首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A randomized, double-blind human trial was conducted to assess the effect on the plasma carotenoid concentration of 4- or 12-week astaxanthin supplementation (1 or 3 mg/d) of 20 Japanese middle-aged and senior subjects. The plasma carotenoid concentration was significantly higher after the astaxanthin supplementation than that before in both the 1 mg/d (10 subjects) and 3 mg/d (10 subjects) groups.  相似文献   

2.
In this study, atmospheric and room temperature plasma and ultraviolet mutagenesis was studied for astaxanthin overproducing mutant. Phaffia rhodozyma mutant Y1 was obtained from the selection plate with 120 μmol/L diphenylamine as selection agent, and its carotenoid concentration and content were 54.38 mg/L and 5.38 mg/g, which were 19.02 % and 21.20 % higher than that of the original strain, respectively. Sugarcane bagasse hydrolysate was used for astaxanthin production by mutant Y1 at 22 °C and 220 rpm for 96 h, and the biomass and carotenoid concentration reached 12.65 g/L and 88.57 mg/L, respectively. Ultrasonication and cellulase were used to break cell wall and the parameters were optimized, achieving an astaxanthin extraction rate of 96.01 %. The present work provided a novel combined mutagenesis method for astaxanthin overproducing mutant and a green cell wall disruption process for astaxanthin extraction, which would play a solid foundation on the development of natural astaxanthin.  相似文献   

3.
The red yeast Xanthophyllomyces dendrorhous (previously named Phaffia rhodozyma) produces astaxanthin pigment among many carotenoids. The mutant X. dendrorhous G276 was isolated by chemical mutagenesis. The mutant produced about 2.0 mg of carotenoid per g of yeast cell dry weight and 8.0 mg/L of carotenoid after 5 days batch culture with YM media; in comparison, the parent strain produced 0.66 mg/g of yeast cell dry weight and a carotenoid concentration of 4.5 mg/L. We characterized the utilization of carbon sources by the mutant strain and screened various edible plant extracts to enhance the carotenoid production. The addition of Perilla frutescens (final concentration, 5%) or Allium fistulosum extracts (final concentration, 1%) enhanced the pigment production to about 32 mg/L. In a batch fermentor, addition of Perilla frutescens extract reduced the cultivation time by two days compared to control (no extract), which usually required five-day incubation to fully produce astaxanthin. The results suggest that plant extracts such as Perilla frutescens can effectively enhance astaxanthin production.  相似文献   

4.
The microalga Haematococcus pluvialis Flotow is one of the natural sources of astaxanthin, a pigment widely used in salmon feed. This study was made to discover optimal conditions for biomass and astaxanthin production in H. pluvialis from Steptoe, Nevada (USA), cultured in batch mode. Growth was carried out under autotrophic (with NaNO3, NH4Cl and urea) and mixotrophic conditions (with 4, 8, 12 mM sodium acetate) under two photon flux densities (PFD) (35 and 85 mumol m-2 s-1). The carotenogenesis was induced by 1) addition of NaCl (0.2 and 0.8%), 2) N-deprivation and 3) high PFD (150 mumol m-2 s-1). Total carotenoids were estimated by spectrophotometry and total astaxanthin by HPLC. Ammonium chloride was the best N-source for growth (k = 0.7 div day-1, 228-258 mg l-1 and 2.0 x 10(5)-2.5 x 10(5) cells ml-1 at both PFD, respectively). With increasing acetate concentration, a slight increment in growth occurred only at 85 mumol m-2 s-1. Light was the best inductive carotenogenic factor, and the highest carotenoid production (4.9 mg l-1, 25.0 pg cell-1) was obtained in cultures pre-grown in nitrate at low light. The NaCl caused an increase in carotenoid content per cell at increasing salt concentrations, but resulted in a high cell mortality and did not produce any increment in carotenoid content per volume compared to cultures grown at 150 mumol m-2 s-1. The highest carotenoid content per cell (22 pg) and astaxanthin content per dry weight (10.3 mg g-1) (1% w/w) were obtained at 85 mumol m-2 s-1 with 0.8% NaCl.  相似文献   

5.
Astaxanthin enters circulation in salmonid fishes upon intraperitoneal injection (IP) of small doses. Blood uptake and tissue distribution of geometrical E/Z astaxanthin isomers were determined in tissues and plasma of duplicated groups of rainbow trout (Oncorhynchus mykiss, initial weight 550 g) some of which were administered high doses of astaxanthin by IP in a trial lasting for 8 weeks. Doses of 10 (IP10), 50 (IP50) or 100 mg (IP100) astaxanthin (Lucantin Pink, BASF, Germany), respectively, dispersed in phosphate buffered saline were tested in comparison with diets containing 10 (Control) or 60 (Fed 60) mg astaxanthin kg(-1). Astaxanthin concentrations in all examined tissues and plasma were significantly higher in IP50 and IP100 than in controls and Fed 60 (p<0.05). In IP50, 11 mg astaxanthin kg(-1) muscle was detected after 4 weeks, compared to 4 mg kg(-1) in rainbow trout fed 60 mg kg(-1). Concentrations up to 80 and 100 mg astaxanthin kg(-1) were detected in liver and kidney after IP, respectively, whereas fish only fed astaxanthin contained about 2 mg astaxanthin kg(-1). No increase in muscle astaxanthin concentration was found between 4 and 8 weeks in fish given IP, and the muscle astaxanthin concentration in IP50 and IP100 were similar. Muscle concentration and injected dose were curvilinearly correlated and the proportion of ingested dose retained by the muscle was negatively correlated with the amount of injected astaxanthin. Plasma and muscle concentrations of astaxanthin were highly correlated (p<0.0001). Astaxanthin Z-isomers accumulated selectively in the various tissues after IP, whereas all-E-astaxanthin was preferably absorbed into plasma when administered via the diet. There was a selective uptake of all-E-astaxanthin in the muscle of all fish. Mortality was not affected by treatment, but a dose-dependent reduction in SGR was evident after IP. In conclusion, a more rapid and higher uptake of astaxanthin in plasma, muscle, kidney and liver of rainbow trout takes place after IP compared to when astaxanthin is fed via the diet.  相似文献   

6.
The influence of ammonium, phosphate and citrate on astaxanthin production by the yeast Phaffia rhodozyma was investigated. The astaxanthin content in cells and the final astaxanthin concentration increased upon reduction of ammonium from 61 mM to 12.9 mM (from 140 microg/g to 230 microg/g and 1.2 microg/ml to 2.3 microg/ml, respectively). Similarly, both the astaxanthin content and astaxanthin concentration increased by reducing phosphate from 4.8 mM to 0.65 mM (160 microg/g to 215 microg/g and 1.7 microg/ml to 2.4 microg/ml, respectively). Low concentrations of ammonium or phosphate also increased the fatty acid content in cells. By analogy with lipid synthesis in other oleaginous yeasts, an examination of the data for varying nitrogen and phosphate levels suggested that citrate could be the source of carbon for fatty acids and carotenoid synthesis. Supporting this possibility was the fact that supplementation of citrate in the medium at levels of 28 mM or higher notably increased the final pigment concentration and pigment content in cells. Increased carotenoid synthesis at low ammonium or phosphate levels, and stimulation by citrate were both paralleled by decreased protein synthesis. This suggested that restriction of protein synthesis could play an important role in carotenoid synthesis by P. rhodozyma.  相似文献   

7.
Oral bioavailability of natural and synthetic carotenoids is generally poor in rodents, and this has limited the ability to test these antioxidant compounds in well-defined rodent models of human disease. Various strategies have been employed, with variable success, to increase the percentage of the total oral dose absorbed by the rodent GI tract. In the current study, a novel carotenoid derivative (the disodium disuccinate diester of astaxanthin; Heptax) was administered by oral gavage in a lipophilic emulsion to C57BL/6 mice. Plasma appearance and tissue accumulation of non-esterified, free astaxanthin was studied by HPLC over 72 h after single- and multiple-dose regimens. One-time dosing of Heptax in emulsion at 500 mg/kg resulted in significant appearance of free astaxanthin in plasma (Cmax=0.2 mg/l; 381 nM) and accumulation in solid organs (e.g. liver Cmax=0.9 mg/l; 1735 nM), levels not previously reported after single carotenoid doses in rodents. At each point in the concentration/time curve (AUC), free astaxanthin levels in liver were greater than the corresponding concentration in plasma, suggesting concentrative uptake by the liver. As the ED50 as an antioxidant for non-esterified, free astaxanthin in model systems is approximately 200 nM, the current results suggest that hepatoprotection against oxidative insults may be achieved after a single dose of Heptax in these animals. In humans, where the bioavailability of oral carotenoids ranges from 40 to 60% of the total dose when given in lipophilic vehicle, much smaller oral doses may be utilized for therapeutic benefit in a particular clinical application.  相似文献   

8.
The aqueous solubility and/or dispersibility of synthetic carotenoid analogs can be improved by varying the chemical structure(s) of the esterified moieties. In the current study, a highly water-dispersible astaxanthin (3,3'-dihydroxy-beta,beta-carotene-4,4'-dione) derivative was synthesized by esterification to the amino acid L-lysine, and subsequently converted to the tetrahydrochloride salt. Deep violet, evenly colored aqueous suspensions were obtained with addition of the novel derivative to USP purified water up to a maximum of 181.6 mg/mL. These aqueous suspensions were obtained without the addition of heat, detergents, co-solvents, or other additives. At higher concentrations (above 181.6 mg/mL), the dispersion became turbid and viscous. There was no saturation point up to 181.6 mg/mL. The direct superoxide scavenging ability of the tetrahydrochloride dilysine astaxanthin salt was also evaluated by electron paramagnetic resonance (EPR) spectroscopy in a well-characterized in vitro isolated human neutrophil assay. The novel derivative was an extremely potent (micromolar concentration) aqueous-phase scavenger, with near-complete suppression of the superoxide anion signal (as detected by spin-trap adducts of DEPMPO) achieved at 100 microM. To the authors' knowledge, this novel carotenoid derivative exhibits the greatest aqueous dispersibility yet described for a natural and/or synthetic C40 carotenoid, and as such, will find utility in those applications for which aqueous-phase singlet oxygen quenching and direct radical scavenging are required.  相似文献   

9.
10.
采用在基础饲料中分别添加0、130和260 mg/kg的合成虾青素配制成3种粗蛋白和粗脂肪含量分别为42%和16%的等氮等脂的中华绒螯蟹(Eriocheir sinensis)育肥饲料(分别记为饲料1、2和3), 以中华绒螯蟹商业育肥饲料作为饲料4, 分别投喂4组雌蟹(每个饲料组3个重复水槽, 每个水槽中12只蟹), 进行为期60d的室内养殖实验, 以探讨添加合成虾青素对中华绒螯蟹成体雌蟹性腺发育、色泽及抗氧化能力的影响。结果显示: (1)实验进行到30d和60d, 在饲料中添加虾青素对雌体肝胰腺指数(HSI)和性腺指数(GSI)均无显著影响(P>0.05)。(2)性腺、肝胰腺和头胸甲中的总类胡萝卜素含量和红度值(a值)均以饲料3组最高, 性腺亮度值(L值)和黄度值(b值)以饲料1组最高(P<0.05); 饲料2组头胸甲的b值最高, 饲料1组最低(P<0.05)。(3) 饲料1组中华绒螯蟹血清过氧化物酶(POD)活性显著高于其他组, 饲料4组的过氧化氢酶(CAT)、谷胱甘肽还原酶(GR)、乳酸脱氢酶(LDH)、总抗氧化能力(T-AOC)、丙二醛(MDA)和乳酸(LD)含量最高(P<0.05); 肝胰腺中的SOD、T-AOC、GSH-Px和GR活性均以饲料1组最高, 饲料2组最低(P<0.05)。(4) 饲料2组血清酸性磷酸酶(ACP)活性和血蓝蛋白(Hc)含量显著高于其他组, 其余各组间差异不显著。血清中的碱性磷酸酶(ALP)和γ-谷氨酰转移酶(γ-GT)活性和一氧化氮(NO)含量均以饲料4组最高(P<0.05), 肝胰腺中的ACP、ALP和γ-GT活性以饲料1组最高。综上, 在育肥饲料中添加合成虾青素对成体雌蟹性腺发育无显著影响, 但可显著提高头胸甲、肝胰腺和卵巢中的类胡萝卜素总量、色泽和抗氧化能力, 建议雌蟹育肥饲料中合成虾青素的含量为90 mg/kg左右。  相似文献   

11.
We assessed the effects of dietary carotenoid pigment supplementation on liver histochemistry in the rainbow trout. One hundred and eight rainbow trout (mean mass 266 ± 10 g) were assigned to each of three replicate tanks for each of three dietary treatments; astaxanthin, canthaxanthin, or control at a target dietary inclusion of 100 mg/kg, by top-coating a pigment-free commercially extruded basal diet (Trouw Aquaculture, U.K.). Fish were fed for 3 weeks at a ration of 1.2% body mass/day, in a recirculating freshwater system maintained at 16 °C. Frozen liver sections were stained for total lipids, unsaturated lipids, glycogen, mucopolysaccharides, glycogen phosphorylase and aspartate aminotransferase. Relative amounts were measured quantitatively by image analysis. Carotenoid treatment significantly (P < 0.05) altered the total lipid profile and hepatic mucopolysaccharide contents of livers of rainbow trout. Results are discussed in relation to the catabolic potential of the liver in carotenoid pigment metabolism.  相似文献   

12.
Apparent astaxanthin (3,3'-dihydroxy-beta,beta-carotene-4,4'-dione) digestibility coefficients (ADC) and carotenoid compositions of the muscle, liver, whole kidney and plasma were compared in Atlantic salmon (Salmo salar) and Atlantic halibut (Hippoglossus hippoglossus) fed a diet supplemented with 66 mg astaxanthin kg(-1) dry matter for 112 days. The astaxanthin source consisted of 75% all-E-, 3% 9Z- and 22% 13Z-astaxanthin, of (3R,3'R)-, (3R,3'S; meso)-, and (3S,3'S)-astaxanthin in a 1:2:1 ratio. The ADC of astaxanthin was significantly higher in Atlantic halibut than in Atlantic salmon after 56 and 112 days of feeding (P < 0.05). The ADC of all-E-astaxanthin was significantly higher than ADC of 9Z-astaxanthin (P < 0.05). Considerably more carotenoids were present in all plasma and tissue samples of salmon than in halibut. Retention of astaxanthin in salmon muscle was 3.9% in salmon and 0 in halibut. All-E-astaxanthin accumulated selectively in the muscle of salmon, and in plasma of salmon and halibut compared with diet. 13Z-astaxanthin accumulated selectively in liver and whole kidney of salmon and halibut, when compared with plasma. A reductive pathway for astaxanthin metabolism in halibut similar to that of salmon was shown by the presence of 3',4'-cis and trans glycolic isomers of idoxanthin (3,3',4'-trihydroxy-beta,beta-carotene-4'-one) in plasma, liver and whole kidney. In conclusion, the higher ADC of astaxanthin in halibut than Atlantic salmon may be explained by lower feed intake in halibut, and the lower retention of astaxanthin by a higher capacity to transform astaxanthin metabolically.  相似文献   

13.
Carotenoid (astaxanthin and canthaxanthin) concentrations in everted intestine from rainbow trout (Oncorhynchus mykiss, Walbaum) and Atlantic salmon (Salmo salar, L.) exposed to micelle solubilised carotenoid, have been determined. Following exposure (1 h) to astaxanthin solution (5 mg l(-1)), trout pyloric caeca and mid intestine had higher (P<0.05) mean tissue astaxanthin concentrations (0.50+/-0.08 microg g(-1) and 0.54+/-0.09 microg g(-1), respectively) compared to hind intestine (0.04+/-0.01 microg g(-1); n=11+/-S.E.). Furthermore, the astaxanthin concentration in pyloric caeca (0.50+/-0.08 microg g(-1)) was greater (P<0.05) than that of canthaxanthin (0.11+/-0.01 microg g(-1); n=11, +/-S.E.) when exposed to solutions of similar carotenoid concentration (5.11+/-0.16 mg l(-1) and 5.35+/-0.16 mg l(-1), respectively; n=3+/-S.E.). However, no differences (P>0.05) were recorded between trout and salmon intestinal tissue in terms of astaxanthin concentration following exposure. Trout caeca exposed to astaxanthin solution had significantly (P<0.05) more vitamin A (514.1+/-36.4 microg g(-1)) compared to control tissues (316.5+/-61.7 microg g(-1); n=8+/-S.E.). Vitamin A(1) concentrations in caeca (287.7+/-11.0 microg g(-1)) exposed to astaxanthin solution were significantly higher (P<0.05) compared to controls (174.9+/-26.9 microg g(-1)). However, vitamin A(2) concentrations were not significantly (P>0.05) different (226.3+/-28.2 microg g(-1) and 141.6+/-35.2 microg g(-1), respectively).  相似文献   

14.
This study was designed to assess the effects of dietary carotenoid supplementation on liver and kidney xenobiotic-metabolizing enzymes in the rainbow trout. Twelve rainbow trout (mean weight 266+/-10 g) were assigned to each of three replicate tanks for each of four dietary treatments; astaxanthin, canthaxanthin, negative control and positive control using beta-naphthoflavone, at a target dietary inclusion of 100 mg kg(-1) for each additive. Fish were fed for 3 weeks at a level of 1.2% body wt. day(-1). Serum carotenoid levels were used as indicators of exposure and were not significantly different (P>0.05) between carotenoid-fed trout. Livers and kidney were frozen separately in liquid N(2) by immersion and microsomal fractions from pooled samples (n=3) assayed for xenobiotic-metabolizing enzyme (cytochrome P450 monoxygenase) activities including ethoxyresorufin O-deethylase; methoxyresorufin O-demethylase; pentoxyresorufin O-dealkylase; benzoxyresorufin O-dearylase; and the conjugating enzymes glucuronosyl transferase; and glutathione-s-transferase. Results revealed that carotenoid treatment did not significantly (P>0.05) induce any enzyme system examined. Results are discussed in the context of metabolism of absorbed carotenoids.  相似文献   

15.
16.

Background

Cardiac troponin is the biochemical gold standard to diagnose acute myocardial infarction. Interestingly however, elevated cardiac troponin concentrations are also frequently observed during and after endurance-type exercise. Oxidative stress associated with prolonged exercise has been proposed to contribute to cardiac troponin release. Therefore, the aim of this study was to assess the effect of 4 week astaxanthin supplementation (a potent cartenoid antioxidant) on antioxidant capacity and exercise-induced cardiac troponin release in cyclists.

Methods

Thirty-two well-trained male cyclists (age 25±5, weight 73±7 kg, maximum O2 uptake 60±5 mL·kg−1·min−1, Wmax 5.4±0.5 W·kg−1; mean ± SD) were repeatedly subjected to a laboratory based standardized exercise protocol before and after 4 weeks of astaxanthin (20 mg/day), or placebo supplementation in a double-blind randomized manner. Blood samples were obtained at baseline, at 60 min of cycling and immediately post-exercise (≈ 120 min).

Results

The pre-supplementation cycling trial induced a significant rise of median cardiac troponin T concentrations from 3.2 (IQR 3.0–4.2) to 4.7 ng/L (IQR 3.7–6.7), immediately post-exercise (p<0.001). Four weeks of astaxanthin supplementation significantly increased mean basal plasma astaxanthin concentrations from non-detectable values to 175±86 µg·kg−1. However, daily astaxanthin supplementation had no effect on exercise-induced cardiac troponin T release (p = 0.24), as measured by the incremental area under the curve. Furthermore, the elevation in basal plasma astaxanthin concentrations was not reflected in changes in antioxidant capacity markers (trolox equivalent antioxidant capacity, uric acid, and malondialdehyde). Markers of inflammation (high-sensitivity C-reactive protein) and exercise-induced skeletal muscle damage (creatine kinase) were equally unaffected by astaxanthin supplementation.

Conclusion

Despite substantial increases in plasma astaxanthin concentrations, astaxanthin supplementation did not improve antioxidant capacity in well-trained cyclists. Accordingly, exercise-induced cardiac troponin T concentrations were not affected by astaxanthin supplementation.

Trial registration

ClinicalTrials.gov NCT01241877  相似文献   

17.
The effect of illumination intensity on astaxanthin synthesis by yeast Xanthophyllomyces dendrorhous DSM 5626 and its 4 mutants grown in cultures on carrot extract medium was investigated. Cell concentration, total carotenoid and astaxanthin yields were assessed in obtained cultures. Collected data were used to construct regression models describing the effect of illumination intensity on controlled parameters. Maximum cellular (0.44–0.46 g/kg of dry cell weight) and volumetric yields (2.3–2.4 mg/L) of the pigment were observed for mutants 10BE and 34B at 600 lx, as well as for mutant 26UV at 1000 lx. The highest yield of astaxanthin for the parental strain was obtained in culture at illumination of 1000 lx (0.29 g/kg of dry cell weight and 1.51 mg/L). The values of illumination determined on the basis of constructed regression models for individual yeast strains, at which astaxanthin synthesis should be the most efficient, remained within the range of 660–1000 lx.  相似文献   

18.
Appearance, pharmacokinetics, and distribution of astaxanthin E/Z and R/S isomers in plasma and lipoprotein fractions were studied in 3 middle-aged male volunteers (37-43 years) after ingestion of a single meal containing a 100 mg dose of astaxanthin. The astaxanthin source consisted of 74% all-E-, 9% 9Z-, 17% 13Z-astaxanthin (3R,3'R-, 3R,3'S; meso-, and 3S,3'S-astaxanthin in a 1:2:1 ratio). The plasma astaxanthin concentration--time curves were measured during 72 hr. Maximum levels of astaxanthin (1.3 +/- 0.1 mg/L) were reached 6.7 +/- 1.2 hr after administration, and the plasma astaxanthin elimination half-life was 21 +/- 11 hr. 13Z-Astaxanthin accumulated selectively, whereas the 3 and 3'R/S astaxanthin distribution was similar to that of the experimental meal. Astaxanthin was present mainly in very low-density lipoproteins containing chylomicrons (VLDL/CM; 36-64% of total astaxanthin), whereas low-density lipoprotein (LDL) and high-density lipoprotein (HDL) contained 29% and 24% of total astaxanthin, respectively. The astaxanthin isomer distribution in plasma, VLDL/CM, LDL, and HDL was not affected by time. The results indicate that a selective process increases the relative proportion of astaxanthin Z-isomers compared to the all-E-astaxanthin during blood uptake and that astaxanthin E/Z isomers have similar pharmacokinetics.  相似文献   

19.
Natural carotenoids from astaxanthin containing alga Haematococcus pluvialis (H) and a non-astaxanthin carotenoid-containing alga Spirulina pacifica (S), and a synthetic astaxanthin Carophyll Pink (A) were supplemented in formulated diets at two concentrations, 50 (I) and 100 (II) mg kg−1, resulting in seven pigmented diets HI, SI, AI, HII, SII, AII, and HS (H-50 mg kg−1+S-50 mg kg−1). Formulated diet without carotenoid supplementation served as a control (C). The different diets were fed to juvenile kuruma prawn Marsupenaeus japonicus for 9 weeks. Dietary carotenoid effects on survival, growth, and pigmentation were compared by the treatment individually or collectively. A low dissolved oxygen stress test was conducted 2 weeks later and prawns' survival time and oxygen consumption rate were also compared among treatments. After 9 weeks' rearing, C-fed prawn had significantly lower survival rate than the pigmented diets-fed prawns. No difference in weight gain was found among all prawns. C-fed prawn had 66.4% less flesh astaxanthin (FA) and 75.5% less shell astaxanthin (SA) than the pigmented diets-fed prawns. I-fed (AI, HI, and SI) prawns had 31.1% less FA and 29.6% less SA than II-fed (AII, HII, SII, and HS) prawns. No significant differences were found in the comparisons by other categories. The use of these three sources of carotenoids for pigmentation in crustacean was discussed along carotenoid conversion, deposition, digestibility, and absorption. When subjected to low dissolved oxygen stress, C-fed prawn had higher oxygen consumption rate (OCR) and shorter survival time (ST) than the prawns fed the pigmented diets. No differences in OCR or ST were found in the comparisons by other categories.  相似文献   

20.
1. The main carotenoids in wild Penaeus monodon exoskeleton were astaxanthin di- and mono-esters, astaxanthin, and beta-carotene. 2. Wild P. monodon exoskeleton contained on average 26.3 ppm total carotenoid; normally pigmented farmed shrimp had a similar concentration (25.3 ppm). 3. Exoskeletons of farmed "blue" P. monodon (i.e. blue-coloured, as opposed to the normally red-blue/black banded shrimp) contained significantly less total carotenoid (4.3-7 ppm). The only major carotenoid being astaxanthin. 4. Commercially available diets contained only trace quantities of canthaxanthin. 5. Nutritional deficiency with respect to carotenoids is suggested as the cause of blue disease in farmed P. monodon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号