首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
我国土壤重金属污染植物吸取修复研究进展   总被引:16,自引:0,他引:16  
我国从上世纪90年代中后期开始土壤重金属(含类金属砷)污染的植物吸取修复研究及技术探索,先后发现了一批具有较高研究价值和应用前景的铜、砷、镉、锰等重金属的积累或超积累植物,并从重金属耐性和超积累生理机制、植物吸取修复的根际过程与机制、吸取修复强化措施和修复植物处置与资源化利用等方面进行了研究,同时开展了植物吸取修复技术的示范与应用,已有一些较成功的植物修复工程应用案例,使我国重金属污染土壤植物修复技术,尤其是植物吸取修复技术在国际上产生了较强的影响力。本文就近年来我国土壤重金属污染植物吸取修复研究进展进行了综述,并对今后的发展趋势进行了展望。  相似文献   

2.
高生物量经济植物修复重金属污染土壤研究进展   总被引:3,自引:0,他引:3  
植物修复是重金属污染土壤修复的重要方法之一。利用高生物量经济植物修复重金属污染土壤,能够兼顾生态和经济效益,具有很大的应用前景。本文系统分析了植物修复现状及存在的问题,提出利用高生物量经济植物修复重金属污染土壤的优势,总结了近年来利用高生物量经济植物吸收重金属的研究进展,探讨了改善高生物量经济植物修复重金属污染土壤效率的方法,以期为提高植物修复经济效益、促进植物修复广泛应用提供参考。  相似文献   

3.
利用能源植物治理土壤重金属污染   总被引:7,自引:0,他引:7  
随着工农业的发展,土壤重金属污染日益加剧,严重威胁着粮食生产和人类健康。植物修复因其成本低、环境友好以及可大规模原位修复等优点备受关注,成为近年来迅速发展的重金属污染土壤治理技术。在介绍国内外植物修复技术发展与应用现状的基础上,提倡大力发展能源植物修复重金属污染土地,并结合湖南重金属污染田间试验结果,重点对甜高粱(Sorghum bicolor(Linn.)Moench)用于重金属污染土壤修复的优势、可行性及提高修复效率的措施进行了深入分析与探讨。利用甜高粱治理土壤重金属污染,能将土壤修复与生物能源生产有机结合,使重金属从粮食链转入能源链,同时兼顾了生态和经济效益,具有广阔的应用前景。  相似文献   

4.
重金属污染土壤植物修复基本原理及强化措施探讨   总被引:99,自引:11,他引:88  
阐述了植物修复的基本概念及主要作用方式 ,并从土壤中重金属存在形态 ,植物对重金属吸收、排泄和积累以及植物生物学特性与植物修复的关系等方面讨论了重金属污染土壤植物修复的基本原理及局限性和限制性因素 ,从超富集植物性能强化和技术强化两方面探讨了植物修复的强化措施 ,并指出与现代化农业技术相结合是植物修复重金属污染土壤大规模商业应用的一条捷径  相似文献   

5.
植物修复作为一种绿色安全技术成为土壤重金属污染治理研究的热点领域之一。综述了当前已筛选用于土壤重金属污染修复的植物种类、研发现状及其应用模式,总结了植物修复技术存在的问题及面临的困境。在此基础上,围绕入侵植物生长繁殖快、生物量大、抗逆性强及其对某些重金属的超富集特性,分析探讨了入侵植物作为土壤重金属污染修复的可行性及应用前景,并提出对入侵植物修复的后续处理利用思路,旨为综合利用入侵植物修复土壤重金属污染提供可能的新途径和新方法。  相似文献   

6.
钝化和植物修复是重金属污染土壤修复的重要技术手段,而溶磷微生物可进一步增强钝化和植物修复重金属污染土壤的作用。介绍了钝化和植物修复重金属污染土壤的基本原理,总结了溶磷微生物对土壤中难溶性磷酸盐的溶解、利用磷酸盐钝化修复重金属污染土壤、溶磷微生物对磷酸盐钝化修复的强化以及溶磷微生物强化植物修复重金属污染土壤的研究进展,探讨了溶磷微生物对重金属的抗性及其溶磷机理、溶磷微生物对磷酸盐钝化修复重金属污染土壤的强化作用机理以及溶磷微生物强化植物修复重金属污染土壤的作用机理。旨在为生物修复重金属污染土壤研究提供一定的理论依据和技术支撑。  相似文献   

7.
土壤重金属污染的植物修复   总被引:10,自引:0,他引:10  
土壤重金属污染的危害范围广泛,使用传统的物理和化学修复方法成本高,对环境扰动大,而利用植物修复的效果较为明显,易于操作.本文论述了土壤重金属污染的单一植物、植物与微生物联合、植物与化学方法相结合.的修复方法,着重介绍了重金属超富'集植物的研究和植物体内螯合肽(PCs)的合成.生物螯合剂的应用及土壤重金属污染的动物、植物和微生物的联合修复将是未来研究的热点.  相似文献   

8.
植物内生细菌在植物修复重金属污染土壤中的应用   总被引:1,自引:0,他引:1  
土壤重金属污染是威胁人群健康和经济可持续发展的重要环境问题。植物修复具有经济、环保等特点,已成为治理重金属污染土壤的重要技术。如何提高植物对重金属的抗性、促进植物生长是影响植物修复效率的关键之一。内生菌群-植物共生关系在此方面具有独特优势。其中,植物内生细菌可改善植物营养、降低植物病菌感染、影响酶活性,以及分泌激素、含铁载体和有机配位体等,进而提高超积累植物对重金属的吸收作用。本文综述了近年来国内外关于抗重金属植物内生细菌筛选与应用的研究进展,分析了内生细菌促进植物生长、增强植物对重金属抗性、促进重金属向茎叶转移的机理,阐述了植物内生细菌在重金属污染土壤修复中的应用前景与研究重点。  相似文献   

9.
土壤重金属污染已经成为一个全球性问题。重金属超积累植物在修复土壤重金属污染中具有重要的应用前景。重金属超积累植物通常具备三个基本特征,即:根系具有从土壤中吸收重金属的强大能力、能从根到地上部分高效转运重金属、在叶片中能解毒和隔离大量重金属。本文总结了重金属超积累植物吸收、转运、隔离和解毒重金属的生理机制研究进展,以期为进一步阐明植物超积累重金属的机制及其在植物修复中的应用提供参考。  相似文献   

10.
植物修复——治理土壤重金属污染的新途径   总被引:16,自引:0,他引:16  
介绍了重金属污染土壤的植物修复的概念、原理与研究动态以及重金属超积累植物的特性 ,及其在治理污染土壤中的潜力 ,为土壤重金属污染的整治及其生态的修复提出新途径。  相似文献   

11.
Phytoremediation of toxic aromatic pollutants from soil   总被引:9,自引:0,他引:9  
The enormous growth of industrialization, and the use of numerous aromatic compounds in dyestuffs, explosives, pesticides and pharmaceuticals has resulted in serious environmental pollution and has attracted considerable attention continuously over the last two decades. Many aromatic hydrocarbons, nitroaromatic compounds, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, diauxins and their derivatives are highly toxic, mutagenic and/or carcinogenic to natural microflora as well as to higher systems including humans. The increasing costs and limited efficiency of traditional physicochemical treatments of soil have spurred the development of new remediation technologies. Phytoremediation is emerging as an efficient treatment technology that uses plants to bioremediate pollutants from soil environments. Various modern tools and analytical devices have provided insight into the selection and optimization of remediation processes by various plant species. Sites heavily polluted with organic contaminants require hyperaccumulators, which could be developed by genetic engineering approaches. However, efficient hyperaccumulation by naturally occurring plants is also feasible and can be made practical by improving their nutritional and environmental requirements. Thus, phytoremediation of organics appears a very promising technology for the removal of contaminants from polluted soil. In this review, certain aspects of plant metabolism associated with phytoremediation of organic contaminants and their relevant phytoremediation efforts are discussed.IMTECH Communication No. 013/2002  相似文献   

12.
Rhizoremediation: a beneficial plant-microbe interaction   总被引:2,自引:0,他引:2  
Worldwide, contamination of soil and ground water is a severe problem. The negative effects of pollutants on the environment and on human health are diverse and depend on the nature of the pollution. The search for alternative methods for excavation and incineration to clean polluted sites resulted in the application of bioremediation techniques. In this review, we describe some generally accepted bioremediation tools and subsequently focus on the combination of two approaches, phytoremediation and bioaugmentation, resulting in rhizoremediation. During rhizoremediation, exudates derived from the plant can help to stimulate the survival and action of bacteria, which subsequently results in a more efficient degradation of pollutants. The root system of plants can help to spread bacteria through soil and help to penetrate otherwise impermeable soil layers. The inoculation of pollutant-degrading bacteria on plant seed can be an important additive to improve the efficiency of phytoremediation or bioaugmentation.  相似文献   

13.
Walter W. Wenzel 《Plant and Soil》2009,321(1-2):385-408
Plant-assisted bioremediation or phytoremediation holds promise for in situ treatment of polluted soils. Enhancement of phytoremediation processes requires a sound understanding of the complex interactions in the rhizosphere. Evaluation of the current literature suggests that pollutant bioavailability in the rhizosphere of phytoremediation crops is decisive for designing phytoremediation technologies with improved, predictable remedial success. For phytoextraction, emphasis should be put on improved characterisation of the bioavailable metal pools and the kinetics of resupply from less available fractions to support decision making on the applicability of this technology to a given site. Limited pollutant bioavailability may be overcome by the design of plant–microbial consortia that are capable of mobilising metals/metalloids by modification of rhizosphere pH (e.g. by using Alnus sp. as co-cropping component) and ligand exudation, or enhancing bioavailability of organic pollutants by the release of biosurfactants. Apart from limited pollutant bioavailability, the lack of competitiveness of inoculated microbial strains (in particular degraders) in field conditions appears to be another major obstacle. Selecting/engineering of plant–microbial pairs where the competitiveness of the microbial partner is enhanced through a “nutritional bias” caused by exudates exclusively or primarily available to this partner (as known from the “opine concept”) may open new horizons for rhizodegradation of organically polluted soils. The complexity and heterogeneity of multiply polluted “real world” soils will require the design of integrated approaches of rhizosphere management, e.g. by combining co-cropping of phytoextraction and rhizodegradation crops, inoculation of microorganisms and soil management. An improved understanding of the rhizosphere will help to translate the results of simplified bench scale and pot experiments to the full complexity and heterogeneity of field applications.  相似文献   

14.
抗生素的环境污染问题日益严峻, 如何对抗生素污染的水体和土壤进行有效的原位处理已然成为亟待解决的问题。植物修复是具有处理成本低、二次污染可控、易于后续处理、不破坏土壤和河流生态环境等优势的绿色、原位修复技术, 已被证明是可用于抗生素污染治理的处理技术之一。因此, 通过文献搜索和总结分析, 作者们对植物修复在抗生素污染治理中的应用研究以及植物对抗生素污染可能的修复机理进行了综述, 并对抗生素污染的植物修复研究也进行了展望。  相似文献   

15.
Trends in phytoremediation of radionuclides   总被引:5,自引:0,他引:5  
Dushenkov  Slavik 《Plant and Soil》2003,249(1):167-175
Phytoremediation, a novel plant-based remediation technology, is applied to a variety of radionuclide-contaminated sites all over the world. Phytoremediation is defined as the use of green plants to remove pollutants from the environment or to render them harmless. Current status of several subsets of phytoremediation of radionuclides is discussed: (a) phytoextraction, in which high biomass radionuclide-accumulating plants and appropriate soil amendments are used to transport and concentrate radionuclides from the soil into the above-ground shoots, which are harvested with conventional agricultural methods, (b) rhizofiltration, in which plant roots are used to precipitate and concentrate radionuclides from polluted effluents, (c) phytovolatilization, in which plants extract volatile radionuclides from soil and volatilize them from the foliage and (d) phytostabilization, in which plants stabilize radionuclides in soils, thus rendering them harmless. It is shown that phytoremediation is a fast developing field and the phytoremediation of radionuclides might soon become an integral part of the environment management and risk reduction process.  相似文献   

16.
In this review, chemical and biological parameters are discussed thatstrongly influence the speciation of heavy metals, their availability tobiological systems and, consequently, the possibilities to usebioremediation as a cleanup tool for heavy metal polluted sites. In orderto assess heavy metal availability, a need exists for rapid, cost-effectivesystems that reliably predict this parameter and, based on this, thefeasibility of using biological remediation techniques for site managementand restoration. Special attention is paid to phytoremediation as anemerging technology for stabilization and remediation of heavy metalpollution. In order to improve phytoremediation of heavy metal pollutedsites, several important points relevant to the process have to beelucidated. These include the speciation and bioavailability of the heavymetals in the soil determined by many chemical and biological parameters,the role of plant-associated soil microorganisms and fungi inphytoremediation, and the plants. Several options are described how plant-associated soil microorganisms canbe used to improve heavy metal phytoremediation.  相似文献   

17.
Heavy metal contamination of land and freshwater resources is a serious concern worldwide. It adversely affects the health of animals, plants and humans. Therefore, remediation of toxic heavy metals must be highly considered. Unlike other techniques, phytoremediation is a holistic technology and can be used in large scale for soil remediation as it is costless, novel, environmentally-safe and solar-driven technology. Utilization of non-edible plants in phytoremediation is an ingenious technique as they are used to generate new bioenergy resources along with the remediation of contaminated soils. Some nonfood bioenergy crops such as Salix species, Miscanthus species, Populus species, Eucalyptus species, and Ricinus communis exhibit high capability to accumulate various metals and to grow in contaminated lands. However, there are still sustainable challenges facing coupling phytoremediation with bioenergy production from polluted lands. Therefore, there has long been a need for developing different strategies to resolve such challenges. In this article review, we will discuss the phytoremediation mechanism, the technique of phytoremediation coupling with bioenergy production, sustainable problems facing linking phytoremediation with energy production as well as possible strategies to enhance the efficiency of bioenergy plants for soil decontamination by improving their characteristics such as metal uptake, transport, accumulation, and tolerance.  相似文献   

18.
Phytoremediation of Metal-Polluted Ecosystems: Hype for Commercialization   总被引:8,自引:0,他引:8  
Air, water, and soil are polluted by a variety of metals due to anthropogenic activities, which alter the normal biogeochemical cycling. Biodiversity has been employed widely by both developed and developing nations for environmental decontamination of metals. These technologies have gained considerable momentum in the recent times with a hype for commercialization. The United States Environmental Protection Agency's remediation program included phytoremediation of metals and radionuclides as a thrust area to an extent of 30% during the year 2000. Plants, that hyperaccumulate metals, are the ideal model organisms and attracted attention of scientists all over the world for their application in phytoremediation technology. Metal hyperaccumulators have the ability to overcome major physiological bottlenecks. The potential of hyperaccumulators for phytoremediation application relies upon their growth rates (i.e., biomass production) and metal accumulation rate (g metal per kg of plant tissue). The two primary reasons, that are limiting global application of this technology, are the slow growth rates exhibited by most naturally occurring metal hyperaccumulators and the limited solubility of metals in soils (i.e., the high affinity of metal ions for soil particles). Phytoremediation applications, relevance of transgenic plants for metal decontamination, chelate enhanced phytoremediation, chemical transformation, molecular physiology and genetic basis of metal hyperaccumulation by plants, commercialization hype for the phytoremediation technology are reviewed.  相似文献   

19.
Rapid increase in industrialization of world economy in the past century has resulted in significantly high emission of anthropogenic chemicals in the ecosystem. The organochlorine pesticides (OCPs) are a great risk to the global environment and endanger the human health due to their affinity for dispersion, transportation over long distances, and bioaccumulation in the food chain. Phytoremediation is a promising technology that aims to make use of plants and associated bacteria for the treatment of groundwater and soil polluted by these contaminants. Processes known to be involved in phytoremediation of OCPs include phytoaccumulation, rhizoremediation, and phytotransformation. Vegetation has been accounted to considerably amplify OCP elimination from soil, in contrast to non-planted soil, attributable to both, uptake within plant tissues and high microbial degradation of OCP within the root zone. Developing transgenic plants is a promising approach to enhance phytoremediation capabilities. Recent advances in the application of phytoremediation technique for OCPs, including uptake by plants and plant–microbe association in the rhizosphere for the enhanced degradation and mineralization of these pollutants, is presented in this review. Additionally, some attempts to improve this technique using transgenesis and role of certain enzymes are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号