首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hierarchy of events accompanying induction of apoptosis by the proteasome inhibitor Bortezomib was investigated in Jurkat lymphoblastic and U937 myelomonocytic leukemia cells. Treatment of Jurkat or U937 cells with Bortezomib resulted in activation of c-Jun-N-terminal kinase (JNK) and p38 MAPK (mitogen-activated protein kinase), inactivation of extracellular signal-regulating kinase 1/2 (ERK1/2), cytochrome c release, caspase-9, -3, and -8 activation, and apoptosis. Bortezomib-mediated cytochrome c release and caspase activation were blocked by the pharmacologic JNK inhibitor SP600125, but lethality was not diminished by the p38 MAPK inhibitor SB203580. Inducible expression of a constitutively active MEK1 construct blocked Bortezomib-mediated ERK1/2 inactivation, significantly attenuated Bortezomib lethality, and unexpectedly prevented JNK activation. Conversely, pharmacologic MEK/ERK1/2 inhibition promoted Bortezomib-mediated JNK activation and apoptosis. Lastly, the antioxidant N-acetyl-l-cysteine (LNAC) attenuated Bortezomib-mediated reactive oxygen species (ROS) generation, ERK inactivation, JNK activation, mitochondrial dysfunction, and apoptosis. In contrast, enforced MEK1 and ERK1/2 activation or JNK inhibition did not modify Bortezomib-induced ROS production. Together, these findings suggest that in human leukemia cells, Bortezomib-induced oxidative injury operates at a proximal point in the cell death cascade to antagonize cytoprotective ERK1/2 signaling, promote activation of the stress-related JNK pathway, and to trigger mitochondrial dysfunction, caspase activation, and apoptosis. They also suggest the presence of a feedback loop wherein Bortezomib-mediated ERK1/2 inactivation contributes to JNK activation, thereby amplifying the cell death process.  相似文献   

2.
Anandamide is a neuroimmunoregulatory molecule that triggers apoptosis in a number of cell types including PC12 cells. Here, we investigated the molecular mechanisms underlying anandamide-induced cell death in PC12 cells. Anandamide treatment resulted in the activation of p38 mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK), and p44/42 MAPK in apoptosing cells. A selective p38 MAPK inhibitor, SB203580, or dn-JNK, JNK1(A-F) or SAPKbeta(K-R), blocked anandamide-induced cell death, whereas a specific inhibitor of MEK-1/2, U0126, had no effect, indicating that activation of p38 MAPK and JNK is critical in anandamide-induced cell death. An important role for apoptosis signal-regulating kinase 1 (ASK1) in this event was also demonstrated by the inhibition of p38 MAPK/JNK activation and death in cells overexpressing dn-ASK1, ASK1 (K709M). Conversely, the constitutively active ASK1, ASK1DeltaN, caused prolonged p38 MAPK/JNK activation and increased cell death. These indicate that ASK1 mediates anandamide-induced cell death via p38 MAPK and JNK activation. Here, we also found that activation of p38 MAPK/JNK is accompanied by cytochrome c release from the mitochondria and caspase activation (which can be inhibited by SB203580), suggesting that anandamide triggers a mitochondrial dependent apoptotic pathway. The caspase inhibitor, zVAD, and the mitochondrial pore opening inhibitor, cyclosporine A, blocked anandamide-induced cell death but not p38 MAPK/JNK activation, suggesting that activation of these kinases may occur upstream of mitochondrial associated events.  相似文献   

3.
The contribution of vincristine (VCR)‐induced microtubule destabilization to evoke apoptosis in cancer cells remains to be resolved. Thus, we investigated the cytotoxic mechanism of VCR on U937 and HL‐60 human leukaemia cell lines. We discovered that VCR treatment resulted in the up‐regulation of TNF‐α expression and activation of the death receptor pathway, which evoked apoptosis of U937 cells. Moreover, VCR induced microtubule destabilization and mitotic arrest. VCR treatment down‐regulated SIRT3, and such down‐regulation caused mitochondrial ROS to initiate phosphorylation of p38 MAPK. p38 MAPK suppressed MID1‐modulated degradation of the protein phosphatase 2A (PP2A) catalytic subunit. The SIRT3‐ROS‐p38 MAPK‐PP2A axis inhibited tristetraprolin (TTP)‐controlled TNF‐α mRNA degradation, consequently, up‐regulating TNF‐α expression. Restoration of SIRT3 and TTP expression, or inhibition of the ROS‐p38 MAPK axis increased the survival of VCR‐treated cells and repressed TNF‐α up‐regulation. In contrast to suppression of the ROS‐p38 MAPK axis, overexpression of SIRT3 modestly inhibited the effect of VCR on microtubule destabilization and mitotic arrest in U937 cells. Apoptosis of HL‐60 cells, similarly, went through the same pathway. Collectively, our data indicate that the SIRT3‐ROS‐p38 MAPK‐PP2A‐TTP axis modulates TNF‐α expression, which triggers apoptosis of VCR‐treated U937 and HL‐60 cells. We also demonstrate that the apoptotic signalling is not affected by VCR‐elicited microtubule destabilization.  相似文献   

4.
Doxorubicin induces caspase-3 activation and apoptosis in Jurkat cells but inhibition of this enzyme did not prevent cell death, suggesting that another caspase(s) is critically implicated. Western blot analysis of cell extracts indicated that caspases 2, 3, 4, 6, 7, 8, 9, and 10 were activated by doxorubicin. Cotreatment of cells with the caspase inhibitors Ac-DEVD-CHO, Z-VDVAD-fmk, Z-IETD-fmk, and Z-LEHD-fmk alone or in combination, or overexpression of CrmA, prevented many morphological features of apoptosis but not loss of mitochondrial membrane potential (delta(psi)m), phospatidilserine exposure, and cell death. Western blot analysis of cells treated with doxorubicin in the presence of inhibitors allowed elucidation of the sequential order of caspase activation. Z-IETD-fmk or Z-LEHD-fmk, which inhibit caspase-9 activity, blocked the activation of all caspases studied, lamin B degradation, and the development of apoptotic morphology, but not cell death. All morphological and biochemical features of apoptosis, as well as cell death, were prevented by cotreatment of cells with the general caspase inhibitor Z-VAD-fmk or by overexpression of Bcl-2. Doxorubicin cytotoxicity was also blocked by the protein synthesis inhibitor cycloheximide. Delayed addition of Z-VAD-fmk after doxorubicin treatment, but prior to the appearance of cells displaying a low delta(psi)m, prevented cell death. These results, taken together, suggest that the key mediator of doxorubicin-induced apoptosis in Jurkat cells may be an inducible, Z-VAD-sensitive caspase (caspase-X), which would cause delta(psi)m loss, release of apoptogenic factors from mitochondria, and cell death.  相似文献   

5.
Lee SH  Park SW  Pyo CW  Yoo NK  Kim J  Choi SY 《Biochimie》2009,91(1):102-108
The cell proliferation of p53-deficient Jurkat T cells is controlled after prolonged exposure to human lactoferrin (Lf). However, the molecular mechanism by which Lf influences these cellular responses remains unclear. In this study, we demonstrate that Lf-induced apoptosis in Jurkat T cells occurs in a dose- and time-dependent manner via the regulation of c-Jun N-terminal kinase (JNK) activity. Jurkat cells exposed to Lf for 1 day, especially at concentrations in excess of 500 microg/ml, showed typical apoptosis, as indicated by decreased cell viability and increased Annexin V binding. Our results also showed that Lf induced the activation of caspase 9 and caspase 3 activation, as demonstrated by our detection of cleaved caspases and PARP. Lf-induced apoptosis did not influence Bcl-2 expression via an ERK1/2 phosphorylation pathway, but was rather associated with the level of Bcl-2 phosphorylation. The treatment of cells with the specific JNK inhibitor SP600125, but not the p38 MAPK inhibitor SB203580, revealed that the JNK-Bcl-2 signaling cascade is required for Lf-induced apoptosis. When JNK activation was abolished by SP600125, no Bcl-2 phosphorylation was detected, and the Lf-treated Jurkat cells did not undergo cell death. These findings indicate that Lf functions as a biological mediator of apoptosis in the human leukemia Jurkat T-cell line, via the JNK-associated Bcl-2 signaling pathway.  相似文献   

6.
In cholestasis, toxic bile acids accumulate within the liver inducing hepatocyte apoptosis, which exacerbates liver injury. Although bile acids activate both death receptors and mitogen-activated kinase (MAPK) pathways, the mechanistic link between death receptor signaling and MAPK activation in bile acid apoptosis remains unclear. The aim of this study was to ascertain if MAPKs contribute to bile acid cytotoxicity. Although deoxycholate induced apoptosis and activated all three classic mediators of the MAPK pathways including JNK 1/2, p38, and p42/44, only p38 MAPK inhibition attenuated apoptosis. Suppressing FADD expression with siRNA or employing a caspase inhibitor, zVAD-fmk, did not block p38 MAPK activation suggesting its activation was not death receptor-dependent. Unexpectedly, expression of cFLIP-L in a stably transfected cell line blocked apoptosis and p38 MAPK phosphorylation. Based on these data we postulated a direct effect of cFLIP on p38 MAPK activation. The nonphosphorylated but not the phosphorylated/active form of p38 MAPK co-immunoprecipitated with cFLIP-L. In reverse immunoprecipitation experiments, cFLIP-L long but not cFLIP-S co-immunoprecipitate with p38 MAPK. In conclusion, these data suggest that cFLIP-L exerts its anti-apoptotic activity, in part, by inhibiting p38 MAPK activation, an additional anti-apoptotic effect for this protein.  相似文献   

7.
Mitogen-activated protein kinases (MAPKs) are a family of Ser/Thr protein kinases that transmit various extracellular signals to the nucleus inducing gene expression, cell proliferation, and apoptosis. Recent studies have revealed that organotin compounds induce apoptosis and MAPK phosphorylation/activation in mammal cells. In this study, we elucidated the cytotoxic mechanism of tributyltin (TBT), a representative organotin compound, in rainbow trout (Oncorhynchus mykiss) RTG-2 cells. TBT treatment resulted in significant caspase activation, characteristic morphological changes, DNA fragmentation, and consequent apoptotic cell death in RTG-2 cells. TBT exposure induced the rapid and sustained accumulation of phosphorylated MAPKs, including extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAP kinase (p38 MAPK). Further analysis using pharmacological inhibitors against caspases and MAPKs showed that TBT also induced cell death in a caspase-independent manner and that p38 MAPK is involved in TBT-induced caspase-independent cell death, whereas JNK is involved in the caspase-dependent apoptotic pathway. Thus, TBT employs at least two independent signaling cascades to mediate cell death in RTG-2 cells. To our knowledge, this is the first study revealing the relationship between MAPK activation and TBT cytotoxicity in RTG-2 cells.  相似文献   

8.
The HT29 adenocarcinoma is a common model of epithelial cell differentiation and colorectal cancer and its death is an oft-analyzed response to TNF family receptor signaling. The death event itself remains poorly characterized and here we have examined the involvement of caspases using pan-caspase inhibitors. zVAD-fmk did not block death of HT29 cells in response to activation of the Fas, TRAIL, TNF, TWEAK and LTbeta receptors. The secondary induction of TNF or the other known bona fide death inducing ligands did not account for death following LTbeta receptor activation indicating that TNF family receptors can trigger a caspase-independent death pathway regardless of the presence of canonical death domains in the receptor. To provide a frame of reference, the phenotype of HT29 death was compared to four other TNF family receptor triggered death events; Fas induced Jurkat cell apoptosis, TNF/zVAD induced L929 fibroblast necrosis, TNF induced death of WEHI 164 fibroblastoid cells and TNF/zVAD induced U937 death. The death of HT29 and U937 cells under these conditions is an intermediate form with both necrotic and apoptotic features. The efficient coupling of TNF receptors to a caspase-independent death event in an epithelial cell suggests an alternative approach to cancer therapy.  相似文献   

9.
10.
Tumor necrosis factor alpha (TNF) or cytotoxic anti-Fas antibodies lead to the activation of apoptotic proteases (caspases) and to sphingomyelinase-mediated ceramide generation. Caspases and ceramide are both known to induce apoptosis on its own, but their relative contribution to Fas- and TNF-induced cell death is not well established. We report here that rapid apoptosis induced by TNF in U937 cells or anti-Fas in Jurkat cells, in the presence of cycloheximide, induced only a very low increase (<20%) in the cell ceramide content. Neither treatment with inhibitors of sphingomyelinases nor incubation of cells with fumonisin B1, which inhibits de novo ceramide synthesis, prevented TNF and Fas-mediated apoptosis. Increasing or depleting the cell ceramide content by prolonged culture in the presence of monensin or fumonisin B1, respectively, did not prevent TNF and Fas-mediated apoptosis. Treatment of cells with sphingomyelinase inhibitors did not affect to the activation of CPP32 (caspase-3) induced by TNF or anti-Fas antibodies. Chromatin condensation and fragmentation in cells treated with anti-Fas or TNF was abrogated by peptide inhibitors of caspases, which also inhibited Fas-, but not TNF-induced cell death. These results indicate that while ceramide does not seem to act as a critical mediator of TNF and Fas-induced apoptosis, it is generated as a consequence of CPP32 activation and could contribute to the spread of the intracellular death signal.  相似文献   

11.
Kim WH  Goo SY  Shin MH  Chun SJ  Lee H  Lee KH  Park SJ 《Cellular immunology》2008,253(1-2):81-91
Vibrio vulnificus, a pathogenic bacterium causing primary septicemia, exhibited cytotoxicity towards Jurkat cells of T-lymphocytes through intracellular reactive oxygen species (ROS) production. Pretreatment of Jurkat T-cells with diphenyleneiodonium chloride (DPI) abolished V. vulnificus-induced ROS generation and bacterial ability to cause cell death. Jurkat T-cells expressing dominant-negative protein of Rac subunit of NADPH oxidase (NOX) did not show increased ROS production and cell death by V. vulnificus. Vibrio vulnificus also triggered phosphorylation of mitogen-activated protein kinases (MAPKs) including p38 and ERK1/2 in Jurkat T-cells. Experiments using inhibitors or small interfering RNAs for each MAPK showed that both MAPKs are involved in V. vulnificus-induced cell death. DPI only blocked the phosphorylation of p38 MAPK in Jurkat T-cells exposed by V. vulnificus. This study demonstrates that V. vulnificus induces death of Jurkat T-cells via ROS-dependent activation of p38 MAPK, and that NOX plays a major role in ROS generation in V. vulnificus-exposed cells.  相似文献   

12.
Among other cellular responses, tumor necrosis factor (TNF) induces different forms of cell death and the activation of the p38 mitogen-activated protein kinase (MAPK). The influence of p38 MAPK activation on TNF-induced apoptosis or necrosis is controversially discussed. Here, we demonstrate that pharmacological inhibition of p38 MAPK enhances TNF-induced cell death in murine fibroblast cell lines L929 and NIH3T3. Furthermore, overexpression of dominant-negative versions of p38 MAPK or its upstream kinase MKK6 led to increased cell death in L929 cells. While overexpression of the p38 isoforms alpha and beta did not protect L929 cells from TNF-induced toxicity, overexpression of constitutively active MKK6 decreased TNF-induced cell death. Although the used inhibitors of p38 MAPK decreased the phosphorylation of the survival kinase PKB/Akt, this effect could be ruled out as cause of the observed sensitization to TNF-induced cytotoxicity. Finally, we demonstrate that the nuclear factor kappaB (NF-kappaB)-dependent gene expression, shown as an example for the anti-apoptotic gene cellular inhibitor of apoptosis (c-IAP2), was reduced by p38 MAPK inhibition. In consequence, we found that inhibition of p38 MAPK led to the activation of the executioner caspase-3.  相似文献   

13.
Bacterial infection induces apoptotic cell death in human monoblastic U937 cells that have been pretreated with interferon gamma (U937IFN). Apoptosis occurs in a manner that is independent of bacterial virulence proteins. In the present study, we show that lipopolysaccharide (LPS), a membrane constituent of gram-negative bacteria, also induces apoptosis in U937IFN cells. LPS treatment led to the appearance of characteristic markers of apoptosis such as nuclear fragmentation and activation of caspases. While the caspase inhibitor Z-VAD-fmk prevented LPS-induced apoptosis as judged by its inhibition of nuclear fragmentation, it failed to inhibit cytochrome c release and loss of mitochondrial membrane potential. Transfection of peptides containing the BH4 (Bcl-2 homology 4) domain derived from the anti-apoptotic protein Bcl-XL blocked LPS-induced nuclear fragmentation and the limited digestion of PARP. These results suggest that LPS does not require caspase activation to induce mitochondrial dysfunction and that mitochondria play a crucial role in the regulation of LPS-mediated apoptosis in U937IFN cells.  相似文献   

14.
Macrophage apoptosis is an important component of the innate immune defense machinery (against pathogenic mycobacteria) responsible for limiting bacillary viability. However, little is known about the mechanism of how apoptosis is executed in mycobacteria-infected macrophages. Apoptosis signal-regulating kinase 1 (ASK1) was activated in Mycobacterium avium-treated macrophages and in turn activated p38 mitogen-activated protein (MAP) kinase. M. avium-induced macrophage cell death could be blocked in cells transfected with a catalytically inactive mutant of ASK1 or with dominant negative p38 MAP kinase arguing in favor of a central role of ASK1/p38 MAP kinase signaling in apoptosis of macrophages challenged with M. avium. ASK1/p38 MAP kinase signaling was linked to the activation of caspase 8. At the same time, M. avium triggered caspase 8 activation, and cell death occurred in a Fas-associated death domain (FADD)-dependent manner. The death signal induced upon caspase 8 activation linked to mitochondrial death signaling through the formation of truncated Bid (t-Bid), its translocation to the mitochondria and release of cytochrome c. Caspase 8 inhibitor (z-IETD-FMK) could block the release of cytochrome c as well as the activation of caspases 9 and 3. The final steps of apoptosis probably involved caspases 9 and 3, since inhibitors of both caspases could block cell death. Of foremost interest in the present study was the finding that ASK1/p38 signaling was essential for caspase 8 activation linked to M. avium-induced death signaling. This work provides the first elucidation of a signaling pathway in which ASK1 plays a central role in innate immunity.  相似文献   

15.
Escherichia coli (E. coli) infections play an important and growing role in the clinic. In the present study, we investigated the involvement of members of the mitogen-activated protein kinase (MAPK) superfamily, including extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK) and p38 MAPK, and caspase-3 and 9 activity in E. coli-induced apoptosis in human U937 cells. We found that E. coli induces apoptosis in U937 cell lines in a dose- and time-dependent manner, p38 MAPK and JNK were activated after 10 min of infection with E. coli. In contrast, ERK1/2 was down-regulated in a time-dependent manner. The levels of total (phosphorylation state-independent) p38 MAPK, JNK and ERK1/2 did not change in E. coli-infected U937 cells at all times examined. Moreover, exposure of U937 cells to E. coli led to caspase-3 and 9 activity. For the evaluation of the role of MAPKs, PD98059, SB203580 and SP600125 were used as MAPKs inhibitors for ERK1/2, p38 MAPK and JNK. Inhibition of ERK1/2 with PD98059 caused further enhancement in apoptosis and caspase-3 and 9 activity, while a selective p38 MAPK inhibitor, SB203580 and JNK inhibitor, SP600125 significantly inhibited E. coli-induced apoptosis and caspase-3 and 9 activity in U937 cells. The results were further confirmed by the observation that the caspase inhibitors Z-DEVD-FMK and Z-LEHD-FMK blocked E. coli-induced U937 apoptosis. Taken together, we have shown that E. coli increase p38 MAPK and JNK and decrease ERK1/2 phosphorylation and increase caspase-3 and 9 activity in U937 cells.  相似文献   

16.
Activation of p53 induces apoptosis in various cell types. However, the mechanism by which p53 induces apoptosis is still unclear. We reported previously that the activation of a temperature-sensitive mutant p53 (p53(138Val)) induced activation of caspase 3 and apoptosis in Jurkat cells. To elucidate the pathway linking p53 and downstream caspases, we examined the activation of caspases 8 and 9 in apoptotic cells. The results showed that both caspases were activated during apoptosis as judged by the appearance of cleavage products from procaspases and the caspase activities to cleave specific fluorogenic substrates. The significant inhibition of apoptosis by a tetrapeptide inhibitor of caspase 8 and caspase 9 suggested that both caspases are required for apoptosis induction. In addition, the membrane translocation of Bax and cytosolic release of cytochrome c, but not loss of mitochondrial membrane potential, were detected at an early stage of apoptosis. Moreover, Bax translocation, cytochrome c release, and caspase 9 activation were blocked by the broad-spectrum caspase inhibitor, Z-VAD-fmk and the caspase 8-preferential inhibitor, Ac-IETD-CHO, suggesting that the mitochondria might participate in apoptosis by amplifying the upstream death signals. In conclusion, our results indicated that activation of caspase 8 or other caspase(s) by p53 triggered the membrane translocation of Bax and cytosolic release of cytochrome c, which might amplify the apoptotic signal by activating caspase 9 and its downstream caspases.  相似文献   

17.
HIV-tat protein, like TNF, activates a wide variety of cellular responses, including NF-kappa B, AP-1, c-Jun N-terminal kinase (JNK), and apoptosis. Whether HIV-tat transduces these signals through the same mechanism as TNF is not known. In the present study we investigated the role of the T cell-specific tyrosine kinase p56lck in HIV-tat and TNF-mediated cellular responses by comparing the responses of Jurkat T cells with JCaM1 cells, an isogeneic lck-deficient T cell line. Treatment with HIV-tat protein activated NF-kappa B, degraded I kappa B alpha, and induced NF-kappa B-dependent reporter gene expression in a time-dependent manner in Jurkat cells but not in JCaM1 cells, suggesting the critical role of p56lck kinase. These effects were specific to HIV-tat, as activation of NF-kappa B by PMA, LPS, H2O2, and TNF was minimally affected. p56lck was also found to be required for HIV-tat-induced but not TNF-induced AP-1 activation. Similarly, HIV-tat activated the protein kinases JNK and mitogen-activated protein kinase kinase in Jurkat cells but not in JCaM1 cells. HIV-tat also induced cytotoxicity, activated caspases, and reactive oxygen intermediates in Jurkat cells, but not in JCaM1 cells. HIV-tat activated p56lck activity in Jurkat cells. Moreover, the reconstitution of JCaM1 cells with p56lck tyrosine kinase reversed the HIV-tat-induced NF-kappa B activation and cytotoxicity. Overall, our results demonstrate that p56lck plays a critical role in the activation of NF-kappa B, AP-1, JNK, and apoptosis by HIV-tat protein but has minimal or no role in activation of these responses by TNF.  相似文献   

18.
The parasite Entamoeba histolytica is named for its ability to lyse host tissues. To determine the factors responsible, we have initiated an examination of the contribution of parasite virulence factors and host caspases to cellular destruction by the parasite. Amoebic colitis in C3H/HeJ mice was associated with extensive host apoptosis at sites of E. histolytica invasion. In vitro studies of E. histolytica –Jurkat T-cell interactions demonstrated that apoptosis required contact via the amoebic Gal/GalNAc lectin, but was unaffected by 75% inhibition of the amoebic cysteine proteinases. Parasite-induced DNA fragmentation was unaffected in caspase 8-deficient Jurkat cells treated with the caspase 9 inhibitor Ac-LEHD-fmk. In contrast, caspase 3-like activity was observed within minutes of E. histolytica contact and the caspase 3 inhibitor Ac-DEVD-CHO blocked Jurkat T cell death, as measured by both DNA fragmentation and 51Cr release. These data demonstrate rapid parasite-induced activation of caspase 3-like caspases, independent of the upstream caspases 8 and 9, which is required for host cell death.  相似文献   

19.
Gao N  Cheng S  Budhraja A  Liu EH  Chen J  Chen D  Yang Z  Luo J  Shi X  Zhang Z 《PloS one》2012,7(2):e31783
3,3'-Diindolylmethane (DIM), one of the active products derived from Brassica plants, is a promising antitumor agent. The present study indicated that DIM significantly induced apoptosis in U937 human leukemia cells in dose- and time-dependent manners. These events were also noted in other human leukemia cells (Jurkat and HL-60) and primary human leukemia cells (AML) but not in normal bone marrow mononuclear cells. We also found that DIM-induced lethality is associated with caspases activation, myeloid cell leukemia-1 (Mcl-1) down-regulation, p21(cip1/waf1) up-regulation, and Akt inactivation accompanied by c-jun NH2-terminal kinase (JNK) activation. Enforced activation of Akt by a constitutively active Akt construct prevented DIM-mediated caspase activation, Mcl-1 down-regulation, JNK activation, and apoptosis. Conversely, DIM lethality was potentiated by the PI3K inhibitor LY294002. Interruption of the JNK pathway by pharmacologic or genetic approaches attenuated DIM-induced caspases activation, Mcl-1 down-regulation, and apoptosis. Lastly, DIM inhibits tumor growth of mouse U937 xenograft, which was related to induction of apoptosis and inactivation of Akt, as well as activation of JNK. Collectively, these findings suggest that DIM induces apoptosis in human leukemia cell lines and primary human leukemia cells, and exhibits antileukemic activity in vivo through Akt inactivation and JNK activation.  相似文献   

20.
Bacterial heat shock proteins (hsps) can have various effects on human cells. We investigated whether bacterial hsp60s can protect epithelial cells from cell death by affecting the mitogen-activated protein kinase (MAPK) signal pathways. Cell protection was studied by adding bacterial hsp60s to skin keratinocyte cultures (HaCaT cell line) before UV radiation. The results show that hsp60 significantly protected against UV radiation-induced cell death. Effects of UV radiation and exogenous hsp60 on phosphorylation of MAPKs and on activation of caspase 3 were examined by Western blot analysis. UV radiation strongly induced phosphorylation of p38 MAPK and formation of active caspase 3. A p38 inhibitor, SB 203580, totally blocked UV radiation-mediated activation of caspase 3. Preincubation with hsp60 strongly induced phosphorylation of ERK1/2 and inhibited UV radiation-mediated activation of caspase 3. PD 98059, a specific inhibitor of the ERK1/2 pathway, blocked this inhibitory effect of exogenous hsp60. Studies on the association between activity of MAPKs or caspase 3 and cell death showed that the ERK1/2 pathway inhibitor reversed protective effect of hsp60 while specific inhibition of p38 and caspase 3 reduced cell death. These results indicate that in HaCaT cells UV radiation mediates cell death through activation of p38 followed by caspase 3 activation. Exogenous hsp60 partially protects against UV radiation-mediated epithelial cell death through activation of ERK1/2, which inhibits caspase 3 activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号