comprise nanometer-sized, membrane-bound crystals of the magnetic iron minerals magnetite (Fe3O4) or greigite (Fe3S4). Magnetosome formation is achieved by a mineralization process with biological control over the accumulation of iron and the deposition of the mineral particle with specific size and orientation within a membrane vesicle at specific locations in the cell. This review focuses on the current knowledge about magnetotactic bacteria and will outline aspects of the physiology and molecular biology of the biomineralization process. Potential biotechnological applications of magnetotactic bacteria and their magnetosomes as well as perspectives for further research are discussed. Received: 2 December 1998 / Received revision: 2 March 1999 / Accepted: 5 March 1999  相似文献   

12.
Magnetotactic bacteria produce either magnetite (Fe3O4) or greigite (Fe3S4) crystals in cytoplasmic organelles called magnetosomes. Whereas greigite magnetosomes can contain up to 10 atom% copper, magnetite produced by magnetotactic bacteria was considered chemically pure for a long time and this characteristic was used to distinguish between biogenic and abiogenic crystals. Recently, it was shown that magnetosomes containing cobalt could be produced by three strains of Magnetospirillum . Here we show that magnetite crystals produced by uncultured magnetotactic bacteria can incorporate manganese up to 2.8 atom% of the total metal content (Fe+Mn) when manganese chloride is added to microcosms. Thus, chemical purity can no longer be taken as a strict prerequisite to consider magnetite crystals to be of biogenic origin.  相似文献   

13.
Magnetotactic bacteria show an ability to navigate along magnetic field lines because of magnetic particles called magnetosomes. All magnetotactic bacteria are unicellular except for the multicellular prokaryote (recently named 'Candidatus Magnetoglobus multicellularis'), which is formed by an orderly assemblage of 17-40 prokaryotic cells that swim as a unit. A ciliate was used in grazing experiments with the M. multicellularis to study the fate of the magnetosomes after ingestion by the protozoa. Ciliates ingested M. multicellularis, which were located in acid vacuoles as demonstrated by confocal laser scanning microscopy. Transmission electron microscopy and X-ray microanalysis of thin-sectioned ciliates showed the presence of M. multicellularis and magnetosomes inside vacuoles in different degrees of degradation. The magnetosomes are dissolved within the acidic vacuoles of the ciliate. Depending on the rate of M. multicellularis consumption by the ciliates the iron from the magnetosomes may be recycled to the environment in a more soluble form.  相似文献   

14.
Magnetotactic multicellular aggregates consist of several bacteria that produce iron sulfide magnetosomes through a complex and poorly understood process. We observed new amorphous mineral particles within the cytoplasm of magnetotactic multicellular aggregates. Elemental mapping and electron energy loss spectroscopy detected iron and oxygen, but not sulfur, in these particles. These amorphous particles were about the same size as mature magnetosomes, around 50-70 nm in diameter. No membranes were observed surrounding the amorphous minerals. Partially crystalline inclusions composed of a crystalline core and an amorphous region around them similar in texture to the amorphous particles were also present. The shape of these amorphous regions followed the shape of the crystalline cores they enveloped. These regions also contained oxygen and iron. The crystalline phase, as previously reported, contained sulfur and iron. The presence of independent amorphous particles has not been reported before in magnetotactic multicellular aggregates.  相似文献   

15.

Background  

Magnetotactic bacteria have long intrigued researchers because they synthesize intracellular nano-scale (40-100 nm) magnetic particles composed of Fe3O4, termed magnetosomes. Current research focuses on the molecular mechanisms of bacterial magnetosome formation and its practical applications in biotechnology and medicine. Practical applications of magnetosomes are based on their ferrimagnetism, nanoscale size, narrow size distribution, dispersal ability, and membrane-bound structure. However, the applications of magnetosomes have not yet been developed commercially, mainly because magnetotactic bacteria are difficult to cultivate and consistent, high yields of magnetosomes have not yet been achieved.  相似文献   

16.
Magnetotactic bacteria produce magnetosomes, which are magnetic particles enveloped by biological membranes, in a highly controlled mineralization process. Magnetosomes are used to navigate in magnetic fields by a phenomenon called magnetotaxis. Two levels of organization and control are recognized in magnetosomes. First, magnetotactic bacteria create a spatially distinct environment within vesicles defined by their membranes. In the vesicles, the bacteria control the size, composition and purity of the mineral content of the magnetic particles. Unique crystal morphologies are produced in magnetosomes as a consequence of this bacterial control. Second, magnetotactic bacteria organize the magnetosomes in chains within the cell body. It has been shown in a particular case that the chains are positioned within the cell body in specific locations defined by filamentous cytoskeleton elements. Here, we describe an additional level of organization of the magnetosome chains in uncultured magnetotactic cocci found in marine and freshwater sediments. Electron microscopy analysis of the magnetosome chains using a goniometer showed that the magnetic crystals in both types of bacteria are not oriented at random along the crystal chain. Instead, the magnetosomes have specific orientations relative to the other magnetosomes in the chain. Each crystal is rotated either 60°, 180° or 300° relative to their neighbors along the chain axis, causing the overlapping of the (1?1?1) and [Formula in text] capping faces of neighboring crystals. We suggest that genetic determinants that are not present or active in bacteria with magnetosomes randomly rotated within a chain must be present in bacteria that organize magnetosomes so precisely. This particular organization may also be used as an indicative biosignature of magnetosomes in the study of magnetofossils in the cases where this symmetry is observed.  相似文献   

17.
Magnetotactic bacteria are a heterologous group of motile prokaryotes, ubiquitous in aquatic habitats and cosmopolitan in distribution. Here, we studied the diversity of magnetotactic bacteria in a seawater pond within an intertidal zone at Huiquan Bay in the China Sea. The pond is composed of a permanently submerged part and a low tide subregion. The magnetotactic bacteria collected from the permanently submerged part display diversity in morphology and taxonomy. In contrast, we found a virtually homogenous population of ovoid-coccoid magnetotactic bacteria in the low tide subregion of the pond. They were bilophotrichously flagellated and exhibited polar magnetotactic behaviour. Almost all cells contained two chains of magnetosomes composed of magnetite crystals. Intriguingly, the combination of restriction fragment length polymorphism analysis (RFLP) and sequencing of cloned 16S rDNA genes from the low tide subregion samples as well as fluorescence in situ hybridization (FISH) revealed the presence of a homogenous population. Moreover, phylogenetic analysis indicated that the Qingdao Huiquan low tide magnetotactic bacteria belong to a new genus affiliated with the α-subclass of Proteobacteria . This finding suggests the adaptation of the magnetotactic bacterial population to the marine tide.  相似文献   

18.
Magnetotactic bacteria have the ability to orient along geomagnetic field lines based on the formation of magnetosomes, which are intracellular nanometer-sized, membrane-enclosed magnetic iron minerals. The formation of these unique bacterial organelles involves several processes, such as cytoplasmic membrane invagination and magnetosome vesicle formation, the accumulation of iron in the vesicles, and the crystallization of magnetite. Previous studies suggested that the magA gene encodes a magnetosome-directed ferrous iron transporter with a supposedly essential function for magnetosome formation in Magnetospirillum magneticum AMB-1 that may cause magnetite biomineralization if expressed in mammalian cells. However, more recent studies failed to detect the MagA protein among polypeptides associated with the magnetosome membrane and did not identify magA within the magnetosome island, a conserved genomic region that is essential for magnetosome formation in magnetotactic bacteria. This raised increasing doubts about the presumptive role of magA in bacterial magnetosome formation, which prompted us to reassess MagA function by targeted deletion in Magnetospirillum magneticum AMB-1 and Magnetospirillum gryphiswaldense MSR-1. Contrary to previous reports, magA mutants of both strains still were able to form wild-type-like magnetosomes and had no obvious growth defects. This unambiguously shows that magA is not involved in magnetosome formation in magnetotactic bacteria.  相似文献   

19.
Magnetotactic bacteria are microorganisms that respond to magnetic fields. We studied the surface ultrastructure of uncultured magnetotactic cocci collected from a marine environment by transmission electron microscopy using freeze-fracture and freeze-etching. All bacteria revealed a Gram-negative cell wall. Many bacteria possessed extensive capsular material and a S-layer formed by particles arranged with hexagonal symmetry. No indication of a metal precipitation on the surface of these microorganisms was observed. Numerous membrane vesicles were observed on the surface of the bacteria. Flagella were organized in bundles originated in a depression on the surface of the cells. Occasionally, a close association of the flagella with the magnetosomes that remained attached to the replica was observed. Capsules and S-layers are common structures in magnetotactic cocci from natural sediments and may be involved in inhibition of metal precipitation on the cell surface or indirectly influence magnetotaxis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号