首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Strength of interactions between species may be an important tool in our effort to understand community structure. Recent theoretical and empirical findings suggest that despite the presence of some strong interactions, weak interactions prevail in communities. Here, we examine how mean interaction strengths change as theoretical competition communities assemble and what the distribution of interaction coefficients is in the communities that are formed during the assembly process. Our results show that the mean competition strengths fall as assembly progresses and that most interactions in the communities formed are weak. Communities that are invulnerable to further invasions are those where interspecific interactions are weaker than the average interaction strength between species in the pool. If these results can be generalized to more than one trophic level, implications for management and conservation of natural communities are substantial.  相似文献   

2.
The loss of a species from an ecological community can trigger a cascade of secondary extinctions. The probability of secondary extinction to take place and the number of secondary extinctions are likely to depend on the characteristics of the species that is lost--the strength of its interactions with other species--as well as on the distribution of interaction strengths in the whole community. Analysing the effects of species loss in model communities we found that removal of the following species categories triggered, on average, the largest number of secondary extinctions: (a) rare species interacting strongly with many consumers, (b) abundant basal species interacting weakly with their consumers and (c) abundant intermediate species interacting strongly with many resources. We also found that the keystone status of a species with given characteristics was context dependent, that is, dependent on the structure of the community where it was embedded. Species vulnerable to secondary extinctions were mainly species interacting weakly with their resources and species interacting strongly with their consumers.  相似文献   

3.
Although both niche‐based and neutral processes are involved in community assembly, most models on the effects of habitat loss are stochastic, assuming neutral communities mainly affected by ecological drift and random extinction. Given that habitat loss is considered the most important driver of the current biodiversity crisis, unraveling the processes underlying the effects of habitat loss is critical from both a theoretical and an applied perspective. Here we unveil the importance of niche‐based and neutral processes to species extinction and community assembly across a gradient of habitat loss, challenging the predictions of neutral models. We draw on a large dataset containing the distribution of 3653 individuals of 42 species, representing 35% of the small mammal species of the Atlantic Forest hotspot, obtained in 68 sites across three continuously‐forested landscapes and three adjacent 10 000‐ha fragmented landscapes differing in the amount of remaining forest (50%, 30% and 10%). By applying a null‐model approach, we investigated β‐diversity patterns by detecting deviations of observed community similarity from the similarity between randomly assembled communities. Species extinction following habitat loss was decidedly non‐random, in contrast to the notion that fragmented communities are mainly driven by ecological drift. Instead, habitat loss led to a strong biotic homogenization. Moreover, species composition changed abruptly at the same level of landscape‐scale habitat loss that has already been associated with a drastic decline in species richness. Habitat loss, as other anthropogenic disturbances, can thus be seen as a strong ecological filter that increases (rather than decreases) the importance of deterministic processes in community assembly. As such, critical advances for the development of conservation science lie on the incorporation of the relevant niche traits associated with extinction proneness into models of habitat loss. The results also underscore the fundamental importance of pro‐active measures to prevent human‐modified landscapes surpassing critical ecological thresholds.  相似文献   

4.
Climate change is generating novel communities composed of new combinations of species. These result from different degrees of species adaptations to changing biotic and abiotic conditions, and from differential range shifts of species. To determine whether the responses of organisms are determined by particular species traits and how species interactions and community dynamics are likely to be disrupted is a challenge. Here, we focus on two key traits: body size and ecological specialization. We present theoretical expectations and empirical evidence on how climate change affects these traits within communities. We then explore how these traits predispose species to shift or expand their distribution ranges, and associated changes on community size structure, food web organization and dynamics. We identify three major broad changes: (i) Shift in the distribution of body sizes towards smaller sizes, (ii) dominance of generalized interactions and the loss of specialized interactions, and (iii) changes in the balance of strong and weak interaction strengths in the short term. We finally identify two major uncertainties: (i) whether large-bodied species tend to preferentially shift their ranges more than small-bodied ones, and (ii) how interaction strengths will change in the long term and in the case of newly interacting species.  相似文献   

5.
Mike S. Fowler 《Oikos》2013,122(12):1730-1738
Forcibly removing species from ecosystems has important consequences for the remaining assemblage, leading to changes in community structure, ecosystem functioning and secondary (cascading) extinctions. One key question that has arisen from single‐ and multi‐trophic ecosystem models is whether the secondary extinctions that occur within competitive communities (guilds) are also important in multi‐trophic ecosystems? The loss of consumer–resource links obviously causes secondary extinction of specialist consumers (topological extinctions), but the importance of secondary extinctions in multi‐trophic food webs driven by direct competitive exclusion remains unknown. Here I disentangle the effects of extinctions driven by basal competitive exclusion from those caused by trophic interactions in a multi‐trophic ecosystem (basal producers, intermediate and top consumers). I compared food webs where basal species either show diffuse (all species compete with each other identically: no within guild extinctions following primary extinction) or asymmetric competition (unequal interspecific competition: within guild extinctions are possible). Basal competitive exclusion drives extra extinction cascades across all trophic levels, with the effect amplified in larger ecosystems, though varying connectance has little impact on results. Secondary extinction patterns based on the relative abundance of the species lost in the primary extinction differ qualitatively between diffuse and asymmetric competition. Removing asymmetric basal species with low (high) abundance triggers fewer (more) secondary extinctions throughout the whole food web than removing diffuse basal species. Rare asymmetric competitors experience less pressure from consumers compared to rare diffuse competitors. Simulations revealed that diffuse basal species are never involved in extinction cascades, regardless of the trophic level of a primary extinction, while asymmetric competitors were. This work highlights important qualitative differences in extinction patterns that arise when different assumptions are made about the form of direct competition in multi‐trophic food webs.  相似文献   

6.
Failure to quantify differences in the shape of inter‐specific trait distributions (e.g., skew, kurtosis) when comparing co‐occurring alien and native plants hinders the integration of biological invasions and plant community ecology. Within a plant community, understanding the circumstances that lead to the shape of the inter‐specific distribution of one or more functional plant traits being unimodal, bimodal, multimodal or skewed has the potential to shed new light on community vulnerability to invasion, subsequent ecosystem impacts and the selection pressures (e.g., stabilizing, directional or disruptive) acting upon native and alien species. Ignoring differences in the shape of inter‐specific trait distributions of alien and native species could miss important insights into plant invasions, including: the existence of unsaturated native plant communities, empty niches, shifting trait optima of species as a result of environmental change and incomplete colonization–extinction processes following invasion. Future comparisons of functional trait differences between native and alien species should include assessment of the shapes of inter‐specific trait distributions since these may differ even when the mean values of traits are similar for native and alien species. The infrequent application of such approaches may explain the limited generalizations regarding the drivers and consequences of plant invasions in plant communities.  相似文献   

7.
Inverse trophic cascades are a well explored and common consequence of the local depletion or extinction of top predators in natural ecosystems. Despite a large body of research, the cascading effects of predator removal on ecosystem functions are not as well understood. Developing microcosm experiments, we explored food web changes in trophic structure and ecosystem functioning following biomass removal of top predators in representative temperate and tropical rock pool communities that contained similar assemblages of zooplankton and benthic invertebrates. We observed changes in species abundances following predator removal in both temperate and tropical communities, in line with expected inverse effects of a trophic cascade, where predation release benefits the predator’s preys and competitors and impacts the preys of the latter. We also observed several changes at the community and ecosystem levels including a decrease in total abundance and mean trophic level of the community, and changes in chlorophyll-a and total dissolved particles. Our results also showed an increase in variability of both community and ecosystem processes following the removal of predators. These results illustrate how predator removal can lead to inverse trophic cascades both in structural and functioning properties, and can increase variability of ecosystem processes. Although observed patterns were consistent between tropical and temperate communities following an inverse cascade pattern, changes were more pronounced in the temperate community. Therefore, aquatic food webs may have inherent traits that condition ecosystem responses to changes in top-down trophic control and render some aquatic ecosystems especially sensitive to the removals of top predators.  相似文献   

8.
Parasite establishment and host extinction in model communities   总被引:1,自引:0,他引:1  
Studies of host–parasite dynamics usually consider one, or at most two, host species, neglecting the possible effects of other species on the focal hosts and vice versa. To explore the interaction of community structure with host–parasite dynamics, we model the invasion of stable communities of varying size by a parasite. The communities are generated with random interaction coefficients and connectance 0.5. Each community is invaded by parasites with different values of virulence (disease-induced host mortality rate), specificity and transmission rate. The result of each invasion is determined by numerically simulating the dynamics of the community. We classify the outcomes by whether the parasite successfully establishes in the focal host population(s), and, if so, by the proportion of host and non-host species that go extinct as a result of the parasite's introduction. We discuss how the structure of the community and the interaction between hosts and other species affect several important processes of disease ecology: the density threshold for parasite invasion, extinction cascades caused by the parasite, and the frequency of extinctions of hosts and non-hosts. In our simulated communities, non-host species went extinct more frequently than hosts, suggesting the importance of the community context of disease. In some cases, the parasite's invasion induced regular population cycles in the previously stable community.  相似文献   

9.
Empirical studies have shown that, in real ecosystems, species-interaction strengths are generally skewed in their distribution towards weak interactions. Some theoretical work also suggests that weak interactions, especially in omnivorous links, are important for the local stability of a community at equilibrium. However, the majority of theoretical studies use uniform distributions of interaction strengths to generate artificial communities for study. We investigate the effects of the underlying interaction-strength distribution upon the return time, permanence and feasibility of simple Lotka-Volterra equilibrium communities. We show that a skew towards weak interactions promotes local and global stability only when omnivory is present. It is found that skewed interaction strengths are an emergent property of stable omnivorous communities, and that this skew towards weak interactions creates a dynamic constraint maintaining omnivory. Omnivory is more likely to occur when omnivorous interactions are skewed towards weak interactions. However, a skew towards weak interactions increases the return time to equilibrium, delays the recovery of ecosystems and hence decreases the stability of a community. When no skew is imposed, the set of stable omnivorous communities shows an emergent distribution of skewed interaction strengths. Our results apply to both local and global concepts of stability and are robust to the definition of a feasible community. These results are discussed in the light of empirical data and other theoretical studies, in conjunction with their broader implications for community assembly.  相似文献   

10.
研究植物功能性状随环境梯度的变异和关联格局, 对于认识不同环境梯度下群落构建和植物适应型具有重要意义。该研究以漓江河岸带不同河段植物群落为研究对象, 调查了研究区内36个样方的物种组成, 测量了样方内42种木本植物的叶面积(LA)、比叶面积(SLA)和木材密度(WD)的功能性状值, 并运用性状梯度分析法对3个功能性状进行群落内(α组分)和群落间(β组分)组分分解及相关性分析。结果表明: (1)群落平均LA表现为中游最小且和下游差异显著, 群落平均WD则表现为中上游显著高于下游, 群落平均SLA在两两河段间均差异显著。(2)不同河段的3个植物功能性状β组分差异显著且实际观测值均小于随机模拟的零模型分布, 但α组分在河岸带不同河段均差异不显著且3个功 能性状的α组分分布范围均小于β组分, 说明在河岸带不同河段的群落构建过程中环境筛选的作用要大于群落内种间的相互作用。(3)性状SLALA在群落间和群落内呈现出实际观测和随机模拟的相关性均较低, 暗示了LASLA各自代表了植物在不同生态策略上的维度; 但SLAWD实际观测值和随机模拟值呈现出较强的负相关关系, 暗示这2个性状对于环境筛选表现出较高的整体趋同适应性, 体现了植物功能性状对群落间环境变异的依赖性大于群落内种间相互作用的依赖性。  相似文献   

11.
Species interactions and connectivity are both central to explaining the stability of ecological communities and the problem of species extinction. Yet, the role of species interactions for the stability of spatially subdivided communities still eludes ecologists. Ecological models currently address the problem of stability by exploring the role of interaction strength in well mixed habitats, or of connectivity in subdivided communities. Here I propose a unification of interaction strength and connectivity as mechanisms explaining regional community stability. I introduce a metacommunity model based on succession dynamics in coastal ecosystems, incorporating limited dispersal and facilitative interactions. I report a sharp transition in regional stability and extinction probability at intermediate interaction strength, shown to correspond to a phase transition that generates scale-invariant distribution and high regional stability. In contrast with previous studies, stability results from intermediate interaction strength only in subdivided communities, and is associated with large-scale (scale-invariant) synchrony. These results can be generalized to other systems exhibiting phase transitions to show how local interaction strength can be used to resolve the link between regional community stability and pattern formation.  相似文献   

12.
Species extinctions are biased towards higher trophic levels, and primary extinctions are often followed by unexpected secondary extinctions. Currently, predictions on the vulnerability of ecological communities to extinction cascades are based on models that focus on bottom‐up effects, which cannot capture the effects of extinctions at higher trophic levels. We show, in experimental insect communities, that harvesting of single carnivorous parasitoid species led to a significant increase in extinction rate of other parasitoid species, separated by four trophic links. Harvesting resulted in the release of prey from top‐down control, leading to increased interspecific competition at the herbivore trophic level. This resulted in increased extinction rates of non‐harvested parasitoid species when their host had become rare relative to other herbivores. The results demonstrate a mechanism for horizontal extinction cascades, and illustrate that altering the relationship between a predator and its prey can cause wide‐ranging ripple effects through ecosystems, including unexpected extinctions.  相似文献   

13.
1. The loss of a species from an ecological community can trigger a cascade of secondary extinctions. Here we investigate how the complexity (connectance) of model communities affects their response to species loss. Using dynamic analysis based on a global criterion of persistence (permanence) and topological analysis we investigate the extent of secondary extinctions following the loss of different kinds of species. 2. We show that complex communities are, on average, more resistant to species loss than simple communities: the number of secondary extinctions decreases with increasing connectance. However, complex communities are more vulnerable to loss of top predators than simple communities. 3. The loss of highly connected species (species with many links to other species) and species at low trophic levels triggers, on average, the largest number of secondary extinctions. The effect of the connectivity of a species is strongest in webs with low connectance. 4. Most secondary extinctions are due to direct bottom-up effects: consumers go extinct when their resources are lost. Secondary extinctions due to trophic cascades and disruption of predator-mediated coexistence also occur. Secondary extinctions due to disruption of predator-mediated coexistence are more common in complex communities than in simple communities, while bottom-up and top-down extinction cascades are more common in simple communities. 5. Topological analysis of the response of communities to species loss always predicts a lower number of secondary extinctions than dynamic analysis, especially in food webs with high connectance.  相似文献   

14.
Biodiversity lessens the risk of cascading extinction in model food webs   总被引:2,自引:0,他引:2  
Due to the complex interactions between species in food webs, the extinction of one species could lead to a cascade of further extinctions and hence cause dramatic changes in species composition and ecosystem processes. We found that the risk of additional species extinction, following the loss of one species in model food webs, decreases with the number of species per functional group. For a given number of species per functional group, the risk of further extinctions is highest when an autotroph is removed and lowest when a top predator is removed. In addition, stability decreases when the distribution of interaction strengths in the webs is changed from equal to skew (few strong and many weak links). We also found that omnivory appears to stabilize model food webs. Our results indicate that high biodiversity may serve as an insurance against radical ecosystem changes.  相似文献   

15.
Pollinator‐mediated interactions between plants can play an important role for the dynamics of plant communities. Pollination services depend on the abundance and the foraging behaviour of pollinators, which in turn respond to the availability and distribution of floral resources (notably nectar sugar). However, it is still insufficiently understood how the ‘sugar landscapes’ provided by flowering plant communities shape pollinator‐mediated interactions between multiple plant species and across different spatial scales. A better understanding of pollinator‐mediated interactions requires an integrative approach that quantifies different aspects of sugar landscapes and investigates their relative importance for pollinator behaviour and plant reproductive success. In this study, we quantified such sugar landscapes from individual‐based maps of Protea shrub communities in the Cape Floristic Region, South Africa. The 27 study sites of 4 ha each jointly comprise 127 993 individuals of 19 species. We analysed how rates of visitation by key bird pollinators and the seed set of plants respond to different aspects of sugar landscapes: the distribution of nectar sugar amounts, as well as their quality, taxonomic purity and phenology. We found that pollinator visitation rates strongly depended on phenological variation of site‐scale sugar amounts. The seed set of focal plants increased with nectar sugar amounts of conspecific neighbours and with site‐scale sugar amounts. Seed set increased particularly strongly if site‐scale sugar amounts were provided by plants that offer less sugar per inflorescence. These combined effects of the amount, quality, purity and phenological variation of nectar sugar show that nectar sugar is a common interaction currency that determines how multiple plant species interact via shared pollinators. The responses of pollinator‐mediated interactions to different aspects of this interaction currency alter conditions for species coexistence in Protea communities and may cause community‐level Allee effects that promote extinction cascades.  相似文献   

16.
The body shape of a species is associated with its evolutionary history and can reflect behavioural peculiarities related to the ecological niche of each species. Morphology can characterise the morphometric niche of species and can be represented as body shape points within a morphometric universe. This information can be to calculate the morphometric diversity of communities through hypervolume metrics, and the hole sizes that remain in the morphometric hypervolume, which are empty areas with no species. Such holes may be ‘natural’ or caused by a local extinction. In this study, we evaluate the ecological community of dung beetles through the lens of morphometric diversity. We evaluated 38 dung beetle species from 30 subtropical communities in southern Brazil sampled in the summer of 2015, including 15 forest remnant communities from the Atlantic Forest and 15 communities from adjacent maize cultivations. The shape of 495 dung beetle specimens was measured using geometric morphometric and hypervolume techniques to calculate the morphometric diversity and the hole size of each of the 30 communities. We found that the taxonomic diversity positively correlated with the morphometric diversity and negatively correlated with the size of the holes. We also found that forest communities had higher values of morphometric diversity and smaller holes in the hypervolume than the maize cultivation communities, suggesting that local extinction may reduce community body shape spaces.  相似文献   

17.
Facilitation is a positive interaction assembling ecological communities and preserving global biodiversity. Although communities acquire emerging properties when many species interact, most of our knowledge about facilitation is based on studies between pairs of species. To understand how plant facilitation preserves biodiversity in complex ecological communities, we propose to move from the study of pairwise interactions to the network approach. We show that facilitation networks behave as mutualistic networks do, characterized by a nonrandom, nested structure of plant-plant interactions in which a few generalist nurses facilitate a large number of species while the rest of the nurses facilitate only a subset of them. Consequently, generalist nurses shape a dense and highly connected network. Interestingly, such generalist nurses are the most abundant species in the community, making facilitation-shaped communities strongly resistant to extinction, as revealed by coextinction simulations. The nested structure of facilitative networks explains why facilitation, by preventing extinction, preserves biodiversity.  相似文献   

18.
1. Much work on ecological consequences of community assembly history has focused on the formation of history-induced alternative stable equilibria. We hypothesize that assembly history may affect not only community composition but also population dynamics, with assembled communities differing in species composition potentially residing in different dynamical states. 2. We provided an empirical test of the aforementioned hypothesis using a laboratory microcosm experiment that manipulated both the colonization order of three bacterivorous protist species in the presence of a protist predator and environmental productivity. 3. Both priority effects and random divergence emerged, resulting in two different community compositional states: one characterized by the dominance of one prey species and the other by the extinction of the same prey. While communities in the former state exhibited noncyclic dynamics, the majority of communities in the latter state exhibited cyclic dynamics driven by the interaction between another prey and the predator. 4. Temporal variability of total prey community biovolume consequently differed among communities with different histories. 5. Changing productivity altered priority effects on the structure and dynamics of communities experiencing only certain histories. 6. Our results support the dual (compositional and dynamical) consequences of assembly history and emphasize the importance of incorporating the dynamical view into the field of community assembly.  相似文献   

19.
To explore how environmental variability may create non‐random community structure, we simulated the assembly of model communities under varying levels of environmental variability. We assembled communities by creating a large pool of randomly constructed species, and then added species from this pool sequentially, allowing extinctions of invading and resident species to occur until the community became saturated. Because much current research on community structure focuses on single trophic levels, we constructed species pools consisting only of competitors. To compare with more realistic communities, we also created species pools with multiple trophic levels. For both types of communities, following assembly we calculated a variety of metrics of community structure, and five measures of community stability. Communities assembled under high environmental variability had fewer species, fewer and weaker interactions among species, and greater evenness in abundance of persisting species. For single trophic‐level communities, community size was dictated primarily by competitive exclusion. In contrast, for multiple trophic‐level communities, community size was increasingly limited by dynamical instabilities as environmental variability increased. Differences in community structure resulting from assembly under high environmental variability led to differences in community stability. According to two measures of stability related to population variability – the characteristic return rate to equilibrium and the coefficient of variation in individual species densities – stability increased for communities assembled under high environmental variability. In contrast, three additional measures of stability that are not directly related to population variability showed a variety of patterns, either increasing, decreasing, or remaining constant. Thus, communities assembled in highly variable environments are not necessarily generically more stable. Our results demonstrate that environmental variability can structure communities and affect their stability properties in non‐trivial ways. Thus, when making predictions about the response of communities to future extinctions or environmental degradation, account should be given to the forces responsible for community structure.  相似文献   

20.
Cadotte MW  Strauss SY 《PloS one》2011,6(5):e19363

Background

Evolutionary history has provided insights into the assembly and functioning of plant communities, yet patterns of phylogenetic community structure have largely been based on non-dynamic observations of natural communities. We examined phylogenetic patterns of natural colonization, extinction and biomass production in experimentally assembled communities.

Methodology/Principal Findings

We used plant community phylogenetic patterns two years after experimental diversity treatments (1, 2, 4, 8 or 32 species) were discontinued. We constructed a 5-gene molecular phylogeny and statistically compared relatedness of species that colonized or went extinct to remaining community members and patterns of aboveground productivity. Phylogenetic relatedness converged as species-poor plots were colonized and speciose plots experienced extinctions, but plots maintained more differences in composition than in phylogenetic diversity. Successful colonists tended to either be closely or distantly related to community residents. Extinctions did not exhibit any strong relatedness patterns. Finally, plots that increased in phylogenetic diversity also increased in community productivity, though this effect was inseparable from legume colonization, since these colonists tended to be phylogenetically distantly related.

Conclusions

We found that successful non-legume colonists were typically found where close relatives already existed in the sown community; in contrast, successful legume colonists (on their own long branch in the phylogeny) resulted in plots that were colonized by distant relatives. While extinctions exhibited no pattern with respect to relatedness to sown plotmates, extinction plus colonization resulted in communities that converged to similar phylogenetic diversity values, while maintaining differences in species composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号