首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ligands occupy the core of nuclear receptor (NR) ligand binding domains (LBDs) and modulate NR function. X-ray structures of NR LBDs reveal most NR agonists fill the enclosed pocket and promote packing of C-terminal helix 12 (H12), whereas the pockets of unliganded NR LBDs differ. Here, we review evidence that NR pockets rearrange to accommodate different agonists. Some thyroid hormone receptor (TR) ligands with 5′ extensions designed to perturb H12 act as antagonists, but many are agonists. One mode of adaptation is seen in a TR/thyroxine complex; the pocket expands to accommodate a 5′ iodine extension. Crystals of other NR LBDs reveal that the pocket can expand or contract and some agonists do not fill the pocket. A TRβ structure in complex with an isoform selective drug (GC-24) reveals another mode of adaptation; the LBD hydrophobic interior opens to accommodate a bulky 3′ benzyl extension. We suggest that placement of extensions on NR agonists will highlight unexpected areas of flexibility within LBDs that could accommodate extensions; thereby enhancing the selectivity of agonist binding to particular NRs. Finally, agonists that induce similar LBD structures differ in their activities and we discuss strategies to reveal subtle structural differences responsible for these effects.  相似文献   

2.
The glucocorticoid receptor (GR) is a nuclear hormone receptor that regulates key genes controlling development, metabolism, and the immune response. GR agonists are efficacious for treatment of inflammatory, allergic, and immunological disorders. Steroid hormone binding to the ligand-binding domain (LBD) of GR is known to change the structural and dynamical properties of the receptor, which in turn control its interactions with DNA and various co-regulators and drive the pharmacological response. Previous biophysical studies of the GR LBD have required the use of mutant forms to overcome issues with limited protein stability and high aggregation propensity. However, these mutant variants are known to also influence the functional response of the receptor. Here we report a successful protocol for protein expression, purification, and NMR characterization of the wildtype human GR LBD. We achieved chemical shift assignments for 90% of the LBD backbone resonances, with 216 out of 240 non-proline residues assigned in the 1H–15N TROSY spectrum. These advancements form the basis for future investigations of allosteric effects in GR signaling.  相似文献   

3.
4.
雌激素或类雌激素活性物质通过细胞核雌激素受体(nuclear estrogen receptor, nER)通路发挥相应的生理性作用。当这些配体被nER的配体结合域(ligand binding domain, LBD)识别后进入疏水性配体结合空腔内并引起受体构象发生改变,使得原先处于高度活动性的helix 12(H12)被固定从而进一步稳定空腔结构|同时nER也能通过招募一系列辅助调节因子及其他共调节蛋白质,最终调控基因转录。但是,由于不同的配体和受体结合形成的晶体结构并不完全相同,导致这些复合体具有不同的性质,从而影响基因的转录活性。本文综述了nER配体结合域及结合配体后形成的相应晶体结构与活性以及不同配体对受体结构和基因转录的影响。  相似文献   

5.
6.
7.
A new series of ligands for the glucocorticoid receptor (GR) is described. SAR development was guided by docking 3 into the GR active site and optimizing an unsubstituted phenyl ring for key interactions found in the steroid A-ring binding pocket. To identify compounds with an improved side effect profile over marketed steroids the functional activity of compounds was evaluated in cell based assays for transactivation (aromatase) and transrepression (IL-6). Through this effort, 36 has been identified as a partial agonist with a dissociated profile in these cell based assays.  相似文献   

8.
A novel series of EP4 agonists and antagonists have been identified, and then used to validate their potential in the treatment of inflammatory pain. This paper describes these novel ligands and their activity within a number of pre-clinical models of pain, ultimately leading to the identification of the EP4 partial agonist GSK726701A.  相似文献   

9.
10.
11.
A new series of CB2-selective agonists containing a benzimidazole core is reported. Design, synthesis, SAR and pharmacokinetic data for selected compounds are described.  相似文献   

12.
Dopamine D1 receptor (D1R) ligands may directly interact with the NMDA receptor (NMDAR), but detailed knowledge about this effect is lacking. Here we identify D1R ligands that directly modulate NMDARs and examine the contributions of NR2A and NR2B subunits to these interactions. Binding of the open channel blocker [(3)H]MK-801 in membrane preparations from rat- and mouse brain was used as a biochemical measure of the functional state of the NMDAR channel. We show that both D1R agonist A-68930 and dopamine receptor D2 antagonist haloperidol can decrease [(3)H]MK-801 binding with increased potency in membranes from the NR2A(-/-) mice (i.e. in membranes containing NR2B only), as compared to the inhibition obtained in wild-type membranes. Further, a wide range of D1R agonists such as A-68930, SKF-83959, SKF-83822, SKF-38393 and dihydrexidine were able to decrease [(3)H]MK-801 binding, all showing half maximal inhibitory concentrations ~20 μM, and with significant effects occurring at or above 1 μM. With membranes from D1R(-/-) mice, we demonstrate that these effects occurred through a D1R-independent mechanism. Our results demonstrate that dopamine receptor ligands can selectively influence NR2B containing NMDARs, and we characterize direct inhibitory NMDAR effects by different D1R ligands.  相似文献   

13.
The therapeutic success of peptide glucagon-like peptide-1 (GLP-1) receptor agonists for the treatment of type 2 diabetes mellitus has inspired discovery efforts aimed at developing orally available small-molecule GLP-1 receptor agonists. In this study, two series of new pyrimidine derivatives were designed and synthesized using an efficient route, and were evaluated in terms of GLP-1 receptor agonist activity. In the first series, novel pyrimidines substituted at positions 2 and 4 with groups varying in size and electronic properties were synthesized in a good yield (78–90%). In the second series, the designed pyrimidine templates included both urea and Schiff base linkers, and these compounds were successfully produced with yields of 77–84%. In vitro experiments with cultured cells showed that compounds 3a and 10a (10?15–10?9 M) significantly increased insulin secretion compared to that of the control cells in both the absence and presence of 2.8 mM glucose; compound 8b only demonstrated significance in the absence of glucose. These findings represent a valuable starting point for the design and discovery of small-molecule GLP-1 receptor agonists that can be administered orally.  相似文献   

14.
It is desirable to obtain TR antagonists for treatment of hyperthyroidism and other conditions. We have designed TR antagonists from first principles based on TR crystal structures. Since agonist ligands are buried in the fold of the TR ligand binding domain (LBD), we reasoned that ligands that resemble agonists with large extensions should bind the LBD, but would prevent its folding into an active conformation. In particular, we predicted that extensions at the 5′ aryl position of ligand should reposition helix (H) 12, which forms part of the co-activator binding surface, and thereby inhibit TR activity. We have found that some synthetic ligands with 5′ aryl ring extensions behave as antagonists (DIBRT, NH-3), or partial antagonists (GC-14, NH-4). Moreover, one compound (NH-3) represents the first potent TR antagonist with nanomolar affinity that also inhibits TR action in an animal model. However, the properties of the ligands also reveal unexpected aspects of TR behavior. While nuclear receptor antagonists generally promote binding of co-repressors, NH-3 blocks co-activator binding and also prevents co-repressor binding. More surprisingly, many compounds with extensions behave as full or partial agonists. We present hypotheses to explain both behaviors in terms of dynamic equilibrium of H12 position.  相似文献   

15.
Continuing studies based on dihydroquinoline glucocorticoid receptor agonists lead to the discovery of a series of C4-oxime analogs. Representative compounds exhibited potent transrepression activity with minimal transactivation of phosphoenolpyruvate caboxykinase (PEPCK), a key protein in the gluconeogenesis pathway. These compounds represent promising leads in identifying GR agonists with high anti-inflammatory activity and attenuated potential for glucose elevation.  相似文献   

16.
The 5-HT2C receptor has been implicated as a critical regulator of appetite. Small molecule activation of the 5-HT2C receptor has been shown to affect food intake and regulate body weight gain in rodent models and more recently in human clinical trials. Therefore, 5-HT2C is a well validated target for anti-obesity therapy. The synthesis and structure–activity relationships of a series of novel tetrahydropyrazinoisoquinolinone 5-HT2C receptor agonists are presented. Several members of this series were identified as potent 5-HT2C receptor agonists with high functional selectivity against the 5-HT2A and 5-HT2B receptors and reduced food intake in an acute rat feeding model upon oral dosing.  相似文献   

17.
The systematic exploration of a series of triazole-based agonists of the cation channel insect odorant receptor is reported. The structure–activity relationships of independent sections of the molecules are examined. Very small changes to the compound structure were found to exert a large impact on compound activity. Optimal substitutions were combined using a ‘mix-and-match’ strategy to produce best-in-class compounds that are capable of potently agonizing odorant receptor activity and may form the basis for the identification of a new mode of insect behavior modification.  相似文献   

18.
19.
The design, synthesis and biological activity of two novel series of compounds derived from the basic Boc-CCK-4 structure which provide potent ligands for the gastrin/CCK-B receptor is outlined. Within these series, new pseudopeptide compounds were discovered which unexpectedly were functional agonists in vivo, as shown by their ability to stimulate basal gastric acid secretion in rats, an effect which was blocked by the potent gastrin/CCK-B receptor antagonist YM022.  相似文献   

20.
Several fused bicyclic systems have been investigated to serve as the core structure of potent and selective 5-HT1F receptor agonists. Replacement of the indole nucleus in 2 with indazole and ‘inverted’ indazole provided more potent and selective 5-HT1F receptor ligands. Indoline and 1,2-benzisoxazole systems also provided potent 5-HT1F receptor agonists, and the 5-HT1A receptor selectivity of the indoline- and 1,2-benzisoxazole-based 5-HT1F receptor agonists could be improved with modification of the benzoyl moiety of the benzamides. Through these studies, we found that the inherent geometries of the templates, not the nature of hybridization of the linking atom, were important for the 5-HT1F receptor recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号