首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
植物叶片的大小、形状、破碎化程度、测定时间及保存时间是影响植物水势测定的主要因素,但相关研究开展较少。本研究以成熟度相同,羽状复叶较多的降香黄檀(Dalbergia odorifera T.Chen)为实验材料,利用WP4C露点水势仪监测叶片水势的日变化动态。结果显示,叶片水势测定最合理的时间段为9:00-13:00;测定叶片在4℃冰箱中保存不同时间后的水势变化值,确定4℃条件下保存1 h内为测定叶片水势的最佳保存时间;比较了不同形状、大小以及不同破碎化程度的叶片对水势测定的影响,结果显示叶片的大小、形状和破碎化程度对水势均有一定影响。因此,实际操作中应使用完整的单个叶片覆盖样品室以准确测定叶片水势。在优化测定条件后,利用该方法测定的水势值具有准确率高、重复性强、稳定性好等特点。  相似文献   

2.
本文讨论了样品水势差异对叶室平衡时间和热电偶冷却时间的影响;比较了湿度法和露点法的测定结果,活体测定与离体测定的结果以及两种渗透势测定方法的结果;并用离体法测定了大麦在NaCl胁迫下叶片Yw,Ys和Yp 的动态变化;用活体法测定了小麦和蚕豆在大田条件下叶片Yw、Ys和YP 的昼夜变化。  相似文献   

3.
用露点法和湿度法测定叶片水势及其组分   总被引:2,自引:0,他引:2  
本文讨论了样品水势差异对叶室平衡时间和热电偶冷却时间的影响;比较了湿度法和露点法的测定结果,活体测定与离体测定的结果以及两种渗透势测定方法的结果;并用离体法测定了大麦在NaCl胁迫下叶片ψw,ψs和ψp的动态变化;用活体法测定了小麦和蚕豆在大田条件下叶片ψw、ψs和ψp的昼夜变化。  相似文献   

4.
基于叶片水势的内蒙古典型草原植物水分适应特征研究   总被引:1,自引:0,他引:1  
水分是限制草原生态系统植物生存、繁殖和扩散最重要的生态因子,植物通过多样的水分适应策略适应干旱环境。为了解典型草原植物水势特征及其影响因素,在2017年和2018年的生长季对内蒙古典型草原71种植物的叶片黎明水势、午后水势、叶片和根系功能性状进行了测定与分析。结果表明:测定的71种植物叶片的黎明水势分布于-2.67—-0.63 MPa,午后水势分布于-4.67—-1.01 MPa;一年生植物的叶片具有最高的黎明水势、午后水势和最小的水势日差值(叶片的黎明水势与午后水势的差值),多年生禾草的叶片具有最低的黎明水势、午后水势和最大的水势日差值;71种植物对水分的适应策略可分为高水势保持型、低水势忍耐型和变水势波动型;叶片午后水势与叶片干物质含量和根系深度呈极显著的负相关关系(P0.01),但与比叶面积呈极显著的正相关关系(P0.01)。本研究有助于从植物生理学的角度上准确认识典型草原植物的水分适应性及水分生态特征。  相似文献   

5.
小液流法测定植物水势的改进试验   总被引:1,自引:0,他引:1  
本文介绍用改进的小液流法测定植物水势,可以缩短测定时间,减少试验材料和试剂的用量,而且还可因用具小型化便于室外操作。  相似文献   

6.
陕北黄土区狼牙刺水势研究   总被引:11,自引:3,他引:8  
采用压力室水势仪,测定了陕北黄土区狼牙刺2~3年生小枝的水势。以柠条作对照,作了植物水势日变化、月变化动态研究。并分析了水势同光合有效辐射、大气温度、空气相对湿度(从CID-301PS光合测定仪获取)之间的相关关系。结果表明:狼牙刺水势日变化呈单峰曲线,最高值出现在12:00前后;一年中,从植物生长初期至盛期,水势绝对值表现出不断增加的趋势;狼牙刺水势同光照、气温有显著负相关性,与空气相对湿度有显著正相关性,而与植物年龄无密切关系。水势对比研究表明,狼牙刺较柠条耐旱。  相似文献   

7.
读了《植物生理学通讯》有关植物细胞水势的两篇讨论文章,基本同意作者的观点。笔者就自已的认识谈一点看法,供同行参考。有关植物细胞水势的争论分为“加合说”和“平衡说”两派。争论的焦点是衬质势能否作为细胞水势组成之一。我们不妨分析一下衬质势的提出及其实际意义,看它与植物细胞水势究竟是什么关系。无液泡的细胞,如干燥种子放入水中时,表现出很低的水势,这是因为种子是由蛋白质、淀粉、纤维素等亲水胶体(这里称为衬质)所组成,这些物质对水分有很强的吸附能力,所表现的水势就称为衬  相似文献   

8.
水势是反映植物受到环境胁迫的重要指标之一,可用来确定其受胁迫的程度和适应能力大小。以福建省平潭岛海岸典型沙生植物老鼠艻(Spinifex littoreus)形成的草丛沙堆为研究对象,选取晴朗无云的天气,采用PSYPRO水势测量系统对其植物叶、茎水势及其所形成的沙堆土壤水势进行测定,同时采用HUMIPORT10手持式温湿度计对当日的气象要素进行同步观测。结果表明:(1)老鼠艻的叶水势呈现出与早晚高午间低相反的反梯度现象,叶、茎水势的日变化均表现为"M"型变化趋势,除18:00后,其它时间均表现为叶片水势下降、茎干水势上升,并且发现叶、茎水势的变化趋势存在位相后移现象;(2)老鼠艻的叶、茎水势在10:00时差异达到最大的0.65MPa,且茎水势高于叶水势,在14:00左右,植物茎水势出现低于叶水势的反常现象,在18:00时叶、茎水势趋于相同;(3)除表层30cm外,其它层土壤水势日变化特征总体表现为从早晨开始下降,14:00达到最低,但总体变化不明显;(4)随着深度增加,草丛沙堆土壤水势呈现为依次增加的趋势,但80cm以下土壤水势变化不显著(P0.1);(5)叶水势与大气水势具有较好的相关性,且变化显著(P0.1),与茎水势及浅层土壤水势有一定相关性,但变化不显著(P0.1),与50cm以下土壤水势均无相关性。  相似文献   

9.
植物细胞的吸水活动,决定于细胞和环境间的水势差。任何含水体系的水势,都受到可改变体系内水分自由能的诸因素的影响。植物细胞是一个多组分的复杂的体系,它的水势受那些因素所决定?国内外的植物生理学教科书,以及在《植物生理学通讯》上所开展的关于水势问题的讨论中,对此理解仍有分歧。最近荣文同志就“有液泡细胞的水势究竟应等于什么?”提出了讨论,这很有必要。其  相似文献   

10.
 利用热扩散式边材液流茎流探针(TDP)和微型自动气象站组成的测定系统于2001年4月在北京林业大学妙峰山教学实验林场(39°54′N,116°28′E)对低山油松(Pinus tabulaeformis)人工林土壤-植物-大气体(SPAC)界面水势梯度及油松木质部边材液流传输速率的时空变化规律及其相关因子进行了连续测定。土壤水势随深度下降逐渐升高,日周期波动幅度减小,灌水后上层土壤水势迅速提高,但随着水分扩散和林地持续蒸散,土壤湿度迅速下降并逐渐与对照趋同;叶片水势连日逐渐降低,灌水后水势较对照有一定程度提高;林冠不同层次叶片水势在日周期内不同时间差异显著,但同一层次之间差异不明显;油松人工林土壤、叶片、大气水势梯度比约为1∶5∶30,灌水后SPAC相临界面水势差增大,水势梯度提高至1∶15∶90。大气水分饱和亏缺与土壤水势和叶片水势、以及土壤水势与叶片水势之间均有极显著相关性。干旱春季灌溉对油松木质部边材液流时空波动产生很大影响,灌水后连日树干上位边材液流峰值出现时间推迟1 h,连日平均液流速率提高48.59%,连日平均最大液流速率提高25.12%。木质部边材液流速率日变化和连日变化与SPAC水势和气象因子如空气相对湿度、空气温度、太阳辐射强度密切相关。与对照相比,灌水后边材液流速率与SPAC各介质水势和界面水势差的相关性下降。  相似文献   

11.
Plant water potential was monitored continuously with a Wescor HR-33T dewpoint hygrometer in conjunction with a L51 chamber. This commercial instrument was modified by replacing the AC-DC mains power converter with one stabilized by zener diode controlled transistors. The thermocouple sensor and electrical lead needed to be thermally insulated to prevent spurious signals. For rapid response and faithful tracking a low resistance for water vapor movement between leaf and sensor had to be provided. This could be effected by removing the epidermis either by peeling or abrasion with fine carborundum cloth. A variety of rapid plant water potential responses to external stimuli could be followed in a range of crop plants (sunflower (Helianthus annuus L., var. Hysun 30); safflower (Carthamus tinctorious L., var. Gila); soybean (Glycine max L., var. Clark); wheat (Triticum aestivum L., var. Egret). These included light dark changes, leaf excision, applied pressure to or anaerobiosis of the root system. Water uptake by the plant (safflower, soybean) mirrored that for water potential changes including times when plant water status (soybean) was undergoing cyclical changes.  相似文献   

12.
An instrument was designed which facilitates faster and more accurate sampling of leaf discs for psychrometric water potential measurements. The instrument consists of an aluminum housing, a spring-loaded plunger, and a modified brass-plated cork borer. The leaf-disc sampler was compared with the conventional method of sampling discs for measurement of leaf water potential with thermocouple psychrometers on a range of plant material including Gossypium hirsutum L., Zea mays L., and Begonia rex-cultorum L. The new sampler permitted a leaf disc to be excised and inserted into the psychrometer sample chamber in less than 7 seconds, which was more than twice as fast as the conventional method. This resulted in more accurate determinations of leaf water potential due to reduced evaporative water losses. The leaf-disc sampler also significantly reduced sample variability between individual measurements. This instrument can be used for many other laboratory and field measurements that necessitate leaf disc sampling.  相似文献   

13.
A method for measuring whole plant photosynthesis in Arabidopsis thaliana   总被引:5,自引:0,他引:5  
Measurement of photosynthesis of intact leaves of Arabidopsis thaliana has been prohibitive due to the small leaf size and prostrate growth habit. Because of the widespread use of Arabidopsis for plant science research it is important to have a procedure for accurate, nondestructive measurement of its photosynthesis. We developed and tested a method for analysis of photosynthesis in whole plants of Arabidopsis. Net carbon assimilation and stomatal conductance were measured with an open gas exchange system and photosynthetic oxygen evolution was determined from chlorophyll fluorescence parameters. Individual plants were grown in 50 cubic centimeter tubes that were attached with an air tight seal to an enclosed gas exchange chamber for measurement of carbon dioxide and water exchange by the whole plant. Chlorophyll fluorescence from intact leaves was simultaneously measured with a pulse modulated fluorometer. Photosynthetic CO2 assimilation and stomatal conductance rates were calculated with established gas exchange procedures and O2 evolution was determined from chlorophyll fluorescence measurement of Photosystem II yield. Carbon assimilation and oxygen evolution in response to light intensity and ambient CO2 concentration was measured and is presented here to demonstrate the potential use of this method for investigation of photosynthesis of Arabidopsis plants in controlled environment conditions.  相似文献   

14.
Internal water balance of barley under soil moisture stress   总被引:1,自引:1,他引:0       下载免费PDF全文
Leaf water potential, leaf relative water content, and relative transpiration of barley were determined daily under greenhouse conditions at 3 growth stages: tillering to boot, boot to heading, and heading to maturity. The leaf moisture characteristic curve (relative water content versus leaf water potential) was the same for leaves of the same age growing in the same environment for the first 2 stages of growth, but shifted at the heading to maturity stage to higher leaf relative water content for a given leaf water potential. Growth chamber experiments showed that the leaf moisture characteristic curve was not the same for plants growing in different environments.

Relative transpiration data indicated that barley stomates closed at a water potential of about −22 bars at the 3 stages studied.

The water potential was measured for all the leaves on barley to determine the variation of water potential with leaf position. Leaf water potential increased basipetally with plant leaf position. In soil with a moisture content near field capacity a difference of about 16.5 bars was observed between the top and bottom leaves on the same plant, while in soil with a moisture content near the permanent wilting point the difference was only 5.6 bars between the same leaf positions.

  相似文献   

15.
The adsorption of water by thermocouple psychrometer assemblies is known to cause errors in the determination of water potential. Experiments were conducted to evaluate the effect of sample size and psychrometer chamber volume on measured water potentials of leaf discs, leaf segments, and sodium chloride solutions. Reasonable agreement was found between soybean (Glycine max L. Merr.) leaf water potentials measured on 5-millimeter radius leaf discs and large leaf segments. Results indicated that while errors due to adsorption may be significant when using small volumes of tissue, if sufficient tissue is used the errors are negligible. Because of the relationship between water potential and volume in plant tissue, the errors due to adsorption were larger with turgid tissue. Large psychrometers which were sealed into the sample chamber with latex tubing appeared to adsorb more water than those sealed with flexible plastic tubing. Estimates are provided of the amounts of water adsorbed by two different psychrometer assemblies and the amount of tissue sufficient for accurate measurements of leaf water potential with these assemblies. It is also demonstrated that water adsorption problems may have generated low water potential values which in prior studies have been attributed to large cut surface area to volume ratios.  相似文献   

16.
Plants of the mangrove species Pelliciera rhizophoreae and Avicennia germinans, exhibit pronounced oscillations in stomatal aperture under certain climatic conditions. During these oscillations, changes in transpirational water loss were closely followed by those in leaf water potential (ψ1) as indicated by continuous monitoring with an in situ dewpoint hygrometer. With this instrument, it was possible to measure dynamic changes in ψ1 for several days under constant conditions. Subsequently, the leaf was detached from the shoot and a pressure-volume (PV) curve was established by repeatedly weighing the leaf, still attached to the hygrometer during short interruptions of the water potential recordings. The pressure-volume relationship was then used to derive other water relations parameters from these water potential data. Thus, the procedure described herein allows a continuous analysis of the relevant components of bulk leaf water relations. Oscillations in water potential were also measured with single leaves using a pressure chamber. Water relations data obtained with these two different methods were in good agreement. In addition, osmotic potentials derived from the PV-analysis were well within the range of those determined cryoscopically using extracted cell sap.  相似文献   

17.
植物表型是基因型与外界环境共同作用的结果。精确测量植物表型对于植物生理特征与功能性状研究具有重要意义。本研究以加拿大一枝黄花(Solidago canadensis)为对象,对20株植株进行3个月室内培养,各月利用地基激光雷达扫描(terrestrial Li DAR scanning,TLS)系统对实验植株进行多站扫描和点云融合,实现对植株生长过程的连续观测。对于扫描获取的离散点云,利用多端点三维坐标重构法获取植株高度,并基于叶片点云的Delaunay三角网重构叶片表面,获得植株的真实高度、叶面积、叶倾角和方位角等结构参量。对比手动测量结果,发现基于点云重构获得的植株高度与真实植株高度对比,二者间相似性的决定系数(R2)为0.991,叶面积、叶倾角、方位角相似性R2分别为0.989、0.949和0.871;基于TLS点云重构法实现了非破坏性的植物表型测量,能够获得高精度的植物表型特征;多时相扫描能精确监测植物生长过程的表型特征变化。  相似文献   

18.
Leaf water potentials measured with a pressure chamber   总被引:31,自引:17,他引:14       下载免费PDF全文
Boyer JS 《Plant physiology》1967,42(1):133-137
Leaf water potentials were estimated from the sum of the balancing pressure measured with a pressure chamber and the osmotic potential of the xylem sap in leafy shoots or leaves. When leaf water potentials in yew, rhododendron, and sunflower were compared with those measured with a thermocouple psychrometer known to indicate accurate values of leaf water potential, determinations were within ± 2 bars of the psychrometer measurements with sunflower and yew. In rhododendron. water potentials measured with the pressure chamber plus xylem sap were 2.5 bars less negative to 4 bars more negative than psychrometer measurements.

The discrepancies in the rhododendron measurements could be attributed, at least in part, to the filling of tissues other than xylem with xylem sap during measurements with the pressure chamber. It was concluded that, although stem characteristics may affect the measurements, pressure chamber determinations were sufficiently close to psychrometer measurements that the pressure chamber may be used for relative measurements of leaf water potentials, especially in sunflower and yew. For accurate determinations of leaf water potential, however, pressure chamber measurements must be calibrated with a thermocouple psychrometer.

  相似文献   

19.
温室茄子茎直径微变化与作物水分状况的关系   总被引:16,自引:1,他引:15  
在温室条件下,采用盆栽土培和小区试验相结合的方法,以茄子(Solanummelongena,品种新乡糙青茄)为材料进行了植株茎直径微变化(膨胀或收缩)与作物体内水分状况的关系试验研究,旨在为利用茎直径微变化无损快速诊断作物水分状况提供理论依据。盆栽和小区试验均采用两因素(土壤水分梯度和作物不同生育阶段)随机区组设计,土壤水分控制下限分别取田间持水量的80%FC(Fieldwatercapacity),70%FC,60%FC和50%FC;生育阶段分别为苗期、花果期和采收期;共有4×3=12个处理组合,重复3次。结果表明:无论是在较高土壤含水量或在较低土壤含水量条件下,在晴好的天气里,茄子茎直径都是在白天收缩,傍晚、夜间复原或膨胀,而且这种微变化动态与植株体内的水分状况密切相关,不同土壤含水量条件下植株茎胀缩的幅度存在明显差异。高水分条件下,植株茎收缩幅度小,复原能力强;低水分条件下,植株茎收缩幅度大,恢复能力差。茎直径变化对环境因子水汽压差(VPD)的响应比较敏感,二者呈正相关关系,相关系数R2为0·8938。茎直径变化量(ΔSd)与叶水势(ψL)、叶片相对含水量(LRWC)呈极显著正相关关系,相关系数R2分别为0·867和0·965。这些结果显示,茎直径变化量能灵敏、实时、准确地反映植株体内的水分状况;与其它作物水分诊断方法(叶水势法,叶片相对含水量法,细胞液浓度法等)相比,茎直径微变化法可能具有简便、稳定、无损、连续监测和自动记录的优势。  相似文献   

20.
Simultaneous measurements were made with the xylem pressure probe on exposed, transpiring leaves and with the Scholander pressure chamber on both transpiring and covered, non-transpiring leaves of sugarcane and maize plants. Xylem tensions inferred from pressure chamber balancing pressures on non-transpiring leaves were similar to those measured directly with the xylem pressure probe in transpiring leaves. However, tensions inferred with the pressure chamber on transpiring leaves that were placed in plastics bags just prior to excision were up to 0.6 MPa greater than those measured concurrently with the xylem pressure probe. These findings suggest that relatively large differences in water potential between the xylem and bulk leaf tissue can exist during periods of rapid transpiration, and they confirm that the balance pressure of an excised, previously transpiring leaf is only a measure of the bulk average equilibrium leaf water potential and not of the true xylem pressure that existed prior to excision.Key words: Cohesion-Tension theory, xylem pressure probe, pressure chamber, xylem tension.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号