首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G Garriga  H Bertrand  A M Lambowitz 《Cell》1984,36(3):623-634
We have identified nuclear mutants of Neurospora that are defective in splicing the mitochondrial large rRNA and that accumulate unspliced pre-rRNA (35S RNA). In cyt-4 mutants, the unspliced pre-rRNA contains short 3' end extensions (110 nucleotides) that are not present in pre-rRNAs from the other mutants. This and other characteristics suggest that the cyt-4 mutants may be primarily defective in 3' end synthesis and the RNA splicing defect occurs secondarily as a result of impaired RNA folding. The cyt-4 mutants also accumulate a "short" intron RNA and small exon RNAs that may reflect aberrant RNA cleavages. The 5' end of the short intron is about 285 nucleotides downstream from the 5' splice site at or near the base of the "central hairpin", a putative intermediate in folding of the pre-rRNA. Furthermore, the aberrant cleavage sites are immediately after a six nucleotide sequence (GAUAAU) homologous to the final splice junction (GAU/AAC).  相似文献   

2.
cyt18-1 (299-9) is a nuclear mutant of Neurospora crassa that has been shown to have a temperature-sensitive defect in splicing the mitochondrial large rRNA intron. In the present work, we investigate the effect of the cyt18-1 mutation on splicing of mitochondrial mRNA introns. Two genes were studied in detail; the cytochrome b (cob) gene, which contains two introns, and a "long form" of the cytochrome oxidase subunit I (coI) gene, which contains four introns. We found that splicing of both cob introns and splicing of at least two of the coI introns are strongly inhibited in the mutant, whereas splicing of coI intron 1, which is excised as a 2.6 X 10(3) base circle, is relatively unaffected. The rRNA intron and both cob introns are group I introns, whereas the circular coI intron may belong to another structural class. Control experiments showed that the degree of inhibition of splicing is greater in the mutant than can be accounted for by severe inhibition of mitochondrial protein synthesis. Finally, experiments in which mutant cells were shifted from 25 degrees C to 37 degrees C showed that splicing of the large rRNA precursor and splicing of the coI mRNA precursor are inhibited with similar kinetics. Considered together, our results suggest that the cyt18 gene encodes a trans-acting component that is required for the splicing of group I mitochondrial DNA introns or some subclass thereof. Since Neurospora cob intron 1 has been shown to be self-splicing in vitro, defective splicing of this intron in cyt18-1 indicates that an essentially RNA-catalyzed splicing reaction must be facilitated by a trans-acting factor, presumably a protein, in vivo.  相似文献   

3.
We reported previously that mitochondrial tyrosyl-tRNA synthetase, which is encoded by the nuclear gene cyt-18 in Neurospora crassa, functions in splicing several group I introns in N. crassa mitochondria (R. A. Akins and A. M. Lambowitz, Cell 50:331-345, 1987). Two mutants in the cyt-18 gene (cyt-18-1 and cyt-18-2) are defective in both mitochondrial protein synthesis and splicing, and an activity that splices the mitochondrial large rRNA intron copurifies with a component of mitochondrial tyrosyl-tRNA synthetase. Here, we used antibodies against different trpE-cyt-18 fusion proteins to identify the cyt-18 gene product as a basic protein having an apparent molecular mass of 67 kilodaltons (kDa). Both the cyt-18-1 and cyt-18-2 mutants contain relatively high amounts of inactive cyt-18 protein detected immunochemically. Biochemical experiments show that the 67-kDa cyt-18 protein copurifies with splicing and synthetase activity through a number of different column chromatographic procedures. Some fractions having splicing activity contain only one or two prominent polypeptide bands, and the cyt-18 protein is among the few, if not only, major bands in common between the different fractions that have splicing activity. Phosphocellulose columns resolve three different forms or complexes of the cyt-18 protein that have splicing or synthetase activity or both. Gel filtration experiments show that splicing activity has a relatively small molecular mass (peak at 150 kDa with activity trailing to lower molecular masses) and could correspond simply to dimers or monomers, or both, of the cyt-18 protein. Finally, antibodies against different segments of the cyt-18 protein inhibit splicing of the large rRNA intron in vitro. Our results indicate that both splicing and tyrosyl-tRNA synthetase activity are associated with the same 67-kDa protein encoded by the cyt-18 gene. This protein is a key constituent of splicing activity; it functions directly in splicing, and few, if any, additional components are required for splicing the large rRNA intron.  相似文献   

4.
R A Akins  A M Lambowitz 《Cell》1987,50(3):331-345
The nuclear cyt-18 mutants of Neurospora crassa are defective in splicing a number of group I introns in mitochondria. Here, cloning and sequencing of the cyt-18 gene show that it contains an open reading frame having significant homology to bacterial tyrosyl-tRNA synthetases. Biochemical and genetic experiments lead to the conclusions that the cyt-18 gene encodes mitochondrial tyrosyl-tRNA synthetase, that mutations in this gene inhibit splicing directly, and that mitochondrial tyrosyl-tRNA synthetase or a derivative of this protein is related to the soluble activity that functions in splicing the mitochondrial large rRNA intron and possibly other group I introns. Analysis of partial revertants provides direct evidence that the cyt-18 gene encodes a protein or proteins with two activities, splicing and aminoacylation, that can be partially separated by mutation. Our findings may be relevant to the evolution of introns and splicing mechanisms in eukaryotes.  相似文献   

5.
The Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (mt tyrRS), which is encoded by the nuclear gene cyt-18, functions not only in aminoacylation but also in the splicing of group I introns. Here, we isolated the cognate Podospora anserina mt tyrRS gene, designated yts1, by using the N. crassa cyt-18 gene as a hybridization probe. DNA sequencing of the P. anserina gene revealed an open reading frame (ORF) of 641 amino acids which has significant similarity to other tyrRSs. The yts1 ORF is interrupted by two introns, one near its N terminus at the same position as the single intron in the cyt-18 gene and the other downstream in a region corresponding to the nucleotide-binding fold. The P. anserina yts1+ gene transformed the N. crassa cyt-18-2 mutant at a high frequency and rescued both the splicing and protein synthesis defects. Furthermore, the YTS1 protein synthesized in Escherichia coli was capable of splicing the N. crassa mt large rRNA intron in vitro. Together, these results indicate that YTS1 is a bifunctional protein active in both splicing and protein synthesis. The P. anserina YTS1 and N. crassa CYT-18 proteins share three blocks of amino acids that are not conserved in bacterial or yeast mt tyrRSs which do not function in splicing. One of these blocks corresponds to the idiosyncratic N-terminal domain shown previously to be required for splicing activity of the CYT-18 protein. The other two are located in the putative tRNA-binding domain toward the C terminus of the protein and also appear to be required for splicing. Since the E. coli and yeast mt tyrRSs do not function in splicing, the adaptation of the Neurospora and Podospora spp. mt tyrRSs to function in splicing most likely occurred after the divergence of their common ancestor from yeast.  相似文献   

6.
7.
The gene encoding the Neurospora mitochondrial large rRNA contains a single group I intron of 2.3 kilobases that is not self-splicing in vitro. We showed previously that the splicing of this intron in vivo and in vitro is dependent on the Neurospora cyt-18 protein, mitochondrial tyrosyl-tRNA synthetase. In the present work, we carried out further structural analysis of the intron and constructed mutant derivatives of it in order to identify features that are either required for splicing or prevent it from self-splicing. Previous studies showed that the intron contains a large hairpin structure near the 5' splice site. By mapping RNase III cleavage sites, we identified this hairpin structure as an extended P2 stem. We construct a mini-intron of 388 nucleotides by deleting the 426-amino acid intron open reading frame, most of the 5' intron hairpin, and all of L8. This mini-intron shows the same protein-dependent splicing as the full length intron, but is still not self-splicing. Further deletions, which remove all of P2 or all or part of P4, P6, P7, or P9, inactivate splicing, suggesting that an intact group I intron core structure is required. Strengthening the P1, P10, or P9.0 pairings did not enable the mini-intron to self-splice. Our findings indicate that the inability of the mitochondrial large rRNA intron to self-splice reflects deficiency of a structure or activity required for cleavage at the 5' splice site, either in the intron core itself or in the interaction between the core and the P1 stem.  相似文献   

8.
The terminal intron of the mitochondrial cob gene of Saccharomyces cerevisiae can undergo autocatalytic splicing in vitro. Efficient splicing of this intron required a high concentration of monovalent ion (1 M). We found that at a high salt concentration this intron was very active and performed many of the reactions described for other group I introns. The rate of the splicing reaction was dependent on the choice of the monovalent ion; the reaction intermediate, the intron-3' exon molecule, accumulated in NH4Cl but not in KCl. In addition, the intron was more reactive in KCl, accumulating in two different circular forms: one cyclized at the 5' intron boundary and the other at 236 nucleotides from the 5' end. These circular forms were able to undergo the opening and recyclization reactions previously described for the Tetrahymena rRNA intron. Cleavage of the 5' exon-intron boundary by the addition of GTP did not require the 3' terminus of the intron and the downstream exon. An anomalous guanosine addition at the 3' exon and at the middle of the intron was also detected. Hence, this intron, which requires a functional protein to splice in vivo, demonstrated a full spectrum of characteristic reactions in the absence of proteins.  相似文献   

9.
10.
In some strains of Saccharomyces cerevisiae the mitochondrial gene coding for 21S rRNA is interrupted by an intron of 1143 bp. This intron contains a reading frame for 235 amino acids: Unassigned Reading Frame (URF). In order to check whether expression of this URF is required for proper splicing of precursors to 21S rRNA, the precision of RNA splicing was analysed in a petite mutant, where no mitochondrial protein synthesis is possible anymore. We have devised a new assay to monitor the precision of the splicing event. The method is of general application, provided that the sequence of the splice boundaries is known. In the case of the 21S rRNA it involves the synthesis of the DNA oligonucleotide d(CGATCCCTATTGTC( complementary to the 5' d(CGATCCCTAT) and 3' d(TGTC) borders flanking the intron in the 21S rRNA gene. The oligonucleotide is labelled with 32p at the 5'-end, hybridised to RNA and subsequently subjected to digestion with S1 nuclease. Resistance to digestion will only be observed if the correct splice-junction is made. The petite mutant we have studied contains a 21S rRNA with the same migration behaviour as wildtype 21S rRNA. In RNA blotting experiments, using an intron specific hybridisation probe, the same intermediates in splicing are found both in wild type and petite mutant. Finally the synthetic oligonucleotide hybridises to petite 21S rRNA and its thermal dissociation behaviour is indistinguishable from a hybrid formed with wildtype 21S rRNA. We conclude that expression of the URF, present in the intron of the 21S rRNA gene, is not required for processing and correct splicing of 21S ribosomal precursor RNA.  相似文献   

11.
12.
Neurospora mitochondrial tyrosyl-tRNA synthetase (mt TyrRS), which is encoded by nuclear gene cyt-18, functions in splicing group I introns. Analysis of intragenic partial revertants of the cyt-18-2 mutant and in vitro mutants of the cyt-18 protein expressed in E. coli showed that splicing activity of the cyt-18 protein is dependent on a small N-terminal domain that has no homolog in bacterial or yeast mt TyrRSs. This N-terminal splicing domain apparently acts together with other regions of the protein to promote splicing. Our findings support the hypothesis that idiosyncratic sequences in aminoacyl-tRNA synthetase may function in processes other than aminoacylation. Furthermore, they suggest that splicing activity of the Neurospora mt TyrRs was acquired after the divergence of Neurospora and yeast, and they demonstrate one mechanism whereby splicing factors may evolve from cellular RNA binding proteins.  相似文献   

13.
Revertants have been obtained from six mutants of the box9 cluster, which are supposed to be defective in RNA splicing as a result of alterations in a splice signal sequence. This sequence is in the 5' part of intron 4 of the cob gene, 330 to 340 bp downstream from the 5' splice site. Sequencing reveals that reversion to splicing competence is achieved by restoration of the wild-type box9 sequence; by creation of novel box9 sequences; and by introduction of a second site or suppressor mutation (sup-) compensating for the effect of the primary box9- mutation. The sup- mutation alters a sequence in intron 4,293 bp upstream from the box9- primary mutation. The box9 sequence and this upstream sequence can base pair to form an intramolecular hybrid in intron RNA in which box9- and sup- are compensatory base pair exchanges (G----A and C----U, respectively). Thus intramolecular hybrid structures of intron RNA are essential for RNA splicing.  相似文献   

14.
J M Burke 《Gene》1988,73(2):273-294
In vivo and in vitro genetic techniques have been widely used to investigate the structure-function relationships and requirements for splicing of group-I introns. Analyses of group-I introns from extremely diverse genetic systems, including fungal mitochondria, protozoan nuclei, and bacteriophages, have yielded results which are complementary and highly consistent. In vivo genetic studies of fungal mitochondrial systems have served to identify cis-acting sequences within mitochondrial introns, and trans-acting protein products of mitochondrial and nuclear genes which are important for splicing, and to show that some mitochondrial introns are mobile genetic elements. In vitro genetic studies of the self-splicing intron within the Tetrahymena thermophila nuclear large ribosomal RNA precursor (Tetrahymena LSU intron) have been used to examine essential and nonessential RNA sequences and structures in RNA-catalyzed splicing. In vivo and in vitro genetic analysis of the intron within the bacteriophage T4 td gene has permitted the detailed examination of mutant phenotypes by analyzing splicing in vivo and self-splicing in vitro. The genetic studies combined with phylogenetic analysis of intron structure based on comparative nucleotide sequence data [Cech 73 (1988) 259-271] and with biochemical data obtained from in vitro splicing experiments have resulted in significant advances in understanding the biology and chemistry of group-I introns.  相似文献   

15.
We showed previously that the cyt-21+ gene of Neurospora crassa encodes a mitochondrial ribosomal protein homologous to Escherichia coli ribosomal protein S-16 (Kuiper, M. T. R., Akins, R. A., Holtrop, M., de Vries, H., and Lambowitz, A. M. (1988) J. Biol. Chem. 263, 2840-2847). A mutation in this gene, cyt-21-1, results in deficiency of mitochondrial small ribosomal subunits and small rRNA (Collins, R. A., Bertrand, H., LaPolla, R. J., and Lambowitz, A. M. (1979) Mol. Gen. Genet. 177, 73-84). In the present work, cloning and sequencing of the cyt-21-1 mutant allele show that it contains a single dG to dA transition at the 3' splice site AG of the first intron in the protein coding region. This mutation leads to inactivation of the normal 3' splice site and activation of a cryptic 3' splice site, 15 nucleotides downstream. The use of this cryptic splice site results in an in-frame deletion of 5 amino acids from the cyt-21 protein. Comparison of mutant and wild-type mitochondrial small ribosomal subunit proteins showed one protein, S-24, with an altered electrophoretic mobility, consistent with the predicted deletion. The mutant ribosomal protein is still capable of binding to mitochondrial small ribosomal subunits, but results in abnormal mitochondrial ribosome assembly.  相似文献   

16.
A yeast ACT1 intron in which both the first and last intron nucleotides are mutated, the /a-c/ intron, splices 10% as well as wild type. We selected for additional cis-acting mutations that improve the splicing of /a-c/ introns and recovered small deletions upstream of the 3' splice site. For example, deletion of nucleotides -9 and -10 upstream of the 3' splice site increased the splicing activity of the /a-c/ intron to 30% that of the wild-type ACT1 intron. To determine if the increased /a-c/ splicing was due to changes in intron spacing or sequence, we made mutations that mimicked the local sequence of the delta-9, -10 deletion without deleting any nucleotides. These mutants also increased /a-c/ splicing, indicating that the increased splicing activity was due to changes in intron sequence. The delta-9, -10 deletion was not allele specific to the /a-c/ intron, and improved the splicing efficiency of many mutant introns with step II splicing defects. To further define the sequences required for improved splicing of mutant introns, we randomized the region upstream of the ACT1 3' splice site. We found that almost all sequence alterations improved the splicing of the /a-c/ intron. We postulate that this sequence near the 3' end of the intron represses the splicing of mutant introns, perhaps by serving as the binding site for a negative splicing factor.  相似文献   

17.
18.
RNA helicases participate in nearly all aspects of RNA metabolism by rearranging RNAs or RNA–protein complexes in an adenosine triphosphate-dependent manner. Due to the large RNA helicase families in plants, the precise roles of many RNA helicases in plant physiology and development remain to be clarified. Here, we show that mutations in maize (Zea mays) DEAD-box RNA helicase 48 (ZmRH48) impair the splicing of mitochondrial introns, mitochondrial complex biosynthesis, and seed development. Loss of ZmRH48 function severely arrested embryogenesis and endosperm development, leading to defective kernel formation. ZmRH48 is targeted to mitochondria, where its deficiency dramatically reduced the splicing efficiency of five cis-introns (nad5 intron 1; nad7 introns 1, 2, and 3; and ccmFc intron 1) and one trans-intron (nad2 intron 2), leading to lower levels of mitochondrial complexes I and III. ZmRH48 interacts with two unique pentatricopeptide repeat (PPR) proteins, PPR-SMR1 and SPR2, which are required for the splicing of over half of all mitochondrial introns. PPR-SMR1 interacts with SPR2, and both proteins interact with P-type PPR proteins and Zm-mCSF1 to facilitate intron splicing. These results suggest that ZmRH48 is likely a component of a splicing complex and is critical for mitochondrial complex biosynthesis and seed development.  相似文献   

19.
20.
It has been previously suggested that self-splicing of group II introns starts with a nucleophilic attack of the 2' OH group from the branchpoint adenosine on the 5' splice junction. To investigate the sequences governing the specificity of this attack, a series of Bal31 nuclease deletion mutants was constructed in which progressively larger amounts of 5' exon have been removed starting from its 5' end. The ability of mutant RNAs to carry out self-splicing in vitro was studied. Involvement of 5' exon sequences in self-splicing activity is indicated by the fact that a mutant in which as many as 18 nucleotides of 5' exon remain is seriously disturbed in splicing, while larger deletions eliminate splicing entirely. Mutants containing a truncated 5' exon form aberrant RNAs. One of these is a 425-nucleotide RNA containing the 5' exon as well as sequences of the 5' part of the intron. Its 3' end maps at position 374 of the 887-nucleotide intron. The other is a less abundant lariat RNA probably originating from the remainder of the intron linked to the 3' exon. We interpret this large dependence of reactivity of the intron on 5' exon and adjoining intron sequences as evidence for base-pairing interactions between the exon and parts of the intron, leading to an RNA folding necessary for splicing. Possible folding models are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号